
Continual Observation under User-level Differential Privacy

Wei Dong, Qiyao Luo, and Ke Yi
Hong Kong University of Science and Technology, Hong Kong SAR, China

{wdongac,qluoak,yike}@cse.ust.hk

Abstract—In the foundational work of Dwork et al. [15]
on continual observation under differential privacy (DP), two
privacy models have been proposed: event-level DP and user-
level DP. The latter provides a much stronger notion of privacy,
as it allows a user to contribute an arbitrary number of items.
Under event-level DP, their mechanisms match the optimal utility
bounds in the static setting up to polylogarithmic factors for
all union-preserving functions. Unfortunately, in contrast to this
strong result for event-level DP, their user-level DP mechanisms
have weak utility guarantees and many restrictions on the data.
In this paper, we take an instance-specific approach, designing
continual observation mechanisms for a number of fundamental
functions under user-level DP. Our mechanisms do not need
any a priori restrictions on the data, while providing utility
guarantees that degrade gracefully as the hardness of the data
increases. For the count and sum function, our mechanisms are
down-neighborhood optimal, matching the static setting up to
polylogarithmic factors. For other functions, they do not match
the static case, but we prove that this is inevitable, which is the
first separation result for continual observation under differential
privacy.

Index Terms—Differential privacy, Continual observation,
User-level differential privacy

I. INTRODUCTION

Data is seldom static. When private data evolves over time,
there is a need to continually release sanitized query results
about the data while preserving the privacy of the users
who contribute to the data. This is precisely the problem of
continual observation under differential privacy, introduced
in the pioneering work of Dwork et al. [15]. Here, time is
divided into discrete steps, and data is modeled as a (possibly
infinite) stream of items arriving over time, one per time step.
More formally, let D = (x1, x2, . . .) be the stream, where
item xi arrives at time i. If no data arrives at time i, xi is set
to a dummy item ⊥. Let Dt = (x1, . . . , xt) be the data set
received up until time t. With a slight abuse of notation, we
also use Dt to denote the multiset of items contained in Dt,
not including the dummy items. For a given function F (·), a
continual observation mechanism M must output an F̃ (Dt)
for every t ∈ N with the following three properties:

• Online: For each t ∈ N, it must output F̃ (Dt) before
xt+1 arrives.

• Differential privacy: The entire output is ε-
indistinguishable over any two neighboring streams
D ∼ D′, i.e., for any y1, y2, . . . ,

Pr[F̃ (D1) = y1, F̃ (D2) = y2, . . .]

≤eε · Pr[F̃ (D′
1) = y1, F̃ (D′

2) = y2, . . .],

where ε is the privacy parameter.

• Utility: For any t ∈ N, the error ∥F̃ (Dt) − F (Dt)∥
is small with at least constant probability1, for some
appropriate norm ∥ · ∥.

To make this definition complete, we need to specify the
neighboring relationship D ∼ D′. Dwork et al. [15] proposed
two natural definitions: In event-level differential privacy, or
simply event-DP, two streams D and D′ are neighbors if one
can be obtained from the other by removing one item (i.e.,
setting it to ⊥). In user-level differential privacy, or user-DP,
each item xi is associated with (the id of) a user ui, and D
and D′ are neighbors if one can be obtained from the other
by removing all or any subset of items associated with one
user. Clearly, event-DP is a special case of user-DP by setting
ui = i for all i, while the latter provides stronger privacy
protection in situations where a user may contribute multiple
items in the stream. The canonical example is a click stream
that consists of websites visited by users. In this case, user-
DP guarantees that, from the released results, the adversary
would not be able to decide if any particular user is present in
the stream with enough confidence (controlled by ε), even if
the adversary is computationally unbounded and can observe
the data contributed by all other users. Below, we use ∼E

and ∼U to differentiate these two neighboring relationships,
and use ∼ when this distinction is irrelevant. Furthermore, we
use dE(D,D′) and dU (D,D′) to denote the shortest distance
between D and D′ where each step is∼E and∼U respectively.

A. Previous work on event-DP

The major result in [15] on event-DP is a black-box re-
duction to the static problem with only a poly log(T)-factor
increase in the error for any union-preserving function F ,
where T is an upper bound on the stream length. Chan et al.
[8] extend this result to infinite streams, with the poly log(T)
factor replaced by poly log(t), where t is the current length
of the stream. A union-preserving function F is one such that
F (D1 ⊎ D2) = F (D1) + F (D2) for any D1, D2, where ⊎
denotes multiset union. Most natural functions (e.g., count,
sum, histogram) are union-preserving or can be transformed
to such a function (e.g., distinct count, k-selection). The
exact poly log(t) factor depends on the function F and the
black-box static mechanism being used. In particular, for the
count function Fcnt(D) =

∑
i I(xi ̸=⊥) with the Laplace

mechanism as the black box which has error O(1ε), the

1Most of the literature uses this definition of utility, which is also called a
one-shot guarantee. This can be extended to an all-time guarantee, i.e., a bound
on supt∈N ∥F̃ (Dt)−F (Dt)∥, with just a logarithmic-factor increase in the
error bound, even over an infinite stream; see the remark after Lemma II.11.

continual observation mechanism of [15, 8] achieves an error
of O(1ε log

1.5 t) for Fcnt(Dt).
After the ground-laying work [15, 8] that established the

theoretical equivalence of event-DP and the static problem (up
to polylogarithmic factors), a slew of works have made further
practical improvements. [16] has optimized the sparse-stream
case where most items are ⊥. [9] has proposed techniques
to smooth out the query results, which may reduce the error
during periods when the stream is stable. [11, 23, 22] use the
matrix mechanism to improve the constant factors in the error
of [15, 8], while relaxing the privacy definition to (ε, δ)-DP.
Since we use [8] as a black box, such techniques can also be
used in our mechanisms. Others have made improvements for
particular functions, such as sum [30, 38, 4], histogram [6, 7,
32], linear functions [10], and graph statistics [21, 33]. Event-
DP under the local model of differential privacy has been
studied in [25, 38]. Finally, w-event-DP [27, 31, 40, 39, 37] has
been proposed as an extension, where we protect the privacy
for any w consecutive events.

B. Previous work on user-DP

In contrast to the strong result on event-DP, the result on
user-DP from [15] is relatively weak and restrictive. It requires
the function F to have a bounded global sensitivity GS and
be (α1, α2)-unvarying, i.e., over any stream D and any α1

number of time instances, there must exist two consecutive
time instances between which the function value changes by
no more than α2. For such an F , the user-DP mechanism of
[15] has error2 Õ(GS · α1 + α2). For most natural functions,
the restriction of a bounded GS also imposes an upper bound
on the maximum user contribution: Taking the count function
as an example, this means that each user is only allowed to
contribute at most GS events. In fact, under such a restriction,
simply running their event-DP mechanism with a privacy
parameter of ε/GS using the group privacy property of DP
(note that dE(D,D′) ≤ GS · dU (D,D′)) can already achieve
an error of Õ(GS). On the other hand, α1, α2 are unbounded
for an infinite stream; even for a finite stream of length T , we
need to set α1 ·α2 ≥ T . Thus, for the count function, the user-
DP mechanism of [15] is actually no better than their event-DP
mechanism applied with group privacy. Unfortunately, [15] did
not give a concrete F on which their user-DP mechanism is
better.

In seeing the difficulty of user-DP, subsequent works in-
troduced more assumptions on the data. For example, [19]
assumes that data comes in batches and each user can only
contribute one item in any batch; they also assume that the
data in consecutive batches are correlated. [3] studies user-DP
in the local model, while making similar assumptions. While
these mechanisms satisfy privacy, they do not have theoretical
guarantees on the utility.

C. Recent work on static user-DP

Earlier efforts on user-DP failed to yield satisfactory re-
sults, mostly because they aimed at optimizing the worst-case

2The Õ notation suppresses dependencies on ε and polylogarithmic factors.

error, i.e., a bound on maxD ∥F̃ (Dt) − F (Dt)∥, which is
inevitably large unless strict restrictions are imposed on the
user contributions. Recent work on user-DP in the static setting
[2, 12, 20, 24] has taken an instance-specific approach, namely,
the error depends on certain “hardness” parameter of D. Again
taking the count function as an example, the mechanism in
[24, 13] achieves an error of Õ(κ(D)) on any (static) data set
D, where κ(D) is the maximum number of items contributed
by any user in D. Such an instance-specific approach has
several advantages:

1) It offers better utilities on most real data sets in which the
hardness parameter is small, which is more meaningful
than worst-case bounds for problems where the worst
case is atypical.

2) It works without making any assumptions on the data,
such as restricting user contributions. In some sense, these
restrictions become soft: if they are broken, the utility
degrades gracefully (privacy is always guaranteed).

3) Very often, down-neighborhood optimality (see Sec-
tion II-C for the formal definition) can be achieved,
which is a natural relaxation of instance optimality and
much stronger than worst-case optimality. For the count
function, an error of Õ(κ(D)) has been shown to be
down-neighborhood optimal. Intuitively, it means that any
DP mechanism has to incur an error of Ω(κ(D)) on either
D or the data set after removing the most contributing
user from D.

D. Our results

Inspired by the recent user-DP work in the static setting, in
this paper we also take an instance-specific approach towards
the dynamic problem. For a number of common functions F ,
we have designed dynamic user-DP mechanisms that inherit
the first two advantages above from the static setting. Down-
neighborhood optimality is also maintained for some functions
like count and sum, but not for other functions like distinct
count, histogram, and k-selection. Although there are down-
neighborhood optimal mechanisms for these functions (in fact,
for all monotonic functions [20]) in the static setting, we show
that they do not exist in the dynamic setting. This is the first
separation result between the static and dynamic case under
differential privacy.

As representation, here we state our results on the count and
distinct count function; results on other functions can be found
in Section IV. Our continual observation mechanism for the
count function Fcnt achieves an error of O

(
κ(Dt)

ε · log1.5 t ·

log1+θ(κ(Dt))
)

for Fcnt(Dt) where θ > 0 can be any small
constant. This matches the static error bound of [24, 13] up
to polylogarithmic factors, hence down-neighborhood optimal.
Furthermore, it incorporates event-DP as a special case: When
κ(Dt) = 1, the bound precisely degenerates3 into that of [15,
8]. We would like to stress that this incorporation is automatic,
as our mechanism does not need to know the value of κ(Dt);

3We define log(x) = max{1, log2(x)}.

in fact, a main technical component in our mechanism is to
estimate κ(Dt) for all t in a differentially private manner.

For distinct count, our mechanism also has an error of
Õ(κ(Dt)). While this is still a nontrivial instance-specific
bound, it is not down-neighborhood optimal. For this function,
a down-neighborhood optimal mechanism should achieve an
error of Õ(DS(ρ)(Dt)) for some ρ = Õ(1), where DS(ρ)(Dt)
is the downward sensitivity of Dt at distance ρ (see Definition
II.8). For the distinct count function, this is the size of the
largest set A of distinct items such that (1) there is one user
who contributes at least one copy of each item of A; and
(2) all copies of the items in A are contributed by at most
ρ + 1 users. Note that DS(ρ)(Dt) ≤ κ(Dt) by definition.
While a static mechanism can achieve error Õ(DS(ρ)(Dt))
for ρ = Õ(1) [20], we show that this is impossible under the
dynamic setting.

In addition to the nice theoretical guarantees, our mech-
anisms are also simple and practical. To demonstrate their
empirical performance, we have conducted an extensive set
of experiments using both synthetic and real data. The exper-
imental results show that our algorithm largely outperforms
the baselines even with strong prior knowledge on D, i.e.,
knowing κ(DT).

II. PRELIMINARIES

A. Notation
Let U be the (possibly infinite) set of all users. Let [n] :=

{1, 2, . . . , n}. The stream is an infinite sequence of item-user
pairs D :=

(
(x1, u1), (x2, u2), . . .

)
, where each xi is taken

from {⊥}∪ [R] for some domain size R. Each item xi is con-
tributed by user ui ∈ U . Let Dt :=

(
(x1, u1), . . . , (xt, ut)

)
.

For any t ∈ Z+, let κ(Dt) be the maximum number of items
contributed by any user in Dt, i.e.,

κ(Dt) := max
u∈U

∣∣∣{(xi, ui) ∈ Dt : ui = u, xi ̸=⊥
}∣∣∣.

Note that we do not assume any a priori upper bound on
κ(Dt).

For any x ∈ N, let Binj(x) ∈ {0, 1} be the (j +1)-th least
significant bit in the binary representation of x.

B. Properties of differential privacy
Lemma II.1 (Post Processing [18]). If M : X → Y satisfies
ε-DP and M′ : Y → Z is any randomized mechanism, then
M′(M(D)) satisfies ε-DP.

Lemma II.2 (Basic Composition [18]). If M1 : X → Y
satisfies ε1-DP and M2 : X × Y → Z satisfies ε2-DP, then
M2(D,M1(D)) satisfies (ε1 + ε2)-DP.

Lemma II.3 (Parallel Composition [28]). If M1, M2 sat-
isfy ε1-DP and ε2-DP, and X1,X2 ⊆ X are two disjoint
input domains, then

(
M1(D ∩ X1),M2(D ∩ X1)

)
satisfies

max(ε1, ε2)-DP.

Lemma II.4 (Group Privacy [18]). If M is an ε0-DP mech-
anism, then for any two datasets D,D′ with d(D,D′) = k,
M satisfies (kε0)-DP.

For any function F : X → Rd, the global sensitivity is
GS = maxD∼D′

∥∥Q(D)−Q(D′)
∥∥
1
. A basic DP mechanism

is the Laplace mechanism:

Lemma II.5 (Laplace Mechanism). Given F : X → Rd with
global sensitivity GS, the mechanism M(D) = F (D) + γ
preserves ε-DP, where γ is a d-dimensional vector where each
entry is independently drawn from the Laplace distribution
Lap(GSQ/ε).

The Laplace distribution enjoys a good concentration prop-
erty.

Lemma II.6 (Concentration Bound of Laplace Distribu-
tions [8]). Suppose γ1, γ2, . . . , γk are independent random
variable, where each γi ∼ Lap(bi), then for any β > 0,

Pr

∣∣∣∣∣∑
i

γi

∣∣∣∣∣ ≤
√
8
∑
i

b2i · log(
2

β
)

 ≤ β.

C. Down-neighborhood optimality

The Laplace mechanism is worst-case optimal. However,
worst-case optimality is meaningless under user-DP, unless
there is a small pre-defined limit on the user contributions.
In the absence of such restrictions, down-neighborhood opti-
mality [12, 20, 24] has been adopted as a more meaningful
notion of optimality under user-DP.

Definition II.7 (Down-neighborhood Optimality [20]). Let M
be the class of all ε-DP mechanisms. Given any function F ,
the ρ-down neighborhood lower bound on dataset D is defined
as

L(D, ρ) := inf
M′∈M

max
D′:D′⊆D,dU (D,D′)≤ρ

inf

{
ξ : Pr

[∥∥M′(D′)− F (D′)
∥∥ ≤ ξ

]
≥ 2

3

}
.

A mechanism M is (ρ, c)-down neighborhood optimal if for
any instance D,

Pr
[∥∥M(D)− F (D)

∥∥ ≤ c · L(D, ρ)
]
≥ 2

3
.

In plain language, a down-neighborhood optimal mecha-
nism is one that, for any D, achieves an error as small as (up
to a factor of c) the optimal mechanism tailor-made for D
and its down neighborhood within distance ρ. Clearly, small
ρ, c correspond to stronger optimality, and ideally we would
want ρ, c = Õ(1). In the static setting, this is achievable for
all monotonic functions [20], i.e., any F such that F (D′) ≤
F (D) for any D′ ⊆ D.

Since comparing with L(D, ρ) directly is difficult, the
downward sensitivity has been shown to be a good proxy for
proving down-neighborhood optimality.

Definition II.8 (Downward Sensitivity). Given any function
F , for any dataset D, its downward sensitivity is

DS(D) = max
D′:D∼D′,D′⊆D

∥F (D)− F (D′)∥,

Algorithm 1: SVT.
Input: η, ε, Q1(D), Q2(D), . . .

1 η̃ ← η + Lap(2/ε);
2 for i← 1, 2, . . . do
3 Q̃i(D)← Qi(D) + Lap(4/ε);
4 if Q̃i(D) > η̃ then
5 Break;
6 end
7 end
8 return i;

and its downward sensitivity at distance ρ is

DS(ρ)(D) = max
D′:D′⊆D,d(D,D′)≤ρ

DS(D′).

In particular, DS(0)(D) = DS(D).

Theorem II.9 ([20]). Given any function F , ε ≤ ln 2, for any
D and any ρ, 1

2 ·DS(ρ−1)(D) ≤ L(D, ρ) ≤ ρ ·DS(ρ−1)(D).

Thus, a mechanismM is (ρ, c)-down neighborhood optimal
if its error is at most 2c ·DS(ρ−1)(D) with probability at least
2/3 on any D. On the other hand, if there exists a D on
which its error is more than cρ · DS(ρ−1)(D), then it cannot
be (ρ, c)-down neighborhood optimal.

Overall, roughly speaking, down-neighborhood optimality
requires a mechanism to achieve an error level corresponding
to the maximum user contribution. It has been accepted as
a standard optimality notion to quantify the utility for DP
mechanisms under user-DP [12, 20, 24].

D. The sparse vector technique

The sparse vector technique (SVT) [17] has as input a
(possibly infinite) sequence of queries, Q1, Q2, . . . , where
each query has global sensitivity 1, and a threshold η. It aims
at finding the first i such that Qi(D) ≥ η while satisfying
ε-DP. The detailed algorithm is given in Algorithm 1. Due to
the privacy noises, it cannot return such an i precisely, but
something close, as formalized in the following lemma:

Lemma II.10 ([13]). If there exists a k such that Qk(D) ≥
η + 6

ε log(2/β), then with probability at least 1 − β, SVT
returns an i ≤ k.

E. Continual counting under event-DP

We briefly review the continual observation mechanism [15,
8] under event-DP for the count function Fcnt, which will also
be used in our user-DP mechanism. Consider the finite-stream
case first. A binary decomposition over all the T time steps is
built with log T levels of intervals, and the Laplace mechanism
is invoked on each interval to return a noisy count. Then any
F̃ (Dt) can be obtained by adding up at most log T such noisy
counts, one from each level. To set the privacy budgets of
these intervals, it suffices to allocate ε/ log T to each interval
by basic composition (across levels) and parallel composition
(within a level). Thus, the noise from each interval is O(log T),

Fig. 1: An illustration of FcntEventDP. The counting result
for time interval [1, 13] can be obtained by adding the counters
corresponding to black nodes.

Algorithm 2: FcntEventDP.

Input: D =
(
(x1, u1), (x2, u2), . . .

)
, ε

1 F̃cnt ← 0;
2 for ℓ← 0, 1, . . . do
3 αj , α̃j ← 0, j = 0, 1, . . . , ℓ;
4 ε′ ← ε/(ℓ+ 1);
5 for k ← 1, 2, . . . , 2ℓ do
6 t← 2ℓ − 1 + k;
7 Let i := min{j : Binj(k) ̸= 0};
8 αi =

∑
j<i αj + I(xt > 0);

9 α̃i ← αi + Lap(1
ε′);

10 for j ← 0, 1, . . . , i− 1 do αj ← 0 ;
11 Output

F̃cnt(Dt)← F̃cnt+
∑

j∈[ℓ] α̃j ·I(Binj(k) = 1);
12 end
13 F̃cnt ← F̃cnt + α̃ℓ;
14 end

which adds up to O(log1.5 T) by Lemma II.6. To extend to
an infinite stream, the idea is to divide the stream into disjoint
periods [2ℓ, 2ℓ+1−1] for ℓ = 0, 1, 2, . . . , and invoke the finite-
stream mechanism over each period. Now, each Dt spans log t
periods. For all but the last period, it only queries the top-
level interval; for the last period, it queries log t intervals. The
detailed algorithm is shown in Algorithm 2 and Figure 1.

Lemma II.11 ([8]). Given any ε > 0, for any D, any t ∈ Z+,
and any β > 0, with probability at least 1−β, FcntEventDP
returns an F̃cnt(Dt) such that∣∣F̃cnt(Dt)− Fcnt(Dt)

∣∣ ≤
NoiseE(t, ε, β) :=

4

ε
· ⌈log(t)⌉1.5 · log(1/β).

Remark. Lemma II.11 provides a one-shot guarantee that
holds for any single F̃cnt(Dt). To extend it to an all-time
guarantee for all t simultaneously, we can replace the failure
probability β in the lemma with β

t2 . Then, a union bound
over all t yields a total failure probability at most

∑∞
t=1

β
t2 =

O(β), while the log(1/β) factor in the error bound becomes
O(log(t/β)).

Notation Meaning

D Input stream
Dt Prefix stream at time t
D|r Sub-stream restricted to item r

(xi, ui) Item-user pairs
[R] Item domain
U User domain

κ(Dt) Maximum user contribution of Dt

F (Dt) Query result at time t
F (Dt) Query result at time t
Binj(x) (j + 1)-th least significant binary bit of x

dE(D,D′) Distance between D,D′ under tuple-DP
dU (D,D′) Distance between D,D′ under user-DP

GS Global sensitivity
DS(D) Downward sensitivity of D

DS(ρ)(D) Downward sensitivity at distance ρ of D
ε Privacy budget
β High probablity parameter

FcntEventDP Counting under tuple-DP
NoiseE Error of counting under event-DP
Fcnt Count query
Fsum Sum query
Fht Histogram query
Fk-sel k-selection query
F0 Distinct count query

Fmax -f Maximum frequency query

TABLE I: Notation used in the paper.

Algorithm 3: TruncateFcntUserDP.

Input: D =
(
(x1, u1), (x2, u2), . . .

)
, ε, τ

1 D̂ ← Truncate(D, τ);
2 Run FcntEventDP(D̂, ε/τ);

III. CONTINUAL COUNTING UNDER USER-DP

In the static setting, the count function Fcnt can be returned
with error Õ(κ(Dt)) [24, 13]. This is (1, Õ(1))-down neigh-
borhood optimal since for Fcnt, we have DS(Dt) = κ(Dt).
This is also our target in the dynamic setting. However, under
user-DP, we cannot use parallel composition over disjoint time
intervals, since a user may own items in multiple time steps.
This renders the event-DP mechanism inapplicable.

A. Warm-up: two simple solutions

As warm-up, we first look at two simple solutions for the
continual count queries under user-DP.

Basic/advanced composition. While parallel composition
cannot be used under user-DP, we can still use basic compo-
sition. However, this would lose all utility. Just consider the
finite stream case. We can allocate a privacy budget of ε/T to
each Dt, and invoke the static user-DP mechanism [24, 13].
This results in an error of Õ(T ·κ(Dt)). Since F (Dt) ≤ t ≤ T
for all t, this is even worse than the trivial solution that always
returns 0. If one is willing to relax the privacy guarantee to
(ε, δ)-DP, then advanced composition [18] can be used to
reduce the error to Õ(

√
T · κ(Dt)). This is better than the

trivial solution, but the error is still very large. In Section VII,
we will empirically compare with advanced composition.

Truncating user contributions. Another idea is to truncate
the user contributions: For some τ ∈ N, we only retain the first
τ items from each user, while setting the remaining items to ⊥.
Let Truncate(D, τ) be the truncated stream. For any D ∼U

D′, it is clear that dE(Truncate(D, τ),Truncate(D′, τ)) ≤ τ .
Thus, by the group privacy property, we can run FcntEventDP
over Truncate(D, τ) with privacy budget ε/τ ; see Algo-
rithm 2. Let Count(Dt, τ) denote the number of users
contributing more than τ items in Dt. Then the error of
TruncateFcntUserDP can be bounded as follows.

Lemma III.1. Given ε > 0 and τ ∈ Z, for any D, and any
t ∈ Z+, with probability at least 1−β, TruncateFcntUserDP
returns an F̃cnt(Dt) such that

F̃cnt(Dt)− Fcnt(Dt) ∈
[
−NoiseE

(
t,
ε

τ
, β
)

−max(κ(Dt)− τ, 0) · Count(Dt, τ),NoiseE
(
t,
ε

τ
, β
)]

In the error bound above, the NoiseE
(
t, ε

τ , β
)

term
is the noise from FcntEventDP, while the negative bias
−max(κ(Dt) − τ, 0) · Count(Dt, τ) is due to the trunca-
tion, since each of the Count(Dt, τ) users may have up to
max(κ(Dt)−τ, 0) items truncated. We see that if τ = κ(Dt),
then the bias becomes 0 and NoiseE

(
t, ε

τ , β
)
= Õ(κ(Dt)),

thus achieving the desired error bound. The challenge, there-
fore, is to track κ(Dt) continually and in a differentially
private manner. Below, we will show how this can be done
with only an Õ(1) loss in the utility.

B. Continually bounding user contributions

The first observation is that κ(Dt) monotonically increases
over time, and we just need a constant-factor approximation.
Thus, we can start with τ = 2. Then, whenever some user
has contributed more than τ items, we double τ . To detect
the time instance when this happens, we can run an SVT
over the queries Count(Dt, τ) for each successive time step
t with threshold η = 0. Note that each such query has
global sensitivity 1. This SVT will not immediately respond
when κ(Dt) exceeds τ , but will not be too late, either. By
Lemma II.10, when Count(Dt, τ) ≥ 6

ε log(2/β), it must have
responded already. This means that we will miss at most Õ(1)
users, each of which may have up to κ(Dt)−τ items truncated.
This will still lead to a bias, but it is at most Õ(κ(Dt)), which
is within our target error bound.

Another danger we need to guard against is that the SVT
may also stop too early. To see this, just imagine a long
period in which all items are dummy, hence τ should not
increase. However, due to the Laplace noises in the SVT, it
will eventually stop with probability 1. To prevent this from
happening, the idea is to use a discounted version of the
Count(Dt, τ) queries:

Count(Dt, τ, β)

=Count(Dt, τ)−
6

ε
log(2/β)− 8

ε
log(t+ 1). (1)

Algorithm 4: EstimatingUserContribution.

Input: D =
(
(x1, u1), (x2, u2), . . .

)
, ε, β, θ

1 i← 1;
2 ε1 ← εθ/21+θ; // Initialize the parameters for the first SVT for τ = 2
3 β1 ← β/22;
4 τ1 ← 2;
5 η̃ ← Lap(2/ε1); // Start the first SVT for τ = 2
6 for t← 1, 2, . . . do
7 C̃ount(Dt, τi, βi)← Count(Dt, τi, βi) + Lap(4/εi);
8 while C̃ount(Dt, τi, βi) > η̃ do
9 i← i+ 1;

10 εi ← εθ/(i+ 1)1+θ; // Update the parameters for the new SVT
11 βi ← β/(i+ 1)2;
12 τi ← 2i;
13 η̃ ← Lap(2/εi); // Start a new SVT

14 C̃ount(Dt, τi, βi)← Count(Dt, τi, βi) + Lap(4/εi);
15 end
16 τ̃t ← τi;
17 Output τ̃t;
18 end

Intuitively, the first discount term − 6
ε log(2/β) cancels the

Laplace noise that the SVT adds to the threshold η = 0, while
the second discount term − 8

ε log(t + 1) negates the Laplace
noises the SVT adds to each query. These terms are chosen in
a way such that, when no users have contributions above τ ,
the SVT will stop with probability at most only β, even over
an infinite stream. On the other hand, these discount terms
may increase the number of users with > τ contributions that
are missed by the SVT, but the this number is still bounded
by Õ(1).

Lastly, whenever an SVT instance stops, we double τ and
start a new SVT instance. Under user-DP, these instances are
no longer disjoint (in the user space), so we must use basic
composition to split the privacy budget. To support an infinite
stream, the idea is allocate privacy using a telescoping series,
e.g., εi = εθ/(i + 1)1+θ for the i-th SVT instance. This
ensures that the total privacy consumption is never more than∑∞

i=1 εi = ε.
The detailed algorithm for continually bounding user con-

tributions is shown in Algorithm 4. Let τ̃t denote the value of
τ returned by the algorithm at time t. We formally prove its
utility guarantee in the following lemma.

Lemma III.2. Given any ε > 0, β > 0, θ > 0, and any D,
with probability at least 1− β, we have τ̃t ≤ 2 · κ(Dt) and

Count(Dt, τi) = O
(1

εθ
· log1+θ(κ(Dt)) · log(t/β)

)
,

for all t ∈ Z+ simultaneously.

Finally, we combine EstimatingUserContribution and
TruncateFcntUserDP. We run them in parallel, each with ε

2
privacy. Whenever a new τ̃t is returned by the former, we start

Algorithm 5: FcntUserDP.

Input: D =
(
(x1, u1), (x2, u2), . . .

)
, ε, β, θ

1 Start EstimatingUserContribution(D, ε
2 ,

β
2 , θ);

2 i← 1;
3 τ̃0 ← 1;
4 for t← 1, 2, . . . do
5 Get τ̃t from EstimatingUserContribution;
6 if τ̃t ̸= τ̃t−1 then
7 εi ← εθ/(2(i+ 1)1+θ);
8 Start a new TruncateFcntUserDP(D, εi, τ̃t);
9 i← i+ 1;

10 end
11 end

a new instance of the latter, also using a telescoping series to
allocate the privacy budget. Our final mechanism FcntUserDP
is shown in Algorithm 5.

Theorem III.3. Given ε > 0, β > 0, and θ > 0, for any D,
and any t ∈ Z+, with probability at least 1− β, FcntUserDP
returns an F̃cnt(Dt) such that

F̃cnt(Dt)−Fcnt(Dt) ∈
[
−NoiseU (τ̃t, t, ε, β, θ)

− BiasU (D, t, ε, β, θ),NoiseU (τ̃t, t, ε, β, θ)
]
,

where

NoiseU (τ̃t, t, ε, β, θ)

=NoiseE

(
t,

εθ

2τ̃t ·
(
log(τ̃t) + 2

)1+θ
,
β

2

)

=O
(κ(Dt)

εθ
· log1.5(t) · log1+θ(κ(Dt)) · log(1/β)

)
,

BiasU (D, t, ε, β, θ) = O
(

κ(Dt)
εθ · log1+θ(κ(Dt)) · log(t/β)

)
.

The proof directly follows from Lemma III.1 and III.2.
Remark. For conceptual simplicity, in Algorithm 5 we

start each instance of TruncateFcntUserDP(D, εi, τ̃t) from
scratch. In the actual implementation, there is no need to
rewind the stream (we are not allowed to change the released
query results in the past anyway). Recall that in the event-
DP counting algorithm, each interval has one counter, and the
results are computed through these counters. Under user-DP,
we need more effort to track the elements truncated in each
interval. Whenever τ doubles, we first incrementally update
the counters associated with the intervals in FcntEventDP
with the user contributions previously truncated (up to the new
τ), regenerate the Laplace noises with the new εi and τ , and
then continue the execution of FcntEventDP. As argued in
[8], only O(log t) intervals need to be maintained at time t.
We also need to maintain a counter for each user recording the
number of items she has contributed so far, and if it is larger
than τ , the truncated items so that they can be added back
when τ increases later. It can be shown that FcntUserDP can
be implemented in Õ(1) time amortized per item; we omit the
detailed runtime analysis as it is not the focus.

IV. OTHER FUNCTIONS UNDER USER-DP

Based on our continual counting mechanism, we can solve
many other problems. Recall that each item xi is taken from
{⊥} ∪ [R] for some domain size R. For the count function,
the domain is irrelevant, but the functions considered in this
section may adopt a potentially large R. For simplicity, we
assume that R is a power of 2.

For any r ∈ [R], let D|r be the sub-stream restricted to
item r with the contributing relationships kept, i.e., i-th item
still belongs to ui if it equals to r. More precisely, D|r :=(
(x1|r, u1|r), (x2|r, u2|r), . . .

)
, where

(xt|r, ut|r) =

{
(xt, ut), if xt = r;

(⊥,⊥), otherwise.

Similarly, for any [l, r], we define D|[l,r] as the sub-stream
restricted to items in [l, r].

A. Sum

We first consider the sum function Fsum(Dt) =∑
(xi,ui)∈Dt

xi. In the static setting, an error of Õ(φ(Dt))
can be achieved [24, 13], where

φ(Dt) := max
u∈U

∑
(xi,ui)∈Dt,ui=u

xi.

This is (1, Õ(1))-down neighborhood optimal since DS(Dt) =
φ(Dt).

To achieve such an error in the dynamic setting, we can
reduce the sum problem to the count problem and then
apply FcntuserDP. We conceptually divide each time step
into R sub-steps. For an item xi arriving in this time step,
we fill in the first xi sub-steps with 1 while the remaining
with ⊥. Denote the new stream as D. It is obvious that,
D ∼U D′ iff D ∼U D

′
, and φ(Dt) = κ(DtR) for

any t. Then privacy is preserved, and the error will be
O
(

φ(Dt)
εθ · log1.5(tR) · log1+θ(φ(Dt)) · log(1/β)

)
, as desired.

In the actual implementation, the R sub-steps need not be
simulated one by one; they can be easily processed in a batch
in Õ(1) time.

B. Histogram

The histogram function, also known as the frequency esti-
mation problem, simply returns the count of each item, i.e.,
Fht(Dt) = (Fcnt(D|1), . . . , Fcnt(D|R)). The function value is
an R-dimensional vector, and the most commonly used utility
metric is the maximum error ∥F̃ht(Dt)− Fht(Dt)∥∞.

Under event-DP, the problem can be solved by simply
running FcntEventDP over each D|r for r ∈ [R] with
parallel composition. This yields an estimate F̃cnt(Dt|r) with
a (1 − β)-probability error bound of NoiseE(t, ε, β) for
any one r. To obtain a (1 − β)-probability error bound on
∥F̃ht(Dt) − Fht(Dt)∥∞, one can replace β with β/R and
apply a union bound.

Under user-DP, we cannot use parallel composition to
decompose the histogram problem into R instances of Fcnt, as
a user may contribute multiple different items. Nevertheless,
we can run one instance of FcntUserDP except that, in
Algorithm 2, we replace FcntEventDP with the event-DP
histogram mechanism above. Privacy is still preserved, since
the privacy of our mechanism only relies on that of the SVT
and FcntEventDP. The utility guarantee can also be easily
established:

Theorem IV.1. Given ε > 0, β > 0, and θ > 0, for any D,
and any t ∈ Z+, with probability at least 1 − β, our user-
DP mechanism for the continual histogram problem returns
an F̃ht(Dt) such that

∥F̃ht(Dt)− Fht(Dt)∥∞ = O
(

κ(Dt)
εθ · log1+θ(κ(Dt)) · log(tR/β)

)
.

Remark 1. For a large R, returning all R frequency
estimates is both costly and unnecessary. A related problem,
known as the heavy hitters problem, aims at only returning the
items whose frequencies are above a threshold. A common
technique is to reduce the domain [R] to a smaller one
via hashing/sketching, and then return the histogram in the
reduced domain [14, 5, 34]. Our mechanism can also be used
to solve this problem by simply running it on the reduced
domain.

Remark 2. While our mechanism still achieves error
Õ(κ(Dt)), this is not down-neighborhood optimal for the his-
togram problem. To see this, just consider a Dt in which each

Algorithm 6: Fk-selUserDP.

Input: D =
(
(x1, u1), (x2, u2), . . .

)
, k, ε, β, θ

1 ε′ ← ε/(log(R) + 1);
2 β′ ← β/(log(R) + 1);
3 Start log(R) + 1 FhtUserDP with each having parameters ε′, β′, θ to get all Fcnt(D|I) for

I ∈
{[

(j − 1) ∗ 2i−1 + 1, j ∗ 2i−1
]
, i ∈ [log(R) + 1], j ∈ [2i−1]

}
;

4 for t← 1, 2, . . . do
5 Get all τ̃ it ’s with i ∈ [log(R) + 1] and all F̃cnt(Dt|I)’s from FhtUserDP’s;

6 ∆ =

√∑
i∈[log(R)+1]

(
NoiseU

(
τ̃ it , t,

ε
log(R)+1 ,

β
R , θ

))2

;

7 r ← R;
8 while r > 0 do
9 Compute F̃cnt(Dt|[r,R]) with F̃cnt(Dt|I)’s;

10 if F̃cnt(D
[r,R]
t) ≥ k +∆ then Break ;

11 r ← r − 1;
12 end
13 Output õt,k ← r;
14 end

user contributes one copy of every item. Then κ(Dt) = R but
DS(ρ−1)(Dt) = 1 for any ρ ≥ 1. Thus, as long as R = ω̃(1), it
is not (Õ(1), Õ(1))-down neighborhood optimal by Theorem
II.9. In Section V, we show that this is inevitable. In fact,
even for the maximum frequency problem Fmax-f (Dt) =
∥Fht(Dt)∥∞, which is a special case of the histogram problem,
we show that down-neighborhood optimality is unachievable
in the dynamic setting. On the other hand, since Fmax-f (Dt) is
monotonic, (Õ(1), Õ(1))-down neighborhood optimality can
be achieved in the static setting [20].

C. k-selection

The k-selection function Fk-sel(Dt) returns the k-th largest
item in Dt. Formally, let ot,1, ot,2, . . . be the items in Dt

in the descending order. Then Fk-sel(Dt) := ot,k. Important
special cases include the max function Fmax(Dt) := ot,1, the
minimum, and the median. For simplicity, for this function
we assume that all items are distinct; if not, one may use a
tie-breaker like the timestamp.

For this problem, the most common utility metric is the rank
error, i.e., the difference between the rank of the estimate and
the required rank k. However, for small k, in particular Fmax,
the trivial solution that always returns R would have a rank
error of 0. Thus, a one-way rank error is used more often for
small k: Letting õt,k be the estimate, its one-way rank error
is defined as4:

ξ(Dt, õt,k) :=

{
∞, if õt,k > ot,k;

max{k′ − k : ot,k′ ≥ õt,k}, otherwise.
(2)

This definition thus requires us to find an estimate close (in the
rank space) to ot,k but no greater. Symmetrically, for a large k

4Define ot,i = 0 for i > |Dt|.

close to |Dt|, in particular the minimum function, one would
flip the one-way rank error definition around. For values of
k close to neither end, like the median, a two-way rank error
error could also be used. But obviously, a one-way rank error
is only stronger.

The k-selection problem can be reduced to a counting
problem. The high-level idea is to find the largest r such that
[r,R] contains at least k elements. To find such an r, we build
log(R) histograms with bin sizes 1, 2, 4, . . . , R/2. This allows
us to find the count of [r,R] for every r by decomposing it into
log(R) bins. More precisely, we construct logR+1 instances
of the histogram problem by building a binary decomposition
of the domain [R]. In the i-th instance, i ∈ [logR+1], all items
in [(j−1) ·2i−1+1, j ·2i−1] are mapped to one item, namely,
the i-th histogram instance has a domain size of R/2i−1.
We run our user-DP histogram mechanism for each instance
with privacy budget ε/(logR+1). These histograms allow us
to do a binary search in [R] to find the largest r such that
F̃cnt(Dt|[r,R]|) ≥ k. Such an r can then be used as a good
estimate of Fk-sel(Dt). However, since the error in the count
estimate F̃cnt(Dt|[r,R]|) can be either positive or negative, this
only yields a two-way rank error. To turn this into a one-way
rank error, instead of aiming at a target rank of k, we aim at
k +∆, where

∆ =

√√√√ ∑
i∈[log(R)+1]

(
NoiseU

(
τ̃ it , t,

ε

log(R) + 1
,
β

R
, θ
))2

.

(3)
Here, τ̃ it is the estimate for κ(Dt) outputted by the i-th
instance of our user-DP histogram mechanism FhtUserDP.

The detailed algorithm is shown in 6. Its privacy simply
follows from basic composition and the post-processing prop-
erties of DP. The following theorem analyzes its utility. For

the space limitation, we move its proof to Appendix A-B.

Theorem IV.2. Given ε > 0, β > 0, θ > 0, and k ≥ 1,
for any D, and any t ∈ Z+, with probability at least 1 − β,
Fk-selUserDP returns an õt,k with one-way rank error

O

(
κ(Dt)

εθ
· log1.5 t · log2.5 R · log1+θ(κ(Dt)) · log(1/β)

)
.

Remark 1. Our mechanism above works for a publicly
given k. For problems like median, where k = |Dt|/2 is
also a sensitive value, we can first obtain a privatized k̃ by
estimating |Dt| first. This is precisely the count problem. Our
mechanism for the count function can return such a k̃ with
error Õ(κ(Dt)). Thus, it does not affect the rank error in
Theorem IV.2 asymptotically.

Remark 2. Similar to the histogram problem, a one-
way rank error of κ̃(Dt) is not down-neighborhood opti-
mal for the k-selection problem. Just consider the special
case k = 1, i.e., the maximum function Fmax and Dt =
{(99, u1), (98, u2), . . . , (100−ρ, uρ), (1, u1), (1, u1), . . . }. On
this instance, we have DS(ρ−1) = ρ, so a ρ-down neighbor-
hood optimal mechanism should achieve a one-way rank error
of ρ, namely, return an estimate between 99 and 100 − ρ.
However, κ(Dt) in this case is the number of items contributed
by u1, which could be much larger. A one-way rank error
of Õ(1) is achievable in the static setting, since Fmax is
monotonic [20], but we will show in Section V that this is
not possible under the dynamic setting.

D. Distinct count

The last problem we consider is the distinct count function
F0(Dt) =

∑
x∈[R] I

(
x ∈ Dt

)
. This problem has not been

explicitly studied under event-DP, but there is a simple,
perhaps folklore, solution: The idea is to reduce it to the count
problem, by converting the stream D into D = (x̄1, x̄2, . . .),
where

x̄t =

{
1, if xt ̸=⊥ and xt /∈ Dt−1;

⊥, otherwise.

It is obvious that F0(Dt) = Fcnt(Dt) for all t ∈ Z+. However,
acute readers may realize that the neighboring relationship is
not precisely preserved. For example, assume item x arrives
twice in D, at time t1 and t2, respectively. Then in D, we
have x̄t1 = 1 and x̄t2 =⊥. Deleting the x at time t1 in D will
change both x̄t1 and x̄t2 . Nevertheless, D ∼E D′ guarantees
that dE(D,D

′
) ≤ 2. Therefore, we just need to use group

privacy and invoke the event-DP counting mechanism with
privacy budget ε/2. This means that the distinct count problem
can still be solved with error Õ(1) under event-DP.

However, under user-DP, simply running FcntUserDP over
D does not work, because D ∼U D′ does not yield any
upper bound on dU (D,D

′
): Just consider the stream D =

((1, u1), . . . , (k, u1), (1, u2), . . . , (k, uk+1)). We have D =
((1, u1), . . . , (k, u1), (⊥, u2), . . . , (⊥, uk+1)). Now, deleting
all items of u1 from D would change D into ((⊥, u1), . . . , (⊥
, u1), (1, u2), . . . , (k, uk+1)), i.e., dU (D,D

′
) = k+1, while k

can be made arbitrarily large. The same example also shows
that the sensitivity of Count(Dt, τ) is unbounded, so we
cannot run EstimatingUserContribution on D, either.

To get around these difficulties, we first run
EstimatingUserContribution on the original stream D,
obtaining a τ̃t ≤ 2 · κ(Dt) for every t. Then as for the basic
counting problem, we do a truncation on D with τ̃ , obtaining
D̂. But when we call FcntEventDP in TruncateFcntUserDP,
we run it over the corresponding D with privacy budget
divided by 2. More precisely, in TruncateFcntUserDP,
we replace FcntEventDP(D̂, ε/τ) in the second line with
FcntEventDP(D, ε/(2τ)), where D is constructed from D̂.

For privacy, it suffices to show that given any truncation
threshold τ , the resulting D and D

′
differ by at most 2τ

events. This directly follows the fact that D̂ and D̂′ differ
by τ events and the factor-two observation above. The utility
guarantee is just a factor-two larger than that for the basic
counting problem:

Theorem IV.3. Given ε > 0, β > 0, and θ > 0, for any D,
and any t ∈ Z+, with probability at least 1− β, our user-DP
distinct count mechanism returns an F̃0(Dt) such that

∥F̃0(Dt)−F0(Dt)∥ ≤ NoiseU (2κ(Dt), t, ε, β, θ)

+ BiasU (D, t, ε, β, θ) = Õ(κ(Dt)).

V. THE DIFFICULTY OF CONTINUAL OBSERVATION UNDER
USER-DP

Our mechanisms in the previous sections have error
Õ(κ(Dt)) or Õ(φ(Dt)) for various functions. For count
and sum, this is (1, Õ(1))-down neighborhood optimal, since
DS(Dt) = κ(Dt) or φ(Dt) for these two functions, re-
spectively. However, it is not down neighborhood optimal
for maximum frequency estimation, k-selection, and distinct
count F0. Although (Õ(1), Õ(1))-down neighborhood optimal
mechanisms exist for these functions in the static setting
[20], in this section, we show that in the dynamic setting,
no ε-DP mechanisms can achieve (O(

√
T/ε), c(T))-down

neighborhood optimality, where T is the length of the stream
and c(T) is an arbitrary function of T . In fact, for histogram
and k-selection, we prove this hardness result for their special
cases: the maximum frequency function Fmax -f and the max
function Fmax.

To unify the proofs, we define a class of (m,n)-stable
functions, which include F0, Fmax -f , and Fmax, and our lower
bound will hold for any (m,n)-stable function.

Definition V.1. Let F be a function that has a multiset as input
and outputs an element in [R]. It is (m,n)-stable if there exists
a multiset X whose items can be arranged in an m×n matrix
such that:

(i) For any 1 ≤ i1 < i2 ≤ m, F (X[1:i1, 1]) ̸=
F (X[1:i2, 1]);

(ii) For any i ∈ [m], j ∈ [n], and any X ′ ⊆ X[1:i, 1:n],
F (X[1:i, j] ⊎X ′) = F (X[1:i, 1]).

Here, we use X[i1:i2, j1:j2] to denote the multiset of items in
rows i1 ∼ i2 and columns j1 ∼ j2 of this matrix.

𝑋[1,2] … 𝑋[1, 𝑗] …

𝑋[2,1] … 𝑋[2, 𝑗] … 𝑋[2, 𝑛]

𝑋[3,2] … 𝑋[3, 𝑗] …

𝑋[4,1] … 𝑋[4, 𝑗] … 𝑋[4, 𝑛]

𝑋[5,2] … 𝑋[5, 𝑗] …

… … … … … …

𝑋[𝑖, 2] … 𝑋[𝑖, 𝑗] …

𝑋[1,1]

𝑋[2,1]

𝑋[3,1]

…

𝑋[𝑖!, 1]

…

𝑋[𝑖", 1]

𝑋[1,1] 𝑋[1,2] 𝑋[1,3] … 𝑋[1, 𝑛]

𝑋[2,1] 𝑋[2,2] 𝑋[2,3] … 𝑋[2, 𝑛]

𝑋[3,1] 𝑋[3,2] 𝑋[3,3] … 𝑋[3, 𝑛]

𝑋[4,1] 𝑋[4,2] 𝑋[4,3] … 𝑋[4, 𝑛]

𝑋[5,1] 𝑋[5,2] 𝑋[5,3] … 𝑋[5, 𝑛]

𝑋[6,1] 𝑋[6,2] 𝑋[6,3] … 𝑋[6, 𝑛]

… … … … …

𝑋[𝑚, 1] 𝑋[𝑚, 2] 𝑋[𝑚, 3] … 𝑋[𝑚, 𝑛]

𝑋[1,1]

𝑋[2,1]

𝑋[3,1]

…

𝑋[𝑖!, 1]

𝐹 ≠ 𝐹

𝑋

𝐹 = 𝐹

𝑋[1,1]

𝑋[2,1]

𝑋[3,1]

𝑋[4,1]

𝑋[5,1]

…

𝑋[𝑖, 1]𝑋[1: 𝑖0, 1]
𝑋[1: 𝑖1, 1] 𝑋[1: 𝑖, 1] 𝑋[1: 𝑖, 𝑗]

𝑋2 ⊆ 𝑋[1: 𝑖, 1: 𝑛]

Property 1 Property 2

1 2 3 … 𝑛

1 2 3 … 𝑛

1 2 3 … 𝑛

… … … … …

1 1 1 … 1

2 2 2 … 2

… … … … …

𝑚 𝑚 𝑚 𝑚 𝑚

𝑋 for maximum frequency estimation

𝑋 for maximum and distinct count

Fig. 2: Stable functions.

The two properties are illustrated in Figure 2. Intuitively,
property (i) is just a non-triviality condition, requiring X
to take distinct values on the first column, while (ii) is the
stableness condition: For the first i rows for any i, all columns
yield the same function value, even if “diluted” with other
items. We can easily see that Fmax -f is (m,n)-stable for any
m and any n ≤ R, while Given ε > 0, β > 0, θ > 0, and
k ≥ 1, for any D, and any t ∈ Z+, with probability at least
1− β, Fk-selUserDP returns an õt,k with one-way rank error

O

(
κ(Dt)

εθ
· log1.5 t · log2.5 R · log1+θ(κ(Dt)) · log(1/β)

)
.

F0 and Fmax are (m,n)-stable for any m ≤ R and any n. The
corresponding X is shown in Figure 2. On the other hand,
count and sum are not (m,n)-stable for any m,n ≥ 2.

Theorem V.2. Fix any ε > 0. For any m ∈ Z+ and n = m
ε ,

let F be any (m,n)-stable function. For any ε-DP mechanism
M, there exists a stream D of length T = 8mn = 8εn2 and
a time t ∈ [T] such that DS(n−1)(Dt) = 0 but Pr[M(Dt) ̸=
F (Dt)] ≥ 1/3.

Before proving Theorem V.2, let’s see why it leads to the
hardness result claimed earlier. By Theorem II.9, a (ρ, c)-
down neighborhood optimal mechanism cannot have error
> cρ · DS(ρ−1)(Dt) on any Dt with probability more than
1/3. Since the theorem shows that there exists a Dt on
which DS(ρ−1)(Dt) ≤ DS(n−1)(Dt) = 0 for any ρ ≤ n =
O(
√
T/ε), M(Dt) ̸= F (Dt) implies that the error must be

larger than cρ ·DS(ρ−1)(Dt) for any c. The complete proof of
Theorem V.2 can be found in Appendix A-C.

VI. DEALING WITH DELETIONS

In this section, we briefly discuss the fully-dynamic setting
in which items can be both inserted and deleted. For this case,
we can simply separate the stream into two: an insertion stream
that consists of all insertions and a deletion stream that consists
of all deletions. We run a mechanism on each stream, each
with privacy budget ε/2, and take the difference. The error is
thus at most twice that of the insertion-only case, so the error
is still Õ(κ(Dt)) for count, histogram, and Õ(φ(Dt)) for sum.

For k-selection, which can be reduced to logR+ 1 instances
of the histogram problem, we apply this technique on each
of these instances. Then this also yields a one-way rank error
of Õ(κ(Dt)) for the fully-dynamic case. Unfortunately, this
technique does not work for the distinct count problem, since
all copies of an item must be deleted for the distinct count
to decrease by one. It remains an open problem if Õ(κ(Dt))
error can be achieved for this problem in the fully-dynamic
case.

Note that in the fully-dynamic case, κ(Dt) is the maximum
number of events contributed by any user, which may be larger
than DS(Dt). In the extreme case where all previously inserted
item are deleted, we have DS(Dt) = 0 while κ(Dt) may be
arbitrarily large. Thus, the simple mechanism above is not
down-neighborhood optimal, as opposed to the insertion-only
case. In Appendix B, we show that this is inevitable, even for
the count function Fcnt. More precisely, we show the following
lower bound:

Theorem VI.1. For any ε-DP mechanism M and any T
sufficiently large, there exists a fully-dynamic stream D of
length T and a time t ∈ [T] such that DS(Dt) = 1 but
Pr[|M(Dt)− Fcnt(Dt)| ≥ ζ] ≥ 1/3, for ζ = Ω(T 1/3/ε2/3).

In addition, for count query under user-DP, for any k > 0
and any Dt, DS(k)(Dt) ≤ DS(Dt). Thus this lower bound
implies that it is not possible to achieve (k,O(T 1/3/(kε2/3)))-
down neighborhood optimality on Fcnt in the fully-dynamic
case for any k > 0. This establishes a separation between
the insertion-only case and the fully-dynamic case, since our
mechanism is (1, Õ(1))-down neighborhood optimal in the
insertion-only case.

VII. EXPERIMENTS

In this section, we compare our algorithms with two base-
lines mentioned in Section III-A over four continual queries:
count Fcnt, maximum frequency Fmax-f , maximum function
Fmax, and distinct count F0.

Composition: We use advanced composition [18] to allo-
cate ε′, where ε =

√
2T ln(1/δ)ε′ +Tε′(eε

′ − 1), to each Dt

and repeat running state-of-the-art algorithms in static setting

Dataset T |U| κ(DT)
Fmax-f Fmax F0

Selected Item R Selected Item R Selected Item R

AOL 1.76× 107 4.7× 105 1.51× 105 Rank in SERP 500 Not selected
MLens 2.5× 107 1.63× 105 3.22× 104 Rating score 10 Rating score 10 Date + Rating score 1.57× 1011

Netf. 2.63× 107 3.77× 105 1.59× 104 Not selected
TLDR 3.85× 106 1.46× 106 3.76× 105 Not selected Time + Item ID 3.85× 1011

TABLE II: Real datasets used in the experiments.

Query type Fcnt Fmax-f Fmax F0

Simulated Dataset Unif. Gaus. Zipf. Unif. Gaus. Zipf. Unif. Gaus. Zipf. Unif. Gaus. Zipf.

Our Mechanism
90%-max RE(%) 0.376 0.365 0.775 0.689 0.636 1.07 1.05 1.51 4.77 1.54 1.79 4.69
Median RE(%) 0.197 0.203 0.523 0.281 0.316 0.676 0 0 1.10 1.10 1.17 2.89

RT(s) 7.13× 10−5 4.77× 10−5 6.84× 10−5 8.27× 10−3 8.02× 10−3 8× 10−3 5.59× 10−4 6.04× 10−4 5.78× 10−4 6.9× 10−5 4.66× 10−5 6.73× 10−5

Advanced
Composition

90%-max RE(%) 97.9 97.8 97.9 97.8 97.8 97.9 16.6 16.6 16.7 90.6 90.6 91.1
Median RE(%) 96.2 96.2 96.5 96.0 96.1 96.5 2.17 2.17 2.18 89.9 89.8 90.6

RT(s) 1.98× 10−3 2.04× 10−3 1.83× 10−3 0.336 0.335 0.367 9.02× 10−5 9.33× 10−5 9.02× 10−5 0.486 0.489 0.545

Truncation
(random τ)

90%-max RE(%) 42.4 40.6 59 68.1 67.9 75.5 100 100 100 42.3 36.1 43
Median RE(%) 14.2 13.3 16.8 15.0 13.4 22.6 20 20.1 21 21.6 21.2 32.1

RT(s) 1.29× 10−5 1.28× 10−5 1.26× 10−5 8.11× 10−3 7.93× 10−3 8.94× 10−3 5.07× 10−4 4.96× 10−4 4.91× 10−4 1.30× 10−5 1.30× 10−5 1.33× 10−5

Truncation
(τ = 1024)

90%-max RE(%) 1.09 0.935 0.997 1.65 1.69 1.75 44.4 44.4 44.5 2.39 2.82 2.49
Median RE(%) 0.235 0.24 0.254 0.379 0.357 0.385 6.98 7.00 6.99 1.3 1.31 1.38

RT(s) 1.22× 10−5 1.24× 10−5 1.22× 10−5 8.13× 10−3 7.89× 10−3 8.08× 10−3 4.87× 10−4 4.83× 10−4 4.82× 10−4 1.29× 10−5 1.32× 10−5 1.26× 10−5

TABLE III: Comparison among our mechanism, advanced composition, and truncation mechanism on simulated datasets
(ε = 2). RE and RT denote relative error and running time.

under user-DP. For Fcnt and Fmax, we use [20] and [24]. For
Fmax-f and F0, we use the ideas in Section IV-B and IV-D
to extend Fcnt to support Fmax-f (Dt) and F0(Dt) instead of
using the state-of-the-art polynomial algorithms proposed in
[20] since they suffer from high computational cost, where
each update requires more than 1 hour in our experiments,
and they do not achieve any optimal utility.

Truncation: The truncation mechanism has as input a
truncation threshold τ . Without prior knowledge, it is naturally
impossible to select a proper τ before data comes. One idea is
to randomly pick a τ from [GS], where GS is an upper bound
for κ(DT) and is set 220 in our experiments. However, using
a random τ from [GS] achieves the same error level as using
τ = GS. To achieve better error, we use 2, 4, 8, . . . ,GS as
the candidates. We also discuss the error with τ near κ(DT),
which achieves the optimal error at final time T , but it remains
unknown how to obtain κ(DT) in advance even under non-
private setting.

A. Setup

Dataset We use both simulated data and real world data.
For the simulated ones, we set T = 5 × 107 and |U| = 106.
We use three distributions over [1024] to simulate the number
of items for each user: Zipf distribution f(x) ∝ (x + a)−b

with a = 10, k = 1; Gauss distribution with µ = 50, σ = 30;
and uniform distribution. Then, we use another independent
step to assign values to the items. Each item value is drawn
from some distribution dependent on the query function. For
Fmax−f and Fcnt, we use Zipf distribution with range [1000]
and parameters a = 0, k = 2. For F0, we use uniform
distribution with range [107]. For Fmax, we try a small R
to save running time thus use uniform distribution with range
[20] for Fmax. Besides, to avoid the maximum value reaching
20 at a very early time. We reorder the dataset by the values.

In addition, we use four real datasets: AOL-user-ct-
collection (AOL) [29], MovieLens (MLens) [35], Netflix-Prize
(Netf.) [1], and Webis-TLDR-Corpus-2017 (TLDR) [36]. AOL
is a collection of web queries with each record including the

rank of the item the user clicked in search engine results
page (SERP). MLens and Netf. are rating scores given by
users to movies provided by movie recommendation website
MovieLens and streaming-on-demand media provider Netflix.
TLDR contains millions of posts from users on the social
website Reddit. We test Fcnt on all four datasets and test the
other queries on selected datasets. The details of datasets and
items selected for each query are shown in Table II. For Fmax,
we reorder the data in the same way as simulated data.

Experimental Parameters All experiments are conducted on
a Linux server with a 24-core 48-thread 2.2GHz Intel Xeon
CPU and 256GB memory. We report rank error for Fmax

and additive error for the others. Each experiment is repeated
30 times5 and we collect the error every 105 times for the
experiments over dataset TLDR and every 5×105 times for the
others. For each selected timestamp, we remove 20% largest
errors and 20% smallest errors and report the average error
for the rest runs. For the privacy budget, we use ε = 1, 2, 4
and the default value is set to 2. In addition, we set the
failure probability β to 0.1 and use θ = 1. Furthermore, we
also do some practical optimizations for our mechanisms (see
Appendix C-A).

B. Experimental Results for Simulated Data

Utility and efficiency The errors and running times of all
mechanisms over simulated data are shown in Table III. At
each selected timestamp, we collect the relative error6 and
report their median and 90% maximum. For the truncation
mechanism, besides using a random τ , we report the error
with fixed τ = 1024, which is used as the upper bound for
user contribution in the data simulating process and nearly
κ(DT) for all simulated datasets. The results indicate a clear
superiority of our mechanism over the advanced composition
and the truncation mechanism with a random τ in terms of

5For the truncation mechanism with a random τ , we repeat the experiments
20× 30 times.

6For Fmax, the relative error equals to the rank error divided by the full
rank.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

108
Er

ro
r L

ev
el

(a) Fcnt, ε = 1.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

108

Er
ro

r L
ev

el

(b) Fcnt, ε = 2.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

108

Er
ro

r L
ev

el

(c) Fcnt, ε = 4.

2.5M 10M 17.5M 25M 32.5M 40M 47.5M
Timestamp

0
2
4
6
8

10
12
14
16
18
20

Va
lu

e

(d) Fmax, ε = 1.

2.5M 10M 17.5M 25M 32.5M 40M 47.5M
Timestamp

0
2
4
6
8

10
12
14
16
18
20

Va
lu

e

(e) Fmax, ε = 2.

2.5M 10M 17.5M 25M 32.5M 40M 47.5M
Timestamp

0
2
4
6
8

10
12
14
16
18
20

Va
lu

e

Adv. composition
Truncation (random)
Truncation (= 1024)
Query result
Our mechanism

(f) Fmax, ε = 4.

Fig. 3: Error levels/Values vs time of various mechanisms over Fcnt/Fmax on Unif. dataset with ε = 1, 2, 4.

utility. What is more desirable is its robustness: Our median
relative error is below 3% in all cases and is below 1% in all
but four cases. In addition, we achieve slightly higher utility in
Fcnt compared with Fmax-f , Fmax, and F0. This confirms our
theoretical analysis: We achieve down-neighborhood optimal
error at each time in Fcnt, which is unachievable in the other
three queries. Even though relaxing the privacy protection, the
advanced composition still loses its utility in all queries but
Fmax, where we also have higher utility and even achieve
zero rank error in more than half of the time in two cases.
For the truncation mechanism, using τ = 1024 performs
much better than using a random τ and achieves similar
performance to ours on Fcnt, Fmax-f . The reason is, for
simulated data, κ(Dt) is relatively small and we start at
τ = 64 in the real implementation (see Appendix C-B), which
only differs a constant factor from τ = 1024. In addition,
we need to separate the privacy budget to estimate κ(Dt)
and dynamically update τ . However, setting τ = 1024 in
practice is unachievable without enough prior knowledge as
we mentioned before. Furthermore, in real data, our superiority
over the truncation mechanism with a good τ is more clear
and we will show this later.

In terms of running time, our mechanism runs a bit slower
than the truncation mechanism but much faster than the ad-
vanced composition except Fcnt and Fmax. The reason is, both
our mechanism and truncation mechanism only need Õ(1)
amortized updating time while we use more time to estimate
the user contributions. Meanwhile, the advanced composition
needs to re-execute the algorithm at each time. For Fcnt and
Fmax, we observe some tricks in [24, 20] so they also do not
need to run the whole algorithm after each update.

Error with time We also conducted experiments to see how
the error changes with time for various mechanisms. We tested
Unif. dataset over all four queries with different ε = 1, 2, 4.
We plot the results for Fcnt and Fmax in Figure 3 and defer
the results for Fmax-f and F0 to Appendix C-B. The message
from the plot is our mechanism has the error increasing with
time and always achieves the highest utility except at the final
stage, where the truncation mechanism with τ = 1024 has a
similar error to ours. It matches our theoretical guarantee that
we achieve an error proportional to κ(Dt) at each time, which
is strictly smaller than κ(DT) and is close to κ(DT) at the
end. In contrast, the error level of the truncation mechanism
with τ = κ(DT) always keeps at κ(DT).

C. Experimental Results for Real Data

Utility and efficiency The experimental results over real data
are shown in Table IV. For the truncation mechanism, we
additionally report the result with τ = κ(DT).7 For real data,
all mechanisms have worse utilities since the data are more
skewed, which has already been revealed in Table II. But our
mechanism still has high utilities: the median relative error
is below 10% in six cases and is below 20% in all cases
except Fmax over MLens, where data are too skewed and
κ(Dt) is large in most time t thus using composition or a
small truncation threshold τ can lead to a better result. Another
interesting observation is, in real data, the superiority of our
mechanism over the truncation mechanism with τ = κ(DT) is
more clear. Indeed, using τ = κ(DT) does not always imply
a better performance than using a random τ , indicating the

7τ = 2s, where s = ⌈log(κ(DT))⌉.

Query type Count Max Frequency Max Distinct Count
Real Dataset AOL MLens Netf. TLDR AOL MLens MLens MLens TLDR

Our Mechanism
90%-max RE(%) 6.36 11.7 7.91 10.5 11 21.5 62.7 20.7 10.8
Median RE(%) 4.55 8.58 5.37 3.21 7.75 15.6 35.8 15.1 4.84

RT(s) 6.82× 10−5 6.94× 10−5 8.55× 10−5 6.25× 10−5 4.2× 10−3 1.05× 10−4 3.13× 10−4 6.79× 10−5 4.36× 10−5

Advanced
Composition

90%-max RE(%) 97.3 99.4 98.5 63.2 96.1 99.8 37.2 99.4 63.3
Median RE(%) 95.9 99.3 97.8 61.5 94.3 99.3 0 99.2 61.7

RT(s) 2.94× 10−3 8.69× 10−4 1.71× 10−3 2.69× 10−3 0.608 0.188 1.44× 10−4 0.335 0.484

Truncation
(random τ)

90%-max RE(%) 73.8 79.7 66.6 48.2 88.2 94.7 100 94.6 48.2
Median RE(%) 39.2 50.9 40.6 20.0 59.5 77.9 10.8 70.8 29.5

RT(s) 1.23× 10−5 1.23× 10−5 1.21× 10−5 1.2× 10−5 4.99× 10−3 9.41× 10−5 3.03× 10−4 1.22× 10−5 1.27× 10−5

Truncation
(τ = κ(DT))

90%-max RE(%) 800 52.4 31.5 6300 7740 278 100 183 12900
Median RE(%) 162 14.0 6.53 1140 1470 49.6 100 30.1 2280

RT(s) 1.26× 10−5 1.28× 10−5 1.17× 10−5 1.23× 10−5 4.29× 10−3 9.68× 10−5 2.99× 10−4 1.22× 10−5 1.25× 10−5

TABLE IV: Comparison among our mechanism, advanced composition, and truncation mechanism on on real datasets (ε = 2).
RE and RT denote relative error and running time.

1M 3M 4M 6M 7M 9M 10M 12M 13M 15M
Timestamp

105

106

107

Er
ro

r L
ev

el

Adv. composition
Truncation (random)

Truncation (= (Dt))
Our mechanism

(a) Fcnt,AOL, ε = 1.

1M 3M 4M 6M 7M 9M 10M 12M 13M 15M
Timestamp

105

106

107
Er

ro
r L

ev
el

(b) Fcnt,AOL, ε = 2.

1M 3M 4M 6M 7M 9M 10M 12M 13M 15M
Timestamp

105

106

107

Er
ro

r L
ev

el

(c) Fcnt,AOL, ε = 4.

2M 5M 7M 10M 12M 15M 17M 20M 22M 25M
Timestamp

105

106

107

Er
ro

r L
ev

el

(d) Fcnt,Netf., ε = 1.

2M 5M 7M 10M 12M 15M 17M 20M 22M 25M
Timestamp

105

106

107

Er
ro

r L
ev

el

(e) Fcnt,Netf., ε = 2.

2M 5M 7M 10M 12M 15M 17M 20M 22M 25M
Timestamp

105

106

107

Er
ro

r L
ev

el

(f) Fcnt,Netf., ε = 4.

Fig. 4: Error levels vs time of various mechanisms over Fcnt on AOL and Netf. datasets with ε = 1, 2, 4.

difficulty of selecting a good τ . Besides, the running times of
all mechanisms are quite similar to the simulated data, where
both our mechanism and truncation mechanism are with high
efficiency.

Error with time We also tested Fcnt over AOL and Netf.
to show how the error changes with time in real data. The
results are plotted in Figure 4. Compared with simulated data,
our superiority in terms of utility is larger. This is especially
obvious in AOL dataset, where all mechanisms lose utility but
we still have high utility. Using τ = κ(DT) in the truncation
mechanism does not always lead to a good performance. In
Netf., they still can achieve similar errors as ours in the final
steps while in AOL dataset, their error level is always above
the query result.

ACKNOWLEDGMENT

This work has been supported by HKRGC under grants
16201819, 16205420, and 16205422. We would also like

to thank the anonymous reviewers who have made valuable
suggestions on improving the presentation of the paper.

REFERENCES

[1] Netflix prize dataset. https://archive.org/download/nf
prize dataset.tar. Accessed: 2016-02-04.

[2] ASI, H., AND DUCHI, J. C. Instance-optimality in
differential privacy via approximate inverse sensitivity
mechanisms. Advances in Neural Information Processing
Systems 33 (2020).

[3] BAO, E., YANG, Y., XIAO, X., AND DING, B. Cgm:
an enhanced mechanism for streaming data collection
with local differential privacy. Proceedings of the VLDB
Endowment 14, 11 (2021), 2258–2270.

[4] BOLOT, J., FAWAZ, N., MUTHUKRISHNAN, S.,
NIKOLOV, A., AND TAFT, N. Private decayed
predicate sums on streams. In Proceedings of the 16th
International Conference on Database Theory (2013),
pp. 284–295.

[5] BUN, M., NISSIM, K., AND STEMMER, U. Simultane-
ous private learning of multiple concepts. In Proceedings
of the 2016 ACM Conference on Innovations in Theoret-
ical Computer Science (2016), pp. 369–380.

[6] CARDOSO, A. R., AND ROGERS, R. Differentially pri-
vate histograms under continual observation: Streaming
selection into the unknown. In International Conference
on Artificial Intelligence and Statistics (2022), PMLR,
pp. 2397–2419.

[7] CHAN, T.-H. H., LI, M., SHI, E., AND XU, W. Dif-
ferentially private continual monitoring of heavy hitters
from distributed streams. In International Symposium
on Privacy Enhancing Technologies Symposium (2012),
Springer, pp. 140–159.

[8] CHAN, T.-H. H., SHI, E., AND SONG, D. Private and
continual release of statistics. ACM Transactions on
Information and System Security (2011).

[9] CHEN, Y., MACHANAVAJJHALA, A., HAY, M., AND
MIKLAU, G. Pegasus: Data-adaptive differentially pri-
vate stream processing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (2017), pp. 1375–1388.

[10] CUMMINGS, R., KREHBIEL, S., LAI, K. A., AND TAN-
TIPONGPIPAT, U. Differential privacy for growing
databases. Advances in Neural Information Processing
Systems 31 (2018).

[11] DENISOV, S., MCMAHAN, B., RUSH, K., SMITH, A.,
AND THAKURTA, A. Improved differential privacy for
sgd via optimal private linear operators on adaptive
streams. In NeurIPS (2022).

[12] DONG, W., FANG, J., YI, K., TAO, Y., AND
MACHANAVAJJHALA, A. R2t: Instance-optimal trun-
cation for differentially private query evaluation with
foreign keys. In Proc. ACM SIGMOD International
Conference on Management of Data (2022).

[13] DONG, W., AND YI, K. Universal private estimators.
arXiv preprint arXiv:2111.02598 (2021).

[14] DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH,
A. Calibrating noise to sensitivity in private data

analysis. In Theory of cryptography conference (2006),
Springer, pp. 265–284.

[15] DWORK, C., NAOR, M., PITASSI, T., AND ROTHBLUM,
G. N. Differential privacy under continual observation.
In Proceedings of the forty-second ACM symposium on
Theory of computing (2010), pp. 715–724.

[16] DWORK, C., NAOR, M., REINGOLD, O., AND ROTH-
BLUM, G. N. Pure differential privacy for rectangle
queries via private partitions. In International Confer-
ence on the Theory and Application of Cryptology and
Information Security (2015), Springer, pp. 735–751.

[17] DWORK, C., NAOR, M., REINGOLD, O., ROTHBLUM,
G. N., AND VADHAN, S. On the complexity of differen-
tially private data release: efficient algorithms and hard-
ness results. In Proceedings of the forty-first annual ACM
symposium on Theory of computing (2009), pp. 381–390.

[18] DWORK, C., AND ROTH, A. The algorithmic founda-
tions of differential privacy. Foundations and Trends®
in Theoretical Computer Science 9, 3–4 (2014), 211–407.

[19] FAN, L., AND XIONG, L. An adaptive approach to real-
time aggregate monitoring with differential privacy. IEEE
Transactions on knowledge and data engineering 26, 9
(2013), 2094–2106.

[20] FANG, J., DONG, W., AND YI, K. Shifted inverse: A
general mechanism for monotonic functions under user
differential privacy. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security (2022), pp. 1009–1022.

[21] FICHTENBERGER, H., HENZINGER, M., AND OST, W.
Differentially private algorithms for graphs under contin-
ual observation. In 29th Annual European Symposium
on Algorithms (ESA 2021) (2021), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[22] HENZINGER, M., AND UPADHYAY, J. Constant matters:
Fine-grained complexity of differentially private contin-
ual observation using completely bounded norms. arXiv
preprint arXiv:2202.11205 (2022).

[23] HENZINGER, M., UPADHYAY, J., AND UPADHYAY, S.
Almost tight error bounds on differentially private con-
tinual counting. arXiv preprint arXiv:2211.05006 (2022).

[24] HUANG, Z., LIANG, Y., AND YI, K. Instance-optimal
mean estimation under differential privacy. In NeurIPS
(2021).

[25] JOSEPH, M., ROTH, A., ULLMAN, J., AND WAGGONER,
B. Local differential privacy for evolving data. Advances
in Neural Information Processing Systems 31 (2018).

[26] KAMATH, G., LI, J., SINGHAL, V., AND ULLMAN,
J. Privately learning high-dimensional distributions.
In Conference on Learning Theory (2019), PMLR,
pp. 1853–1902.

[27] KELLARIS, G., PAPADOPOULOS, S., XIAO, X., AND
PAPADIAS, D. Differentially private event sequences
over infinite streams. Proceedings of the VLDB Endow-
ment 7, 12 (2014), 1155–1166.

[28] MCSHERRY, F. D. Privacy integrated queries: an exten-
sible platform for privacy-preserving data analysis. In

https://archive.org/download/nf_prize_dataset.tar
https://archive.org/download/nf_prize_dataset.tar

Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data (2009), pp. 19–30.

[29] PASS, G., CHOWDHURY, A., AND TORGESON, C. A
picture of search. In Proceedings of the 1st international
conference on Scalable information systems (2006).

[30] PERRIER, V., ASGHAR, H. J., AND KAAFAR, D. Private
continual release of real-valued data streams. In 26th
Annual Network and Distributed System Security Sym-
posium, NDSS 2016 (2019), Internet Society, pp. 1–13.

[31] REN, X., SHI, L., YU, W., YANG, S., ZHAO, C., AND
XU, Z. Ldp-ids: Local differential privacy for infinite
data streams. In Proc. ACM SIGMOD International
Conference on Management of Data (2022).

[32] UPADHYAY, J. Sublinear space private algorithms under
the sliding window model. In International Conference
on Machine Learning (2019), PMLR, pp. 6363–6372.

[33] UPADHYAY, J., UPADHYAY, S., AND ARORA, R. Differ-
entially private analysis on graph streams. In Interna-
tional Conference on Artificial Intelligence and Statistics
(2021), PMLR, pp. 1171–1179.

[34] VADHAN, S. The complexity of differential privacy. In
Tutorials on the Foundations of Cryptography. Springer,
2017, pp. 347–450.

[35] VIG, J., SEN, S., AND RIEDL, J. The tag genome:
Encoding community knowledge to support novel inter-
action. ACM Trans. Interact. Intell. Syst. 2, 3 (2012).

[36] VÖLSKE, M., POTTHAST, M., SYED, S., AND STEIN,
B. TL;DR: Mining Reddit to learn automatic summariza-
tion. In Proceedings of the Workshop on New Frontiers
in Summarization (2017), pp. 59–63.

[37] WANG, Q., ZHANG, Y., LU, X., WANG, Z., QIN, Z.,
AND REN, K. Rescuedp: Real-time spatio-temporal
crowd-sourced data publishing with differential privacy.
In IEEE INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications
(2016), IEEE, pp. 1–9.

[38] WANG, T., CHEN, J. Q., ZHANG, Z., SU, D., CHENG,
Y., LI, Z., LI, N., AND JHA, S. Continuous release of
data streams under both centralized and local differential
privacy. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security
(2021), pp. 1237–1253.

[39] WANG, Z., LIU, W., PANG, X., REN, J., LIU, Z., AND
CHEN, Y. Towards pattern-aware privacy-preserving
real-time data collection. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications (2020), IEEE,
pp. 109–118.

[40] WANG, Z., PANG, X., CHEN, Y., SHAO, H., WANG,
Q., WU, L., CHEN, H., AND QI, H. Privacy-preserving
crowd-sourced statistical data publishing with an un-
trusted server. IEEE Transactions on Mobile Computing
18, 6 (2018), 1356–1367.

APPENDIX A
PROOFS

A. Proof of Lemma III.2

Lemma III.2. Given any ε > 0, β > 0, θ > 0, and any D,
with probability at least 1− β, we have τ̃t ≤ 2 · κ(Dt) and

Count(Dt, τi) = O
(1

εθ
· log1+θ(κ(Dt)) · log(t/β)

)
,

for all t ∈ Z+ simultaneously.

Proof. For any i ∈ N, let ti be the first time such that

Count(Dti , τi) ≥
12

εi
log(2/βi) +

16

εi
log(ti + 1), (4)

where τi = 2i, εi = εθ
(i+1)1+θ , and βi = β

(i+1)2 . By the tail
bound of Laplace distribution, we have with probability at least
1− βi

2 ,

|η̃| < 2

εi
log(2/βi). (5)

Let C̃ount(Dt, τi, βi) = Count(Dt, τi, βi)+Lap(4/ε), which
is used internally in the SVT. For any t ∈ Z+, with probability
at least 1− βi

2(t+1)2 , we have

∣∣C̃ount(Dt, τi, βi)− Count(Dt, τi, βi)
∣∣

<
4

εi
log(2/βi) +

8

εi
log(t+ 1). (6)

Applying a union bound and combining (4), (5), and (6),
for any i, with probability at least 1− βi, the i-th SVT stops
at some t′i such that

t′i ≤ ti, (7)

and

Count(Dti , τi) > 0, (8)

By another union bound over all the SVT’s, with probability
at least 1 − β, (7) and (8) hold for all i. Furthermore, (8)
implies, for all time t ∈ Z+,

τ̃t ≤ 2 · κ(Dt),

and its corresponding εi have

εi ≥
εθ(

log(κ(Dt)) + 1
)1+θ

(9)

Further combining (4), (8), and (9), we have

Count(Dt, τi) = O
(1

εθ
· log1+θ(κ(Dt)) · log(t/β)

)
.

B. Proof of Theorem IV.2

Theorem IV.2. Given ε > 0, β > 0, θ > 0, and k ≥ 1,
for any D, and any t ∈ Z+, with probability at least 1 − β,
Fk-selUserDP returns an õt,k with one-way rank error

O

(
κ(Dt)

εθ
· log1.5 t · log2.5 R · log1+θ(κ(Dt)) · log(1/β)

)
.

Proof. Recall in each FhtEventDP, we first run
EstimatingUserContribution with half privacy budget to
find the estimation of κ(Dt). By Lemma III.2, with probability
at least 1 − β

2 , for all t ∈ Z+ and all i ∈ [log(R) + 1], we
have

τ̃ it ≤ 2 · κ(Dt), (10)

and

Count(Dt, τ̃
i
t) =O

(
1

εθ
· log1+θ(κ(Dt))

· log(R) · log
(
t · log(R)/β

))
. (11)

Then, we do the truncation and run FhtEventDP to get
F̃cnt(Dt|I) for all t ∈ Z+,

I ∈
{
[(j−1) ·2i−1+1, j ·2i−1], i ∈ [log(R)+1], j ∈ [2i−1]

}
.

(10) and (11) cause the noise and bias respectively.
Next, for any t ∈ Z+ and r ∈ [R], let’s analyze the error for

each F̃cnt(Dt|[r,R]). Since it is the combinations for at most
log(R) F̃cnt(Dt|I)’s thus inherits their biases and noises. For
the bias term, we just linearly sum the biases of the combined
F̃cnt(Dt|I)’s, each of which is already bounded following (11).
For the noise term, recall the noise of each F̃cnt(Dt|I) is
from multiple independent Laplace noises, thus we can use
Lemma II.6 to obtain a tighter bound than the linear sum.
More precisely, conditioned on (10) and (11), with probability
at least 1− β

2 , for any t ∈ Z+ and all r ∈ [R], we have

Fcnt(Dt|[r,R])− F̃cnt(Dt|[r,R]) ∈
[
−∆,∆+O

(κ(Dt)

εθ

· log1+θ(κ(Dt)) · log2(R) · log
(
t · log(R)/β

))]
, (12)

where ∆ = (3).
Now, we begin to analyze the rank error for õt,k. With (12),

we have

k ≤ Fcnt(Dt|[õt,k,R]),

Fcnt(Dt|[õt,k−1,R]) ≤ k + 2λ+O
(κ(Dt)

εθ

· log1+θ(κ(Dt)) · log2(R) · log
(
t · log(R)/β

))
which further implies the claim.

C. Proof of Theorem V.2

Theorem V.2. Fix any ε > 0. For any m ∈ Z+ and n = m
ε ,

let F be any (m,n)-stable function. For any ε-DP mechanism
M, there exists a stream D of length T = 8mn = 8εn2 and
a time t ∈ [T] such that DS(n−1)(Dt) = 0 but Pr[M(Dt) ̸=
F (Dt)] ≥ 1/3.

Proof. We will construct a family D of streams, each of length
T , and argue that some D ∈ D satisfies the claim in the
theorem.

Let X be the matrix that witnesses the (m,n)-stableness of
F . There are n users u1, . . . , un, and the j-th column of items
of X are contributed by uj . We divide the time domain [1, T]
into T

n = 8m buckets, each of length n. Each stream D ∈ D
is constructed as follows. We choose m buckets, indexed by
(b1, b2, . . . , bm). For i ∈ [n], we use the i-th row of X to fill
bucket bi. The remaining buckets are filled with dummy items.
Since there are (T

n

m

)
=

(
8m

m

)
≥ 8m + 1 (13)

choices for the buckets, we have |D| ≥ 8m + 1.
It is easy to see that Dbin, i.e., the data set after the i-th

bucket has arrived, contains exactly the first i rows of X . Then
by property (i) of a stable function, F (Dbi1n

) ̸= F (Dbi2n
)

for any 1 ≤ i1 < i2 ≤ m. Recall that the j-th column
of X is contributed by user uj . Then by property (ii) of a
stable function, we have DS(n−1)(Dℓn) = 0 for any ℓ ∈ [Tn].
Now that all D ∈ D and all t = ℓn satisfy the condition
DS(n−1)(Dt) = 0, it only remains to show that on at least
one of them, we have Pr[M(Dt) ̸= F (Dt)] ≥ 1/3.

We prove so by contradiction. Assume for any D ∈ D and
t ∈ [T], we have Pr[M(Dt) ̸= F (Dt)] < 1/3. By running
O(log T) independent instances ofM and taking the majority
answer for each t, we have that for each D ∈ T ,

Pr[M(D) ̸= F(D)] < 1/3,

where F(D) = (F (Dn), F (D2n), . . . , F (DT) and M(D) =
(M(Dn),M(D2n), . . . ,M(DT)) are respectively the vectors
of function values and the outputs of M after each bucket.
Because each D ∈ D chooses a different set of buckets, F(D)
are different for all D ∈ D.

Fix some D◦ ∈ D. We have
1

3
>Pr

[
M(D◦) ̸= F(D◦)

]
≥

∑
D∈D,D ̸=D◦

Pr

[
M(D◦) = F(D)

]
≥

∑
D∈D,D ̸=D◦

Pr

[
M(D) =M(D)

]
· e−2εn

=(|D| − 1) · 2
3
· e−2εn

≥8m · e−2εm
ε · 2

3

≥2

3
, (14)

which is a contradiction. In the above, the second inequality
is because all F(D)’s are distinct. The third inequality is due
to group privacy and the fact that dU (D,D◦) ≤ 2n as there
are only n users.

APPENDIX B
THE CHALLENGE OF DATA DELETIONS (PROOF OF

THEOREM V.2)

In the previous sections, we show even only with insertions,
continual observation can introduce new challenges to user-DP.
For queries like maximum frequency estimation, maximum
estimation, and distinct count, down-neighborhood optimal
error as the static setting is unachievable. But for count/sum
estimation, we still can achieve (Õ(1), Õ(1))-down neighbor-
hood optimal error. Now, we show considering deletion can
further enlarge this difficulty. Here, we only consider the count
problem since the sum is more general and thus also holds the
same lower bound.

Let’s first build a connection between count queires in fully-
dynamic setting under user-DP with high-dimensional bit-
sum estimation, a very fundamental problem that has been
researched largely. In that problem, the input A = {ai}i∈[n] ⊂
{0, 1}d with each user u(i) having one d-dimensional data ai,
and we target to answer

BitSum(A) =
∑
i∈[n]

ai.

There is one negative result.

Lemma B.1 (Derived from Lemma 6.2 [26]). For any ε > 0,
d > 0, and any n ≥

√
d
ε , if one mechanism M : {0, 1}n×d →

[0, n]d, and for any input A ∈ {0, 1}n×d,

E
[∥∥M(A)− BitSum(A)

∥∥2
2

]
≤ α2,

then, α ≥ d
72ε .

Now, we construct D from A ∈ {0, 1}n×d. Here, time
interval [1, 2nd] is divided into 2d buckets containing n time
units. In the i-th odd bucket, we insert the data of i-th
dimension in A while in i-th even bucket, we delete them.
More precisely, for each i ∈ [n], j ∈ [d], let t1 = 2dj−2d+ i,
t2 = 2dj − d + i and we set (xt1 , yt1 , ut1) = (ai,j , 1, u

(i)),8

and (xt2 , yt2 , ut2) = (ai,j ,−1, u(i)). With this setting, we see
(1) Modifying the ai in A will only modify the events of u(i)

thus for A ∼E A′, we have D ∼U D′; (2) For each j ∈ [d], let
t = 2jd− d, then Fcnt(Dt) =

∑
i∈[n] ai,d, and DS(Dt) ≤ 1.

Therefore, we have

Lemma B.2. For any ε > 0, d > 0, and any n ≥
√
d
ε , if one

mechanism M can answer count queries in the fully-dynamic
setting under ε-user DP and for any D, with 2

3 probability,
it answers Fcnt(Dt) for all t ∈ [dn] with error ζ · DS(Dt),
then, we can construct an M′ to answer d-dimensional bit

8For convenience, we allow x = 0 for u ̸=⊥ and we can just set u =⊥
in that case and this will not affect the result.

sum estimation and for any and for any input A ∈ {0, 1}n×d,
with probability at least 2

3 ,

E
[∥∥M(A)− BitSum(A)

∥∥2
2

]
≤ d · ζ2.

Since the result has a bounded range, i.e., [0, n]d, by
Chernoff bound, we can runM′ Õ(log(nd)) times to achieve
bounded expected error. Therefore, with Lemma B.1, we know
ζ should be at least Ω(

√
d

ε log(n)). By further setting n =
√
d
ε ,

we get Theorem V.2.

APPENDIX C
ADDITIONAL EXPERIMENTS

A. Practical Optimization for Our Mechanism

In EstimateUserContribution, we start at τ = 64. Besides,
when assign εi in line 8, we change εi ← εθ/(i + 1)1+θ

to εi ← εθ3θ/(i + 3)1+θ. Both of them do not change DP
requirement and theoretical utility guarantee but leads to better
practical performance. Besides, recall in Fk-selUserDP, to
guarantee one-way rank error, we increment k by ∆ as (3). ∆
is from our theoretical analysis and is not tight. In experiments,
we show ∆/2 is enough to guarantee the one-way rank error.
Furthermore, as mentioned, to reduce the running time of
experiments, we use small R for Fmax. To further reduce the
time, we only use one histogram to answer the count queries
used in Fk-selUserDP.

B. Additional Experiments over Simulated Data

Besides of Fcnt and Fmax, we also implement the experi-
ments on Fmax-f and F0 over Unif. dataset to show the change
of error with time. The results are plotted in Figure 6.

Time Bucket 1 Time Bucket 2 Time Bucket 3 … Time Bucket 2d

𝑎!,!, 1, 𝑢(!) 𝑎%,!, 1, 𝑢(%) 𝑎&,!, 1, 𝑢(&) … 𝑎',!, 1, 𝑢(')

𝑎!,!, −1, 𝑢(!) 𝑎%,!, −1, 𝑢(%) 𝑎&,!, −1, 𝑢(&) … 𝑎',!, −1, 𝑢(')

Time 1 Time 2 Time 3 … Time d

Time d+1 Time d+2 Time d+3 … Time 2d

Dataset 𝐷

𝑢(!): 𝑎!,! 𝑎!,% 𝑎!,& … 𝑎!,(

𝑢(%): 𝑎!,! 𝑎!,% 𝑎!,& … 𝑎!,(

𝑢(&): 𝑎!,! 𝑎!,% 𝑎!,& … 𝑎!,(

… … … … … …

𝑢('): 𝑎',! 𝑎',% 𝑎',& … 𝑎',(

𝐴

Fig. 5: Reduce high-dimensional sum estimation to count queries in the fully-dynamic setting.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

Er
ro

r L
ev

el

(a) Fmax-f , ε = 1.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

Er
ro

r L
ev

el

(b) Fmax-f , ε = 2.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

Er
ro

r L
ev

el

(c) Fmax-f , ε = 4.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

Er
ro

r L
ev

el

Adv. composition
Truncation (random)

Truncation (= (Dt))
Our mechanism

(d) F0, ε = 1.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

Er
ro

r L
ev

el

(e) F0, ε = 2.

5M 10M 15M 20M 25M 30M 35M 40M 45M 50M
Timestamp

104

105

106

107

Er
ro

r L
ev

el

(f) F0, ε = 4.

Fig. 6: Error levels vs time of various mechanisms over Fmax-f and F0 on Unif. dataset with ε = 1, 2, 4.

	Introduction
	Previous work on event-DP
	Previous work on user-DP
	Recent work on static user-DP
	Our results

	Preliminaries
	Notation
	Properties of differential privacy
	Down-neighborhood optimality
	The sparse vector technique
	Continual counting under event-DP

	Continual Counting under User-DP
	Warm-up: two simple solutions
	Continually bounding user contributions

	Other Functions under User-DP
	Sum
	Histogram
	k-selection
	Distinct count

	The Difficulty of Continual Observation under User-DP
	Dealing with Deletions
	Experiments
	Setup
	Experimental Results for Simulated Data
	Experimental Results for Real Data

	Appendix A: Proofs
	Proof of Lemma III.2
	Proof of Theorem IV.2
	Proof of Theorem V.2

	Appendix B: The challenge of data deletions (Proof of Theorem V.2)
	Appendix C: Additional Experiments
	Practical Optimization for Our Mechanism
	Additional Experiments over Simulated Data

