
1-1

Sampling Based Algorithms for Quantile
Computation in Sensor Networks

Zengfeng Huang, Lu Wang, Ke Yi, Yunhao Liu

Hong Kong University of Science and Technology

SIGMOD’11

2-1

base station

Wireless Sensor Networks

sensor node

data: {3, 5, 8, 9, . . .}

2-2

base station

Wireless Sensor Networks

sensor node

Assume for this talk:

The network is a tree (may not be balanced).

The tree has already been built.

data: {3, 5, 8, 9, . . .}

3-1

Data Aggregation

Goal: Get all the data in an “aggregated form” to save
communication.

Example: sum

23
10

45

3-2

Data Aggregation

Goal: Get all the data in an “aggregated form” to save
communication.

Example: sum

23
10

45

sum(23, 10 , 45, 4, 15, 43)

3-3

Data Aggregation

Goal: Get all the data in an “aggregated form” to save
communication.

Example: sum

23
10

45

sum(23, 10 , 45, 4, 15, 43)
Also works for: max

count
average

3-4

Data Aggregation

Goal: Get all the data in an “aggregated form” to save
communication.

Example: sum

23
10

45

sum(23, 10 , 45, 4, 15, 43)
Also works for: max

count
average

The Decomposable Property

A function f is decomposable if there exists some “combine”
function g , such that for any two multisets A, B,

f (A] B) = g(f (A), f (B))

4-1

Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r .
The 0.5-quantile is the median.

r

r ± εn

63 7 9 11 131 4

4-2

Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r .
The 0.5-quantile is the median.

An ε-approximate (r/n)-quantile is any value ranked between
[r − εn, r + εn].

r

r ± εn

63 7 9 11 131 4

4-3

Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r .
The 0.5-quantile is the median.

An ε-approximate (r/n)-quantile is any value ranked between
[r − εn, r + εn].

Problem: Quantiles are NOT decomposable

r

r ± εn

63 7 9 11 131 4

5-1

Quantile Summaries

q-digest
[Shrivastava et al. ’04]

GK
[Greenwald, Khanna ’04]

O(1
ε log u)

O(1
ε log2 n)

summary size

Previous solution: Design a quantile summary that is
decomposable, and any (ε-approximate) quantile can be
extracted from this summary

272 citations

102 citations

k: number of nodes. 100 ∼ 10000

u: size of universe. log u = 32ε: error. 10−2 − 10−4
n: total data size.

h: height of the tree. log k ∼
√
k

5-2

Quantile Summaries

q-digest
[Shrivastava et al. ’04]

GK
[Greenwald, Khanna ’04]

O(1
ε log u)

O(1
ε log2 n)

summary size

Previous solution: Design a quantile summary that is
decomposable, and any (ε-approximate) quantile can be
extracted from this summary

272 citations

102 citations

k: number of nodes. 100 ∼ 10000

u: size of universe. log u = 32ε: error. 10−2 − 10−4
n: total data size.

h: height of the tree. log k ∼
√
k

O(k
ε log u)

O(k
ε log2 n)

total cost

5-3

Quantile Summaries

q-digest
[Shrivastava et al. ’04]

GK
[Greenwald, Khanna ’04]

O(1
ε log u)

O(1
ε log2 n)

summary size

Previous solution: Design a quantile summary that is
decomposable, and any (ε-approximate) quantile can be
extracted from this summary

272 citations

102 citations

k: number of nodes. 100 ∼ 10000

u: size of universe. log u = 32ε: error. 10−2 − 10−4
n: total data size.

h: height of the tree. log k ∼
√
k

New O(
√
kh
ε)O(1

ε log k)

O(k
ε log u)

O(k
ε log2 n)

total cost

5-4

Quantile Summaries

q-digest
[Shrivastava et al. ’04]

GK
[Greenwald, Khanna ’04]

O(1
ε log u)

O(1
ε log2 n)

summary size

Previous solution: Design a quantile summary that is
decomposable, and any (ε-approximate) quantile can be
extracted from this summary

272 citations

102 citations

k: number of nodes. 100 ∼ 10000

u: size of universe. log u = 32ε: error. 10−2 − 10−4
n: total data size.

h: height of the tree. log k ∼
√
k

New O(
√
kh
ε)O(1

ε log k)

O(k
ε log u)

O(k
ε log2 n)

total cost

+k

6-1

Our Approach

summarysummary

summary

combined summary

6-2

Our Approach

summarysummary

summary

combined summary

junkjunk

junk

junk

6-3

Our Approach

summarysummary

summary

combined summary

junkjunk

junk

junk

base station

a valid quantile summary

7-1

Roadmap

Flat model

Tree model

Base station

7-2

Roadmap

Flat model

Tree model

Base station

Partitioned tree

7-3

Roadmap

Flat model

Tree model

Base station

Partitioned tree

value-to-rank queries

10

Return any number within r(10)± εn

r(10) = 7

63 7 9 11 131 4

8-1

The Flat Model: Algorithm

Base station

The algorithm for each node

(3, 2) (7, 5) (13, 8) (26, 10)

Base station

Sample each value with probabiltiy p

Compute local ranks

63 9 111 4 16 21 243 7 13 26

9-1

The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192

9-2

The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192

r(10)?predecessor

9-3

The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192

r(10)?predecessor

2+1/p

3 +1/p

0 no predecessor

9-4

The Flat Model: Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192

r(10)?predecessor

2+1/p

3 +1/p

0 no predecessor

r̂(10) = 5 + 2/p

10-1

The Flat Model: Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 1510 111 6

r(10)?

10-2

The Flat Model: Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 15

r(10)?

10-3

The Flat Model: Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 15

r(10)?

?

10-4

The Flat Model: Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 15

r(10)?

?

Follows a geometric distribution (almost)

E[?] = 1/p Var[?] ≤ 1/p2

10-5

The Flat Model: Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 15

r(10)?

?

Follows a geometric distribution (almost)

E[?] = 1/p Var[?] ≤ 1/p2

Set p =
√
k

εn

Var[r̂(x)] ≤ k/p2 = (εn)2

11-1

The Flat Model: Communication Cost

Total cost: np =
√
k/ε in expectation

Max individual node cost: O(
√
k/ε)

11-2

The Flat Model: Communication Cost

Total cost: np =
√
k/ε in expectation

Max individual node cost: O(
√
k/ε)

Reduce to O(1/ε)

12-1

The Flat Model: Communication Cost

Let Si be the set of data collected at node i

εn√
k

1
p

n√
k |Si |

ε|Si |

12-2

The Flat Model: Communication Cost

Let Si be the set of data collected at node i

εn√
k

1
p

n√
k |Si |

ε|Si |

Var = (εn)2

k Var = (ε|Si |)2

12-3

The Flat Model: Communication Cost

Let Si be the set of data collected at node i

εn√
k

1
p

n√
k |Si |

ε|Si |

Var = (εn)2

k Var = (ε|Si |)2

Total variance ≤
∑

i (
(εn)2

k + (ε|Si |)2) ≤ 2(εn)2

13-1

Roadmap

Flat model

Tree model

Base station

14-1

Tree Model: Naive Extension from Flat Model

Total cost:
√
k
ε h (h is the height of the tree)

14-2

Tree Model: Naive Extension from Flat Model

Total cost:
√
k
ε h (h is the height of the tree)

Max individual cost: O(
√
k
ε)

15-1

Tree Model: Merging Samples

(3, 2) (7, 5) (13, 8) (26, 10)

63 9 111 4 16 21 243 7 13 26Si

pi

pi =

{ √
k

εn , |Si | ≤ n√
k

1
ε|Si | , |Si | ≥

n√
k

15-2

Tree Model: Merging Samples

(3, 2) (7, 5) (13, 8) (26, 10)

63 9 111 4 16 21 243 7 13 26Si

pi

pi =

{ √
k

εn , |Si | ≤ n√
k

1
ε|Si | , |Si | ≥

n√
k

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
|S1|+ |S2| p(

> n√
k

)

15-3

Tree Model: Merging Samples

(3, 2) (7, 5) (13, 8) (26, 10)

63 9 111 4 16 21 243 7 13 26Si

pi

pi =

{ √
k

εn , |Si | ≤ n√
k

1
ε|Si | , |Si | ≥

n√
k

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
|S1|+ |S2| p

Sample w.p. p/p1

Sample w.p. p/p2(
> n√

k

)

15-4

Tree Model: Merging Samples

(3, 2) (7, 5) (13, 8) (26, 10)

63 9 111 4 16 21 243 7 13 26Si

pi

pi =

{ √
k

εn , |Si | ≤ n√
k

1
ε|Si | , |Si | ≥

n√
k

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
|S1|+ |S2| p

Sample w.p. p/p1

Sample w.p. p/p2

(13, 8+?)(
> n√

k

)

15-5

Tree Model: Merging Samples

(3, 2) (7, 5) (13, 8) (26, 10)

63 9 111 4 16 21 243 7 13 26Si

pi

pi =

{ √
k

εn , |Si | ≤ n√
k

1
ε|Si | , |Si | ≥

n√
k

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
|S1|+ |S2| p

Sample w.p. p/p1

Sample w.p. p/p2

(13, 8+?)

This is a rank query in the other sample!
(
> n√

k

)

16-1

Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
(13, 8 + 3 + 1/p2)

16-2

Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
(13, 8 + 3 + 1/p2)

Var[local count of 13 in S1 ∪ S2] =
Var[local count of 13 in S1] +
Var[local count of 5 in S2] +
1/p22

16-3

Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
(13, 8 + 3 + 1/p2)

Var[local count of 13 in S1 ∪ S2] =
Var[local count of 13 in S1] +
Var[local count of 5 in S2] +
1/p22

Var[merged sample] =
Var[sample of S1] +
Var[sample of S2] +
max(1/p21 , 1/p22)

16-4

Tree Model: Merging Samples

Problem: Variances accumulate

(Law of total variance)

(3, 2) (7, 5) (13, 8) (26, 10)|S1| p1

(5, 3) (14, 6) (18, 8) (24, 11)|S2| p2

+

=
(13, 8 + 3 + 1/p2)

Var[local count of 13 in S1 ∪ S2] =
Var[local count of 13 in S1] +
Var[local count of 5 in S2] +
1/p22

Var[merged sample] =
Var[sample of S1] +
Var[sample of S2] +
max(1/p21 , 1/p22)

Get “penalized” if we merge two samples of uneven sizes.

17-1

Tree Model: Merging Samples

|Si |

t = n√
k

t 2t 4t 8t 16t

Merge samples in the same bucket

Idea: Only merge samples with p1 ≈ p2, i.e., |S1| ≈ |S2|

17-2

Tree Model: Merging Samples

|Si |

t = n√
k

t 2t 4t 8t 16t

Merge samples in the same bucket

Idea: Only merge samples with p1 ≈ p2, i.e., |S1| ≈ |S2|

17-3

Tree Model: Merging Samples

|Si |

t = n√
k

t 2t 4t 8t 16t

Merge samples in the same bucket

Idea: Only merge samples with p1 ≈ p2, i.e., |S1| ≈ |S2|

After merging, there are at most log
√
k samples

(so, the max individual cost is O(1
ε log k))

17-4

Tree Model: Merging Samples

|Si |

t = n√
k

t 2t 4t 8t 16t

Merge samples in the same bucket

Idea: Only merge samples with p1 ≈ p2, i.e., |S1| ≈ |S2|

After merging, there are at most log
√
k samples

Can show that the final variance is O((εn)2) (please see paper)

(so, the max individual cost is O(1
ε log k))

18-1

Roadmap

Flat model

Tree model

Base station

Partitioned tree

19-1

Tree Partitioning

Partition into t connected components with O(k/t) nodes each

19-2

Tree Partitioning

Partition into t connected components with O(k/t) nodes each

May need to share a few (≤ t) nodes

19-3

Tree Partitioning

Partition into t connected components with O(k/t) nodes each

May need to share a few (≤ t) nodes

Can be done in linear time and communication.
Algorithm not too difficult
— a nice homework question for an algorithms course?

20-1

Quantile Computation on a Partitioned Tree

Consider the t components as t “super nodes”
Total sampe size is O(

√
t/ε), communication cost O(

√
t/ε · h)

20-2

Quantile Computation on a Partitioned Tree

Consider the t components as t “super nodes”
Total sampe size is O(

√
t/ε), communication cost O(

√
t/ε · h)

Computing the “local ranks” of the sampled values, need to
broadcast them to all nodes in the super node, costing
O(
√
t/ε · k/t)

20-3

Quantile Computation on a Partitioned Tree

Consider the t components as t “super nodes”
Total sampe size is O(

√
t/ε), communication cost O(

√
t/ε · h)

Computing the “local ranks” of the sampled values, need to
broadcast them to all nodes in the super node, costing
O(
√
t/ε · k/t)

Need h = k/t to balance

When t = k/h, both are
O(
√
kh/ε)

21-1

Experimental Results on Terrain Data

k = 16384
n = 109

log u = 64

22-1

Experimental Results on Terrain Data

k = 16384
n = 109

log u = 64

23-1

Conclusion

A sampling based algorithm whose total communication
cost grows sublinearly as network size

Deviate from the traditional “decomposable” framework

Can we solve other data aggregation problems using
similar ideas?

