Tree Indexing on Flash Disks

Yinan Li, Bingsheng Hef, Qiong Luo, and Ke Yi

Hong Kong University of Science and Technology

{yinanli, saven, luo, yike}@cse .ust.hk

Abstract— Large flash disks have become an attractive al-
ternative to magnetic hard disks, due to their high random
read performance, low energy consumption and other features.
However, writes, especially random writes, on the flash disk are
inherently much slower than reads because of the erase-before-
write mechanism. To address this asymmetry of read-write speeds
in indexing on the flash disk, we propose the FD-tree, a tree index
designed with the logarithmic method and fractional cascading
techniques. With the logarithmic method, an FD-tree consists of
the head tree — a small B+-tree on the top, and a few levels
of sorted runs of increasing sizes at the bottom. This design is
write-optimized for the flash disk; in particular, an index search
will potentially go through more levels or visit more nodes, but
random writes are limited to the head tree and are subsequently
transformed into sequential ones through merging into the lower
runs. With the fractional cascading technique, we store pointers,
called fences, in lower level runs to speed up the search. We
evaluate the FD-tree in comparison with representative B+-tree
variants under a variety of workloads. Our results show that the
FD-tree has a similar search performance to the standard B+-
tree, and a similar update performance to the write-optimized
B+-tree variant. As a result, FD-tree outperforms all these B+-tree
index variants on both update- and search-intensive workloads.

I. INTRODUCTION

The flash disk, or flash Solid State Drive (SSD), has
emerged as a viable alternative to the magnetic hard disk for
non-volatile storage. The advantages of the flash disk include
high random read performance, low power consumption and
excellent shock resistance. Moreover, the capacity of the flash
disk doubles every year [1]. Flash disks have been considered
recently as a new storage device that can replace magnetic
disk and achieve a much higher performance for enterprise
database servers [2], [3], [4]. Since tree indexes are a primary
access method in databases, we study how to adapt them to
the flash disk exploiting the hardware features for efficiency.

The flash disk is a type of electrically-erasable pro-
grammable read-only memory (EEPROM). Unlike magnetic
disks where seek and rotational delays are the dominant cost
of reading or writing a page, the flash disk has no mechanic
movement overhead. As a result, random reads of a flash disk
are up to two orders of magnitude faster than a magnetic disk
[5]. However, due to the erase-before-write mechanism of the
flash disk, each write operation may require erasing a large
block, called the erase block. This mechanism makes random
writes almost two orders of magnitude slower than both the
random read and the sequential access patterns. As shown in
Table I, our Samsung 32GB flash disk provides 3100 IO/sec
for random reads, but only 25 IO/sec for random writes. While

1 Bingsheng He is currently with Microsoft Research at Asia.

high-end flash disks with a better random write performance
have recently been announced, such as the Intel Extreme series
SSD [6], their random writes are an order of magnitude slower
than random reads.

TABLE I

PERFORMANCE COMPARISON OF RANDOM ACCESS PATTERNS (IO/SEC)

Samsung Intel Extreme Segate 7200RPM
32GB SSD | 32/64GB SSD | SATA Magnetic Disk
Random Read 3100 35000 100
Random Write 25 3300 110

Given the asymmetry of the read and write speeds of
the flash disk, write-optimized indexes [7], [8], [9], [10],
traditionally optimized for magnetic disks, become a possible
alternative for flash-based tree indexing. Especially, the log-
structured merge tree (LSM-tree) [7] and its variant [8],
proposed for append-only or write-dominant environments,
consists of multiple B+-trees and is optimized for the write
access patterns: a new entry is firstly inserted into the smallest
one and gradually migrated to larger ones. However, a search
on these log-structured indexes requires searching multiple
B+-tree components. This can degrade the search performance
significantly.

To optimize the update performance by reducing small ran-
dom writes while preserving the search efficiency, we propose
the FD-tree, a tree index that is aware of the hardware features
of the flash disk. Specifically, we adopt the logarithmic method
[11] and the fractional cascading [12] technique to FD-tree for
efficient update and search performance, respectively.

The FD-tree is a logarithmic data structure for reducing the
amortized cost of the update. It consists of a small B+-tree,
called the head tree, on top of a few levels of sorted runs of
increasing sizes. In an FD-tree, updates are only applied to
the head tree, and then merged to the lower level sorted runs
in batches. Since the head tree is likely to fit into the main
memory, most random writes to the flash disk are transformed
into sequential ones through the merge. The idea of adopting
the logarithmic method is similar to the LSM-tree [7]. The
difference is that the FD-tree consists of sorted runs instead
of tree components, which allows us to improve the search
performance using the fractional cascading.

Fractional cascading was originally proposed to speed up
binary searches on multiple sequences of sorted data [12]. We
adapt this technique to flash disks to speed up the search on
FD-tree. Specifically, we store fences, or pointers to pages in
a lower level of sorted run into the immediate higher level.
With these fences, a search on an FD-tree is first performed
on the small tree, and next on the sorted runs level by level

Head Tree L,

[1 Page

|| index Entry ¢ [1 Trefao | [lsaeefes]]
E)_, E /- Level L,
ence P \
d/ /e j \g
| 1]2]7]8]11)16]18]19]20]24]30}40]46]47]48]48]53]53]58]60]03] | LeafLevel L,
(h ————7 — j k- \l n 0 v N~

[1]3[4]4[s]7[8]8]8]910[11]11]11]14]15]15]16]18]22]23]25]25[30]1]33]35[a8]40]40]40]41]42]43]45]a647]4s]53]54]55]60]63]70]76]89]01]03]

[47|48]53]54]55]60]
A

(a) The overview of the example FD-tree

Fig. 1.

with the fences guiding the position to start in the sorted run
of the next level.

In the following, we describe our FD-tree designed and
empirically evaluate its efficiency in comparison with three
other existing indexes on flash disks.

II. FD-TREE

In this section, we present the design of FD-tree. Our goal
is to minimize the number of small random writes, while
maintaining a high search efficiency.

A. Index Structure

An FD-tree consists of multiple levels denoted as Lo ~
L;_4. The top level, Ly, is a small B+-tree called the head
tree. Each of the other levels, L;(1 < i < [), is a sorted run
stored in contiguous pages. Figure 1(a) illustrates the structure
of an FD-tree. The FD-tree has three levels, the head tree and
two sorted runs. The head tree is a two-level B+-tree. With
the fractional cascading technique, the leaf nodes of the head
tree have pointers to the sorted run, L;. Each non-leaf level
in turn has pointers to the sorted run of the immediate lower
level.

Each level of FD-tree has a capacity. Following the loga-
rithmic method, we set the levels with a stepped capacity, i.e.,
| Lix1]l = k- || Li]| (0 <4i <1—2), where k is the logarithmic
size ratio between L; 1 and L;. Therefore, || L;|| = k* - || Lo||.
The updates are initially performed on the head tree, and
then are gradually migrated to the sorted runs at the lower
levels in batches when the capacity of a level is exceeded.
The maximum size of the head tree, || Lol is far smaller than
the available amount of main memory, so that it is likely to
reside in the main memory. Specifically, we set || Lol to the
erase block size of flash disk so that the head tree fits into one
erase block.

We categorize the entries in an FD-tree into two kinds, index
entry and fence.

e Index Entry. An index entry contains three fields: an index
key, key, a record ID, rid, of the indexed data record,
and type indicating its role in the logarithmic deletion of
FD-tree.

o Fence. A fence is an entry with three fields: a key value,
key, a type, and a pid, the id of the page in the immediate
lower level that a search will go next. Depending on

(b) Searching key = 48

An example FD-tree

whether the key value of the fence in L; is selected from
L; or L;y,, we further categorize fences in L; into two
kinds, internal fences and external fences.

— External fence (type = External). The key value
of an external fence in L; is selected from L; ;. We
create a fence for each page of L;y;. For page P
in L;1, we select the key of the last entry in P to
be the key of the fence, and set the pid field of the
fence to be the id of P.

— Internal fence (type = Internal). The key value
of an internal fence is selected from [;. We add
internal fences to handle data skews. If the index
entries between two consecutive external fences, I}
and F)1, span multiple pages (denoted as Py, Py,
..., Pp, p is the number of spanned pages), we add
an internal fence to page P; (0 <1 < p) as the last
entry of the page. The key value of the internal fence
at P; is set to be the key of the last index entry in
P;. The pid field of the internal fence is set to be the
same as that of F; ;. For example, in Figure 1(a),
entry 53 in page f is an internal fence that points to
page n. With this fence, we can avoid fetching page
g when searching keys between 47 and 53.

In each level of FD-tree, the fences and index entries are
organized in the ascending order of their keys. With the same
key, the external fences follow the index entries. By design, the
number of the external fences in L; is the number of pages in
Lit1, |Liy1|/f, where f is the number of entries in a page.
The number of the internal fences in L; is a maximum of
|L;|/f, because each page contains at most one internal fence.
Then, the total number of fences in L;, (|L;| + |Lit1|)/f, is
less than the number of entries in L;, ie., k < f — 1.

B. Search

An index search on the FD-tree requires searching each level
from top down. A query can be either a point search with an
equality predicate (an exact match), or a range search with a
range predicate. Since the algorithm for the point search is
similar to that for the range search except the difference in
evaluating entries with predicates, we focus on the algorithm
for the point search.

To search an entry, we first perform a lookup on the head

tree, the same as that on the traditional B+-tree. Next, we
perform a search on each level following the pid of the fence.
Within a page in L;, a binary search is performed to find the
first matching entry, if any. We then scan the sorted run from
the first matching entry to find all matching entries. Next, we
continue the scan until we find the fence whose key value is
equal to or larger than the search key. All matching entries
are added to the result set. Since each page has at least one
fence, the scan is performed only on the pages having matches.
After finishing at level L;, following the pid of the fence, we
go down to the next level L; ;.

Figure 1(b) illustrates searching 48 on the example FD-
tree in Figure 1(a). At each level, it searches a page until it
encounters a fence and follows the fence to search the page
in the next level of sorted run.

The search performance of the FD-tree is not necessarily
worse than the B+-tree. Although an FD-tree may be higher
than a B+-tree with the same size because the fanout of FD-
tree is less than that of B+-tree with the same page size, i.e.,
k < f—1, two features in the design of the FD-tree inherently
benefits the index search performance. First, the pages in the
FD-tree are full of entries, and the entries in the levels of the
FD-tree except of L are stored contiguously. Note, the nodes
in the B+-tree are not full, typically with a utilization of 70%
[13]. Second, FD-tree does not have the aging problem [14]
like the B+-tree, where the locality of leaf nodes degrades after
a large number of updates.

C. Insert and Merge

To insert an entry, the new entry is inserted into the head tree
L first. If the number of entries in the head tree L, exceeds
its capacity |Lg|, a merge operation is performed between Ly
and L, to migrate all entries in Lo to L.

The merge process is performed on two adjacent levels
when the smaller one of the two exceeds its capacity. The
merge operation sequentially scans the two inputs in the order
of key values, and combines them into one sorted run in
contiguous pages. A newly generated L; consists of all index
entries from L;_q, all index entries and external fences from
L;. The new internal fences of L; are constructed during
the merge when necessary. At the same time, the new levels
L;(0 < j < i) are rebuilt with the external fences constructed
from the newly generated L;. That is, given two adjacent
levels, L;_1 and L;, the merge process generates ¢ + 1 new
sorted runs to update all levels from Ly to L;. If new L;
exceeds its capacity, L; and L;;; are merged. This process
continues until the larger one of the two newly generated levels
does not exceed the capacity.

D. Delete and Update

Deletion of an entry in the FD-tree is performed by inserting
a special entry called a filter entry. The existing then becomes
a phantom entry, and is left untouched. Specifically, we first
perform a search on the FD-tree using the predicate of the
deletion. This search identifies the set of index entries to be
deleted. New entries (filter entries) with the same key and

pointer value as these entries are inserted into the FD-tree. The
reason for inserting new entries instead of marking existing
entries invalid is to avoid the small random write of marking.

Since deletions insert filter entries and make old entries
become phantom entries, a subsequent search may get a result
set containing both types of entries. Therefore, we need to
remove filter entries and phantom entries of the same key and
pointer value from the result set in a search. As the merge
process occurs, both filter entries and phantom entries are
migrated to the lower levels. When they encounter each other
at the same level, they will be skipped and not appear in the
newly merged run. Thus, the phantom and their filter entries
are eventually deleted.

Figure 2 illustrates an example of the deletion process. We
mark the filter entries with a solid underline, and their phantom
entries with a dashed underline. In Figure 2(a), we delete the
index entries 37 in Lg, 45 in Lo and the second 16 in Ls.
Here, we use the key to represent the index entry. Since entry
37 is in the head tree Ly, it is deleted from L directly. The
filter entries 45 and 16 are inserted into the head tree. When a
merge is performed on Ly and L1 as shown in Figure 2(b), the
filter entry 45 encounters its phantom entry, and both entries
are discarded. When a merge is performed on L; and Lo, as
shown in Figure 2(c), the filter entry 16 and its corresponding
phantom entry are discarded. Note, the first index entry 16
remains in the index after the merge.

In the FD-tree, an update operation is implemented as a
deletion on the old value and a following insertion with the
new value.

]

fehe]] [T |
® ©

Fig. 2. An example of the logarithmic deletion process

E. Discussion

We compare the costs of FD-tree with the representative B+-
tree variants including the standard B+-tree, the LSM-tree [7],
and BFTL [15], a B+-tree variant solely designed for the flash
memory used in embedded systems. The search cost of the FD-
tree is close to that of the B+-tree, which is known to have
the optimal search cost among all secondary storage index
structures. At the same time, the FD-tree supports updates
as efficiently as the LSM-tree. In some sense, the FD-tree
captures the best of both worlds.

III. EXPERIMENTAL RESULTS

In this section, we empirically evaluate FD-tree in compar-
ison with the standard B+-tree, LSM-tree [7] and BFTL [15].

We ran our experiments on a PC powered by Intel QuadCore
CPU 2.4GHz on Windows XP with 2GB main memory, and
a 32GB Samsung NAND flash disk.

The entries in the indexes contain a 4-byte integer key
and another 4-byte field shared by type and pointer. The

4 64 TIFD-tree EB+-tree ELSM-tree OBFTL 32.
—a—FD-tree 32 45 —
—%—Bi-tree —=—FD-tree 4 841 i
2 | —a—LSMtree 16 1 —%—B+-tree = I~
) ——BFTL Z s —A— LSM-tree £ 3% ™
e 14 e 4 —+—BFTL o 3 i 2.58
£ £ £
= = 2 = 25
©
% os 3 1 g 2 i
g g g 15 i
[o 05 o i oss
0.25 0.25 4 14 0.52 i
7
0.125 05 4 ’—‘ /
0.125 : : : : : 0.0625 : : : : : : 0 : Z
32M 64M 128M 256M 512M 1G 2G 4G 8G 32M 64M 128M 256M 512M 1G 2G 4G 8G W-Search W-Update

Index Size (Bytes)

(a) Search performance vs. index size

Fig. 3.

key values are uniformly distributed. The page size is set to
2KB, which is the physical page size of the flash disk. In our
experiments, we set f = k/2 for simplicity. Further tuning on
k could be done to achieve the optimal overall performance
by balancing read/write performance. An LRU buffer manager
is implemented for caching recently accessed disk pages. The
size of buffer pool is set to 8MB. We disabled the buffering
functionality of the operating system to avoid the interference.

Figure 3(a) shows the search performance of the four
indexes with the index size varied. Among the four indexes,
BFTL is the slowest, because it requires fetching multiple
pages randomly in accessing a tree node. B+-tree and FD-tree
are the best, and they perform quite similarly regardless of
the index size. FD-tree is slightly faster than B+-tree, because
the pages in the sorted runs are entirely full and are stored
consecutively. LSM-tree is slower than B+-tree and FD-tree,
because a single search on LSM-tree requires searching on
multiple B+-tree components.

Figure 3(b) demonstrates the insertion performance of the
four indexes with the index size varied. Among the four
indexes, the B+-tree has the worst insertion performance, and
LSM-tree is the best. The insertion performance of FD-tree
is slightly slower than LSM-tree. This is because FD-tree
has more auxiliary entries such as the fences than LSM-
tree. Nevertheless, both LSM-tree and FD-tree are orders of
magnitude faster than the B+-tree and BFTL, due to their
logarithmic structure design. Since BFTL delays and clusters
the updates on the same page, it outperforms the B+-tree.

Figure 3(c) shows the overall performance of the four in-
dexes for the W-Search and W-Update workloads on the flash
disk. All these four indexes contain 10° entries. Their sizes are
approximately 8GB. The y-axis is the average elapsed time per
request of the workload. We define W-Search as a workload
consisting of 80% searches, 10% insertions, 5% deletions and
5% updates to simulate a workload dominated by writes.
We use a workload of 20% searches, 40% insertions, 20%
deletions and 20% updates to simulate a workload dominated
by reads, denoted as W-Update. These two workloads are
representatives of the read/write-intensity of commercial work-
loads. For W-Search on the flash disk, FD-tree is 15.8X, 2.3X,
5.2X faster than B+-tree, LSM-tree and BFTL, respectively.
For W-Update on the flash disk, FD-tree is 61.4X, 1.7X, 4.9X

Index Size (Bytes)

(b) Insertion performance vs. index size

Workload

(c) Overall performance of two workloads

Comparison of the four indexes

faster than B+-tree, LSM-tree and BFTL, respectively.

IV. CONCLUSIONS

In this paper, we identify that the B+-tree indexes designed
for the hard disk are unsuitable for the flash disk, and
propose a flash disk aware tree index, FD-tree. We design our
tree index with the logarithmic and the fractional cascading
techniques to improve its overall performance. Our tree index
takes advantage of hardware features of the flash disk by
utilizing efficient random reads and sequential accesses, and
eliminating the slow random writes. Both of our analytical
and empirical results show that FD-tree captures the best of
both search and insertion performance among existing tree
indexes, and outperforms these indexes for both search- and
update-intensive workloads.

REFERENCES

[11 K. Kimura and T. Kobayashi, “Trends in high-density flash memory
technologies,” in IEEE Conference on Electron Devices and Solid-State
Circuits, 2003.

[2] J. Gray and B. Fitzgerald, “Flash disk opportunity for server applica-
tions,” ACM Queue, vol. 6, no. 4, pp. 18-23, 2008.

[3] S.-W. Lee and B. Moon, “Design of flash-based dbms: an in-page
logging approach,” in SIGMOD Conference, 2007, pp. 55-66.

[4] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case
for flash memory ssd in enterprise database applications,” in SIGMOD
Conference, 2008, pp. 1075-1086.

[5] E. Gal and S. Toledo, “Algorithms and data structures for flash memo-
ries,” ACM Comput. Surv., vol. 37, no. 2, pp. 138-163, 2005.

[6] Intel X25-E SATA Solid State Drive Datasheet. Intel Corp., 2008.

[71 P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (Ism-tree),” Acta Inf., vol. 33, no. 4, pp. 351-385,
1996.

[8] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kan-
neganti, “Incremental organization for data recording and warehousing,”
in VLDB, 1997, pp. 16-25.

[9] C. Jermaine, A. Datta, and E. Omiecinski, “A novel index supporting

high volume data warehouse insertion,” in VLDB, 1999, pp. 235-246.

G. Graefe, “Write-optimized b-trees,” in VLDB, 2004, pp. 672—683.

J. L. Bentley, “Decomposable searching problems,” Inf. Process. Lett.,

vol. &, no. 5, pp. 244-251, 1979.

B. Chazelle and L. J. Guibas, “Fractional cascading: I. a data structuring

technique,” Algorithmica, vol. 1, no. 2, pp. 133-162, 1986.

D. Comer, “The ubiquitous b-tree,” ACM Comput. Surv., vol. 11, no. 2,

pp. 121-137, 1979.

N. Ponnekanti and H. Kodavalla, “Online index rebuild,” in SIGMOD

Conference, 2000, pp. 529-538.

C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An efficient b-tree layer

implementation for flash-memory storage systems,” in RTCSA, 2003,

pp. 409-430.

[10]
(11]

[12]
[13]
[14]

[15]

