Selectivity Estimation

Chuan Xiao

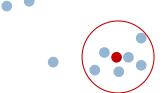
Osaka University and Nagoya University

Outline

- Problem Definition
- Applications
- Methods
- Performance Evaluation

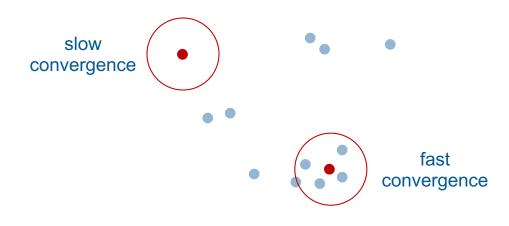
Problem Definition

- Selectivity estimation of similarity search for highdimensional data
 - Given:
 - a database X of high-dimensional vectors,
 - a query vector q,
 - a distance function dist(., .),
 - a threshold t.
 - Estimate the number of objects \mathbf{x} in X such that $\underline{dist}(\mathbf{q}, \mathbf{x}) \leq \underline{t}$.
 - a.k.a. cardinality estimation, spherical range counting
- Related problem
 - Selectivity (cardinality) estimation for relational data [KKRL+19, OBGK19, SL19, WSRY19, YLKW+19, HTAK+20, PZM20]
 - Each predicate deals with a dimension.
 - SELECT COUNT(*) FROM employee WHERE <u>age < 30</u> AND <u>salary > 50000</u>
 - Dimensionality is usually low.



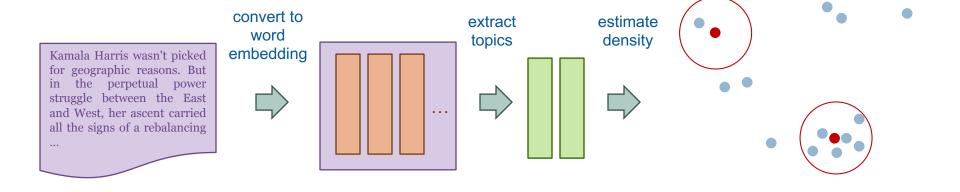
Application – Local Density Estimation

- Clustering
 - Find starting points.



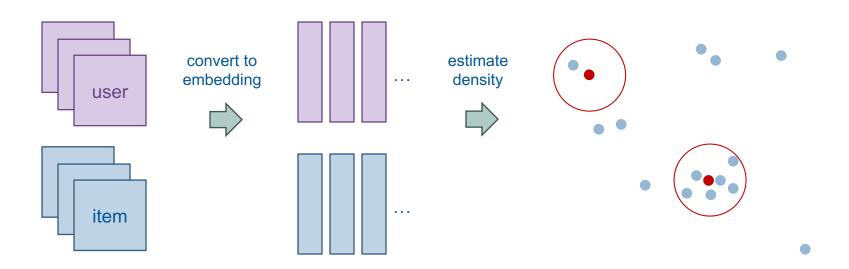
Application – Local Density Estimation

Determine the popularities of topics.



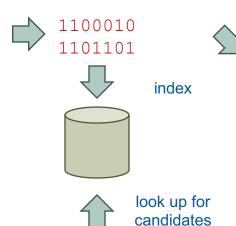
Application – Local Density Estimation

□ Find out if a user/item is an outlier in an e-commerce application.



Application – Image Retrieval

database image



1101011

1101001

verify output

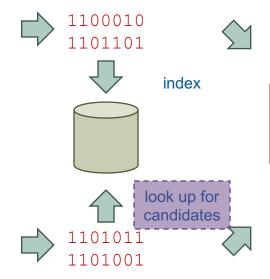
query image

source: Wikipedia

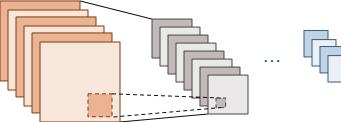
Application – Image Retrieval

database image

to binary vector



verify output



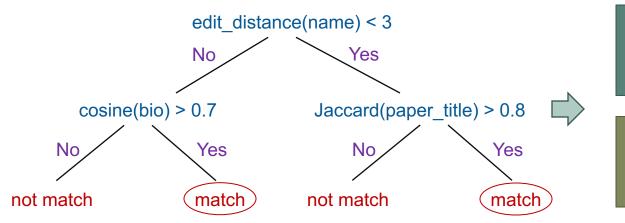
query image

source: Wikipedia

Estimate candidate size → running time, SLA ...

Application – Query Optimization

 Hands-off entity matching systems (e.g., Falcon [DCDN+17]) extract paths from random forests and take each path (a conjunction of similarity predicates) as a blocking rule.



blocking rule 1
cosine(embedded_name) > 0.7
AND
cosine(embedded_bio) > 0.8

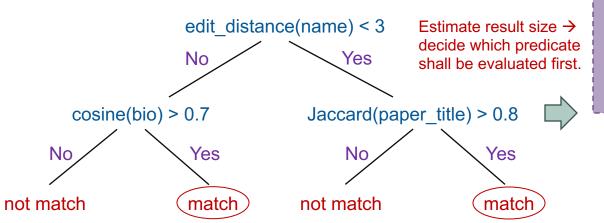
blocking rule 2
cosine(embedded_name) > 0.7
AND
cosine(embedded_paper_title) > 0.9

Application – Query Optimization

Hands-off entity matching systems (e.g., Falcon [DCDN+17]) extract paths from random forests and take each path (a conjunction of similarity predicates) as a blocking rule.

Embed textual attributes (e.g., by edit distance embedding [DYZW+20]) and

process the conjunctive query.



blocking rule 1
cosine(embedded_name) > 0.7
AND
cosine(embedded_bio) > 0.8

blocking rule 2
cosine(embedded_name) > 0.7
AND
cosine(embedded_paper_title) > 0.9

Evaluation Criteria of Selectivity Estimation

- Accuracy
 - Measured by MSE, MAPE, q-error, etc.
- Estimation speed
- Offline processing speed
 - Build an index?
 - Train a model?
- Performance guarantee
 - δ-3
- Consistency (monotonicity)
 - For a fixed query object, selectivity is <u>non-decreasing</u> in the threshold.
 - This yields more interpretability and less vulnerability.
- Updatability
 - The database may have updates.

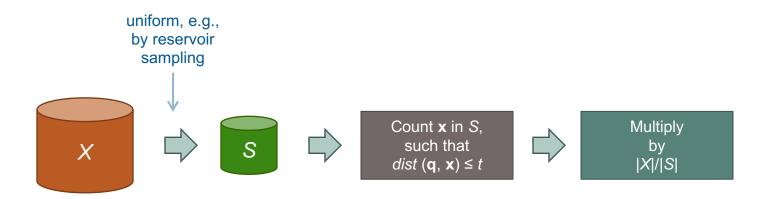
(Representative) Selectivity Estimation Methods

- Sampling
- Kernel density estimation
- Regression
 - Non-deep learning
 - XGBoost
 - Deep learning
 - Vanilla deep neural network
 - Recursive model index
 - Deep lattice network
 - CardNet (incremental prediction + deep learning)
 - SelNet (piecewise linear function + deep learning)

Sampling – Uniform Sampling

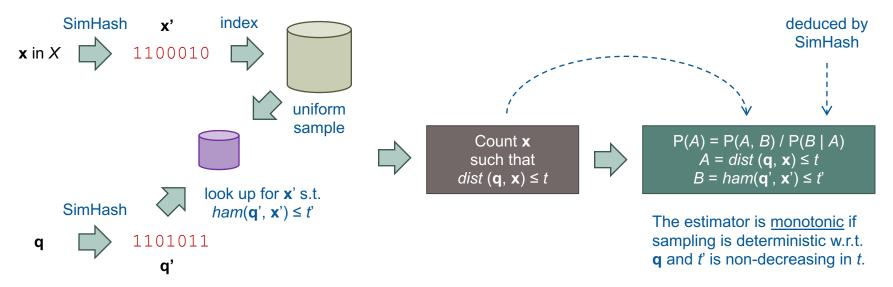
A natural baseline

- It is lightweight with well-understood performance, and easy to support monotonicity and handle updates.
- Weakness: the probability that $dist(\mathbf{q}, \mathbf{x}) \le t$ is small, especially when \mathbf{q} is an outlier. So we need a very large sample size for accurate estimation.



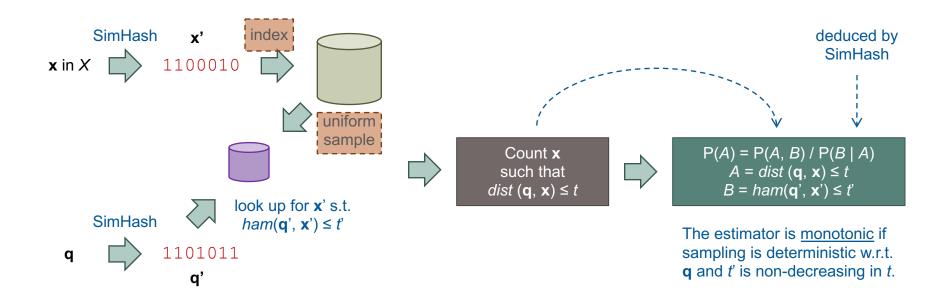
Sampling – Importance Sampling

- Estimate selectivity by generating samples from another distribution.
 - SimHash for angular distance (cosine similarity) [WCN18].
 - dist(., .) is captured by Hamming distance between hash values.
 - Use *L* independent hash tables for better accuracy.



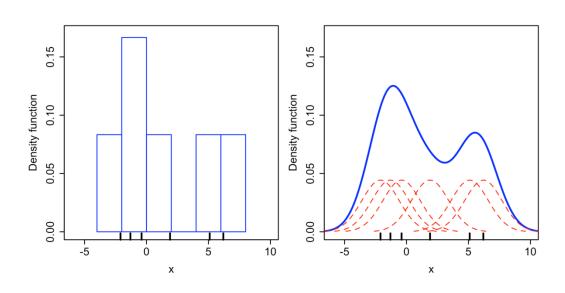
Sampling – Importance Sampling

- Deal with updates.
 - Update the index and sample.

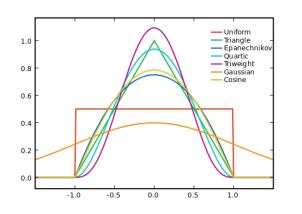


Kernel Density Estimation (KDE)

Sample and smooth by kernel



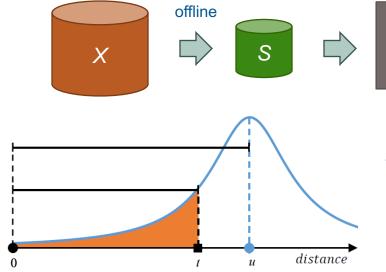
$$\widehat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$



source: Wikipedia

Kernel Density Estimation (KDE)

- Model the probability density function of dist(q, x) by KDE [MFBS18].
 - Sample objects and compute their contributions to the selectivity.



For each **x** in *S*: *u* = *dist*(**q**, **x**) *h* = *B*(**x**, **q**, *t*) *total* += *contrib*(**x**)

Multiply by |X|/|S|

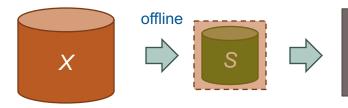
B(): a bandwidth function learned using query samples. The estimator is monotonic if B() is independent of t.

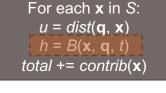
$$contrib(\mathbf{x}) = \int_0^t K_h(x-u)dx$$

source: [MFBS18]

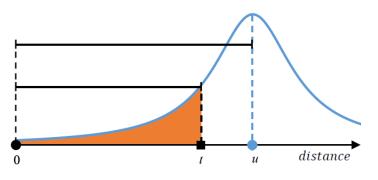
Kernel Density Estimation (KDE)

- Deal with updates.
 - Incrementally sample more objects.
 - Retrain bandwidth functions.





Multiply by |X|/|S|



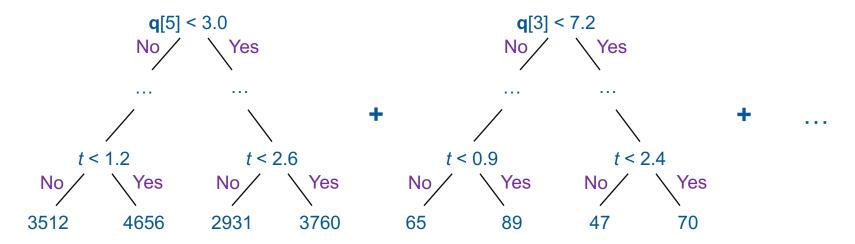
B(): a bandwidth function learned using query samples. The estimator is monotonic if B() is independent of t.

$$contrib(\mathbf{x}) = \int_0^t K_h(x-u)dx$$

source: [MFBS18]

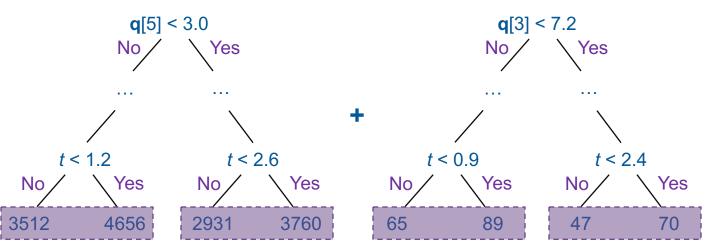
Non-deep Regression – XGBoost

- Gradient boosting [CG16]
 - Ensemble of weak prediction models.
 - For example, decision trees, with each rule in the form of $\underline{\mathbf{q}[i]} < \underline{\alpha}$ or $\underline{t} < \underline{\beta}$.
 - Each model is learned to fit the residual of previous ones.



Non-deep Regression – XGBoost

- Gradient boosting [CG16]
 - Ensemble of weak prediction models.
 - For example, decision trees, with each rule in the form of $\underline{\mathbf{q}[i]} < \underline{\alpha}$ or $\underline{t} < \underline{\beta}$.
 - Each model is learned to fit the residual of previous ones.

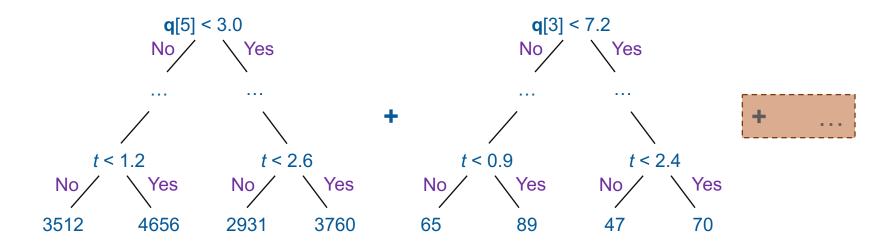


+

The estimator is monotonic if $t < \beta$ is only at the bottom level and leaf node values are non-decreasing w.r.t. Yes/No.

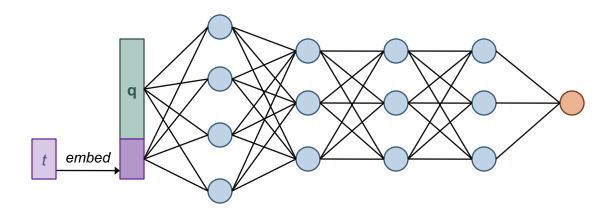
Non-deep Regression – XGBoost

- Deal with updates.
 - It is time-consuming to retrain existing decision trees.
 - Train more decision trees to fit the residual.



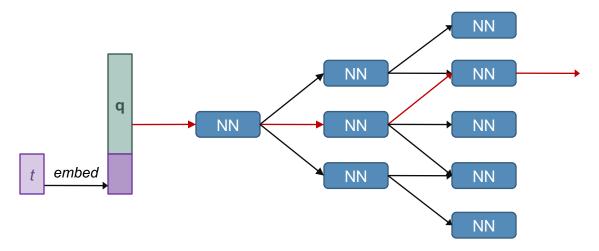
Deep Regression – Vanilla Deep Neural Network

- Fully connected neural network.
 - Number of hidden layers ≈ 4.
 - □ For higher accuracy, embed t (dim ≈ 5) and concatenate to \mathbf{q} as input.
 - Non-monotonic.



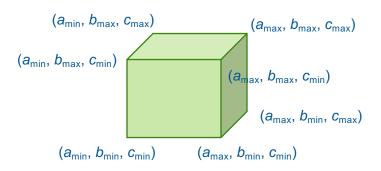
Deep Regression – Recursive Model Index

- Originally developed for range indexing in RDBMS [квсстна].
 - Inspired by the mixture-of-experts model.
 - Each model (e.g., a neural network) picks another one in the next stage.
 - Non-monotonic.



Deep Regression – Deep Lattice Network

- Developed for monotonic regression tasks [YDCP+17].
 - Input: monotonic features + non-monotonic features.
- Components
 - Lattice: regression for a d-dimensional input.

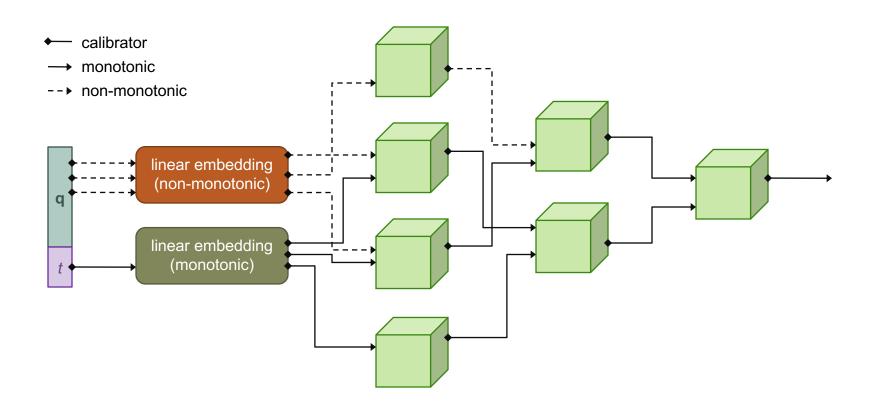


Only learn for vertex values. Others are processed by multilinear interpolation.

 $lat(a, b, c) \le lat(a', b, c)$ for monotonic feature $a \le a'$.

- □ Calibrator: 1-dimensional non-decreasing piecewise linear function.
- □ Linear embedding: a matrix (all elements ≥ 0 for monotonicity).

Deep Regression – Deep Lattice Network



Deep Regression – Incremental Prediction (CardNet)

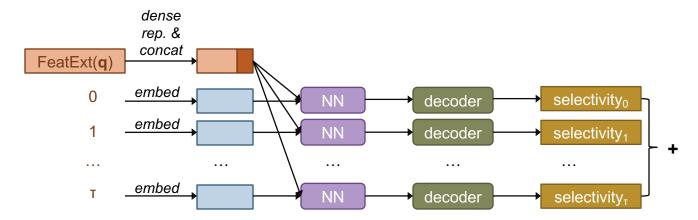
- Idea: use multiple regressors, each dealing with an interval [WXQC+20].
- Procedure
 - Feature extraction
 - query vector q → binary vector r
 - Map q to an integer B by LSH (e.g., random projection) and then set the B-th bit to 1
 - Repeat L rounds using L hash functions and concatenate the resulting bit vectors.

- threshold $t \rightarrow$ integer τ
 - 0 \rightarrow 0. $t_{\text{max}} \rightarrow \tau_{\text{max}}$. Other values are mapped in a <u>non-decreasing</u> manner \rightarrow <u>monotonicity</u>.

Regression

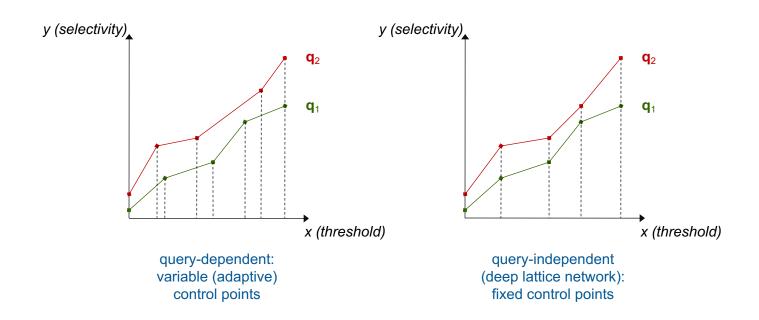
Deep Regression – Incremental Prediction (CardNet)

- Idea: use multiple regressors, each dealing with an interval.
- Procedure
 - Feature extraction
 - Regression
 - Use (τ + 1) regressors, each for a distance in 0, 1, ... τ.



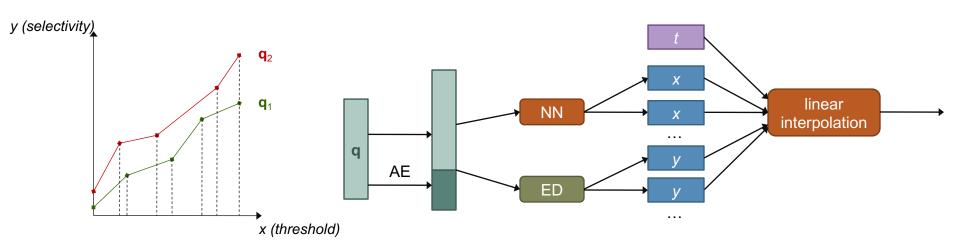
Deep Regression – Piecewise Linear Function (SelNet)

Query-dependent PLF v.s. query-independent PLF



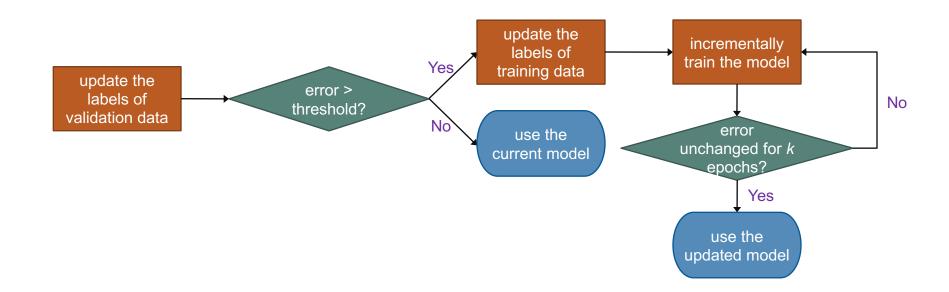
Deep Regression – Piecewise Linear Function (SelNet)

- □ Learn query-dependent PLFs [WXQM+20].
 - NN: a neural network that outputs the *x* values of control points.
 - ED: an encoder-decoder model that outputs the *y* values of control points.
 - Monotonic if y is non-decreasing in x.



Deep Regression – Dealing with Updates

- Many deep regression models are trained through gradient descent.
- We adopt incremental learning for these models.



Benchmarks

- So far there are specific benchmarks for this problem.
- Datasets used in existing work (benchmarks for other uses)
 - Text
 - GloVe: 1.9M 300-dimensional word embedding
 - https://nlp.stanford.edu/projects/glove/
 - fastText: 1M 300-dimensional word embedding
 - https://fasttext.cc/docs/en/english-vectors.html
 - Image
 - MS-Celeb-1M: 10M celebrity images for face recognition
 - https://msceleb.org/ (terminated in 2019)
 - Pre-processed by faceNet [SKP15] to 128-dimensional vectors.
 - Video
 - YouTube: 3.4K videos of 1.6K people
 - http://www.cs.tau.ac.il/~wolf/ytfaces/index.html
 - 0.35M 1770-dimensional (-feature) vectors extracted from the frames.

Comparison of Selectivity Estimation Methods

Method	Accuracy	Estimation Speed	Offline Proc. Speed	Performance Guarantee	Consistency (Monotonicity)
Uniform Sampling	Adjustable / Very Low	Adjustable	None	Yes	Possible
Importance Sampling	Adjustable / Low	Adjustable	Fast	Yes	Possible
KDE	Medium	Slow	Medium	No	Possible
XGBoost	Low	Medium	Medium	No	Possible
Vanilla DNN	Low	Fast	Medium	No	No
RMI	Medium	Medium	Slow	No	No
DLN	Low	Slow	Slow	No	Yes
CardNet	High	Fast	Slow	No	Yes
SelNet	High	Medium	Slow	No	Yes

Performance in a Query Optimizer

Datasets

- AMiner (author names & publications)
- IMDB (cast & movie titles)
- Attributes are pre-processed by Sentence-BERT [RG19].

Queries

- Conjunctive queries of 2 5 Euclidean distance predicates.
 - For example, *dist*(name) ≤ 0.25 AND *dist*(affiliations) ≤ 0.4 AND *dist*(research interests) ≤ 0.45.
- For each query, we <u>estimate the selectivity of each predicate</u>.
- The predicate with the <u>smallest selectivity is evaluated first</u> by index lookup. Others are checked on the fly.

Methods

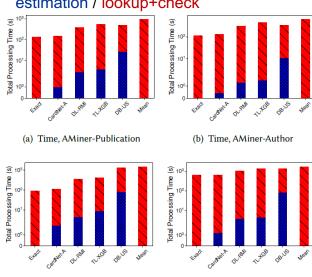
- Uniform sampling
- XGBoost
- RMI
- CardNet-A: CardNet with acceleration for estimation
- Exact: an oracle that instantly returns the true selectivity.
- Mean: an estimator that returns the same selectivity (mean of 10,000 random queries) for a given threshold.

Performance in a Query Optimizer

- Exact: oracle (true selectivity)
- Cardnet-A
- DL-RMI: RMI

Query processing time: estimation / lookup+check

(c) Time, IMDB-Movie

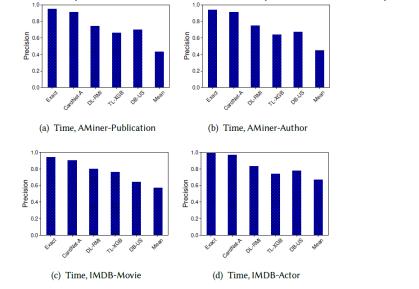


(d) Time, IMDB-Actor

- TL-XGB: XGBoost
- DB-US: uniform sampling
- Mean: same (mean selectivity)

Precision of query planning:

% of queries on which a method picks the fastest plan



References

- T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In KDD, pages 785–794, 2016.
- X. Dai, X. Yan, K. Zhou, Y. Wang, H. Yang, and J. Cheng. Convolutional Embedding for Edit Distance. In SIGIR, pages 599–608, 2020.
- S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep, E. Arcaute, V. Raghavendra, and Y. Park.
 Falcon: Scaling up hands-off crowdsourced entity matching to build cloud services. In SIGMOD, pages 1431–1446, 2017.
- S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Deep learning models for selectivity estimation of multi-attribute queries. In SIGMOD, pages 1035–1050, 2020.
- A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.
- T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In SIGMOD, pages 489–504, 2018.
- M. Mattig, T. Fober, C. Beilschmidt, and B. Seeger. Kernel-based cardinality estimation on metric data. In EDBT, pages 349–360, 2018.
- J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. An empirical analysis of deep learning for cardinality estimation. arXiv preprint arXiv:1905.06425, 2019.
- Y. Park, S. Zhong, and B. Mozafari. Quicksel: Quick selectivity learning with mixture models. In SIGMOD, pages 1017–1033, 2020.

References

- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using siamese bert-networks. In EMNLP-IJCNLP, pages 3980–3990, 2019.
- □ F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, pages 815–823, 2015.
- N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.
- J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.
- B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with complex queries. PVLDB, 13(3):390–402, 2019.
- Y. Wang, C. Xiao, J. Qin, X. Cao, Y. Sun, W. Wang, and M. Onizuka. Monotonic cardinality estimation of similarity selection: A deep learning approach. In SIGMOD, pages 1197–1212, 2020.
- Y. Wang, C. Xiao, J. Qin, R. Mao, M. Onizuka, W. Wang, R. Zhang. Consistent and flexible selectivity estimation for high-dimensional data. arXiv preprint arXiv:2005.09908 (2020).
- A. Wehenkel and G. Louppe. Unconstrained monotonic neural networks. In NeurIPS, pages 1543–1553, 2019.
- □ X. Wu, M. Charikar, and V. Natchu. Local density estimation in high dimensions. In ICML, pages 5293–5301, 2018.
- Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, P. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica. Deep unsupervised cardinality estimation. PVLDB, 13(3):279–292, 2019.
- S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta. Deep lattice networks and partial monotonic functions. In NIPS, pages 2981–2989, 2017.