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Wireless Sensor Networks

base station

D sensor node

data: {3,5,8,9,...}
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Wireless Sensor Networks

base station

D sensor node

data: {3,5,8,9,...}

Assume for this talk:

® The network is a tree (may not be balanced).

m [he tree has already been built.
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Data Aggregation

Goal: Get all the data in an "aggregated form” to save
communication.

Example: sum

23 45
10
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Data Aggregation

Goal: Get all the data in an "aggregated form” to save
communication.

Example: sum
sum(23, 10 , 45, 4, 15, 43)

23 45
10
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Data Aggregation

Goal: Get all the data in an "aggregated form” to save
communication.

Example: sum
sum(23, 10 , 45, 4, 15, 43)
Also works for: max
count 23 45

average 10

3-3



Data Aggregation

3-4

Goal: Get all the data in an "aggregated form” to save
communication.

Example: sum
sum(23, 10 , 45, 4, 15, 43)
Also works for: max
count 23 45

average 10

The Decomposable Property

A function f is decomposable if there exists some “combine”
function g, such that for any two multisets A, B,

f(AW B) = g(f(A),f(B))



In a set of n values, the (r/n)-quantile is the value ranked at r.
The 0.5-quantile is the median.

DO®OOOOO6

0ee

r — e&n
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In a set of n values, the (r/n)-quantile is the value ranked at r.
The 0.5-quantile is the median.
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An e-approximate (r/n)-quantile is any value ranked between
[r —en,r+en.
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In a set of n values, the (r/n)-quantile is the value ranked at r.
The 0.5-quantile is the median.

DO®OOOOO6

0ee

r — e&n

An e-approximate (r/n)-quantile is any value ranked between
[r —en,r+en.

Problem: Quantiles are NOT decomposable
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Quantile Summaries

Previous solution: Design a quantile summary that is
decomposable, and any (e-approximate) quantile can be
extracted from this summary

summary size

g-digest
[Shrivastava et al. '04] O(2 log u)
272 citations

GK .
|Greenwald, Khanna '04] O(g log” n)
102 citations

k: number of nodes. 100 ~ 10000

h: height of the tree. log k ~ vk
u: size of universe. log u = 32

n: total data size.
e error. 1072 —10~%
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Quantile Summaries

Previous solution: Design a quantile summary that is
decomposable, and any (e-approximate) quantile can be
extracted from this summary

summary size total cost
g-digest
[Shrivastava et al. '04] O(2 log u) O(% log u)
272 citations
GK

2 k.2
|Greenwald, Khanna '04] O(% log” n) O(g log” n)
102 citations

k: number of nodes. 100 ~ 10000

h: height of the tree. log k ~ vk
u: size of universe. log u = 32

n: total data size.
e error. 1072 —10~%
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Quantile Summaries

Previous solution: Design a quantile summary that is

-decomposable; and any (e-approximate) quantile can be

extracted from this summary

summary size total cost
g-digest
[Shrivastava et al. '04] O(2 log u) O(% log u)
272 citations
GK

2 k.2
|Greenwald, Khanna '04] O(% log” n) O(g log” n)
102 citations

1 v kh

New O(z log k) O(*7)
 total data <i k: number of nodes. 100 ~ 10000
1 TORaTOata Bt h: height of the tree. log k ~ vk

. —2 _10—4
e: error. 10 10 u: size of universe. log u = 32
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Quantile Summaries

Previous solution: Design a quantile summary that is

-decomposable; and any (e-approximate) quantile can be

extracted from this summary
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g-digest
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2 k.2
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combined summary

summary summary

summary
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A

junk
combined -stmrary-
junk junk
S --ET2 Summaty
‘ junk ‘
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Our Approach
. a valid quantile summary

base station &
“ junk
combined -strmrary-
junk junk
A Surmmary
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Base station
N\

m Flat model

® [ree model

7-1



Roadmap

Base station
N\

m Flat model

® [ree model

m Partitioned tree
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Base station
N\

m Flat model

® [ree model

10 ((10)

—————

m Partitioned tree

value-to-rank queries

=/

ODO®EOOOOG

Return any number within r(10) -

— &N



The Flat Model: Algorithm

Base station

The algorithm for each node
Sample each value with probabiltiy p
DOWOO®OWL® o e

(3,2) (7,5) (13,8) (26,10)

Compute local ranks

Base station
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The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

L ®b& W

3 ©O® ® ©o
@ @ @
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The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)
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The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)
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The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

e m - -
- -
- -
- -
- -
-
-
-
-

r(10)=5+2/p
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The Flat Model: Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7

L ® ©® 1 ®
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The Flat Model: Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7
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The Flat Model: Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7

® ~ 15
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The Flat Model: Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7
® ?\ 15

Follows a geometric distribution (almost)

E[?]=1/p Var[?] < 1/p?

10-4



The Flat Model: Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7
® ?\ 15

Follows a geometric distribution (almost)

E[?]=1/p Var[?] < 1/p?

Set p = \/_
Varl(x)] < k/p? = (en)?
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The Flat Model: Communication Cost

m Total cost: np = V'k/e in expectation

= Max individual node cost: O(Vk/e)
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The Flat Model: Communication Cost

m Total cost: np = V'k/e in expectation

= Max individual node cost: O(Vk/e)
Reduce to O(1/¢)
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The Flat Model: Communication Cost

Let S; be the set of data collected at node |

'/ 8’5i|

A

T =

en

S

|Si)
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The Flat Model: Communication Cost

Let S; be the set of data collected at node |

A

T =

en
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o
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The Flat Model: Communication Cost

Let S; be the set of data collected at node |

A

T =

en

S

o
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® [ree model
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Tree Model: Naive Extension from Flat Model

Total cost: gh (h is the height of the tree)
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Tree Model: Naive Extension from Flat Model

Total cost: gh (h is the height of the tree)

Max individual cost: O(%k)
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Tree Model: Merging Samples

S VO@WO®O®OUL® @ e

Pi (3,2) (7,5) (13, 8) (26, 10)
b — < N
r 1 n
L €lSil? 5il 2 Vk
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Tree Model: Merging Samples

S VO@WO®O®OUL® @ e

pi (3,2) (7,5) (13,8) (26,10)
Pi = <( 8_'15’ 5] < L"
| s 1=
Sil p (3,2) (7,5) (13,8) (26,10)
4

S| p2 (5,3) (14,6) (18,8) (24, 11)

S+15] p
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Tree Model: Merging Samples

S VO@WO®O®OUL® @ e

pi (3,2) (7,5) (13,8) (26,10)
| =, |Si| > L
L €lSi]? Vk
Si p (3,2) (7,5) (13,8) (26, 10)

_I_ Sample w.p. p/p1
S| p2 (5,3) (14,6) (18,8) (24,11)

Sample w.p. p/p>
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Tree Model: Merging Samples

S VO@WO®O®OUL® @ e

(13,8) (26, 10)

Pi (3,2) (7,5)
o 1 . _n_
s 1Sz gz

Si p (3,2) (7,5) (13,8) (26, 10)

_|_

S| p2 (5,3) (14,6) (18,8) (24, 11)

[51] 4 152] p

(> %)

Sample w.p. p/p>
(13,8+7)

Sample w.p. p/p1



Tree Model: Merging Samples

S O@®@WoO®O OO o)
p; (3,2) (7,5) (13,8) (26,10)

( Yk 5| <

=9 9 vk

g ( €[Si]” ‘S’ZT

51| p1 (3,2) (7,5) (13,8) (26, 10)
_I_ Sample w.p. p/p1

S| p2 (5,3) (14,6) (18,8) (24, 11)

Sample w.p. p/p>
1S1] +[S2| p (13,8+7)

§> ﬁ) This is a rank query in the other sample!




Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

51l P (3,2) (7.5) 8) (26,10)

S| P2 (5,3) (14,6)

(13,
_|_
(18,8) (24,11)

(13,8 +3 +1/p»)
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Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

Sil p1 (3,2) (7,5) (13,8) (26, 10)

_|_
S| p2 (5,3) (14,6) (18,8) (24,11)

(13,8 +3 +1/p»)

Var[local count of 13 in 5; U S,] =
Var[local count of 13 in 5;] +
Var[local count of 5 in S;] +




Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

Sil p1 (3,2) (7,5) (13,8) (26, 10)

_|_
S| p2 (5,3) (14,6) (18,8) (24,11)

(13,8 +3 +1/p»)

Var[local count of 13 in 51 U S3] = Var[merged sample] =
Var|local count of 13 in 51] + Var[sample of 51| +
Varllocal count of 5 in S| + Var[sample of S| +

1/p3 max(1/pi,1/p3)



Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

Sil p1 (3,2) (7,5) (13,8) (26, 10)

_|_
S| p2 (5,3) (14,6) (18,8) (24,11)

(13,8 +3 +1/p»)

Var[local count of 13 in 51 U S3] = Var[merged sample] =
Var|local count of 13 in 5;] + Var[sample of 5] +
Varllocal count of 5 in S| + Var[sample of S| +
1/p2 max(1/pf, 1/p5)

Get “penalized” if we merge two samples of uneven sizes.
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Tree Model: Merging Samples

ldea: Only merge samples with p; &~ p», i.e., |51| = |Sy|

I =

Sl

[]
L ] | ] | |
t 2t 4t 3t 16t ‘5’
i

Merge samples in the same bucket
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Tree Model: Merging Samples

ldea: Only merge samples with p; &~ p», i.e., |51| = |Sy|

— _n_
L=k
H =
L ] | [] | |
t 2t At 8t 16t ‘5’
I

Merge samples in the same bucket
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Tree Model: Merging Samples

ldea: Only merge samples with p; &~ p», i.e., |51| = |Sy|

t:ﬁ
H =
C o m, | |\I |
t 2t 4t 8t 16t ‘5’

Merge samples in the same bucket

After merging, there are at most log v k samples
(so, the max individual cost is O(2 log k))
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Tree Model: Merging Samples

ldea: Only merge samples with p; &~ p», i.e., |51| = |Sy|

t:ﬁ
H =
C o m, | |\I |
t 2t 4t 8t 16t ‘5’

Merge samples in the same bucket

After merging, there are at most log v k samples
(so, the max individual cost is O(2 log k))

Can show that the final variance is O((en)?) (please see paper)
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m Partitioned tree
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Tree Partitioning

Partition into t connected components with O(k/t) nodes each

19-1



Tree Partitioning

Partition into t connected components with O(k/t) nodes each

4

May need to share a few (< t) nodes e
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Tree Partitioning

Partition into t connected components with O(k/t) nodes each

4

May need to share a few (< t) nodes s

Can be done in linear time and communication.
Algorithm not too difficult
— a nice homework question for an algorithms course?
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Quantile Computation on a Partitioned Tree

Consider the t components as t “super nodes”
Total sampe size is O(1/t/e), communication cost O(+/t/c - h)
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Quantile Computation on a Partitioned Tree

Consider the t components as t “super nodes”
Total sampe size is O(y/t/g), communication cost O(+/t/c - h)

Computing the “local ranks” of the sampled values, need to
broadcast them to all nodes in the super node, costing

O(V't/e - k/t)
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Quantile Computation on a Partitioned Tree

Consider the t components as t “super nodes”
Total sampe size is O(y/t/g), communication cost O(+/t/c - h)

... Need h = k/t to balance

" When t = k/h, both are
O(Vkh/¢)

Computing the “local ranks” of the sampled values, need to
broadcast them to all nodes in the super node, costing

O(V't/e - k/t)
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Experimental Results on Terrain Data

Total communication

o-digest —+—

GK X
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X
~
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Average error of queries




Experimental Results on Terrain Data
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Conclusion

m A sampling based algorithm whose total communication
cost grows sublinearly as network size

® Deviate from the traditional “"decomposable” framework

® Can we solve other data aggregation problems using
similar ideas?
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