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Abstract
Online cloud services are widely deployed as Long-Running
Applications (LRAs) hosted in containers. Placing LRA con-
tainers turns out to be particularly challenging due to the
complex interference between co-located containers and the
operation constraints in production clusters such as fault
tolerance, disaster avoidance and incremental deployment.
Existing schedulers typically provide APIs for operators to
manually specify the container scheduling requirements and
offer only qualitative scheduling guidelines for container
placement. Such schedulers, do not perform well in terms
of both performance and scale, while also requiring manual
intervention.
In this work, we propose George, an end-to-end general-

purpose LRA scheduler by leveraging the state-of-the-art Re-
inforcement Learning (RL) techniques to intelligently sched-
ule LRA containers. We present an optimal container place-
ment formulation for the first time with the objective of
maximizing container placement performance subject to a
set of operation constraints. One fundamental challenge in
scheduling is to categorically satisfy different operation con-
straints in practice; specifically, to guarantee hard constraints
and ensure soft constraints violations within a pre-defined
threshold. We design a novel projection-based proximal pol-
icy optimization (PPPO) algorithm in combination with an
Integer Linear optimization technique to intelligently sched-
ule LRA containers under operation constraints. In order to
reduce the training time, we apply transfer learning tech-
nique by taking advantage of the similarity in different LRA
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scheduling events. We prove theoretically that our proposed
algorithm is effective, stable, and safe. We implement George
as a plug-in service in Docker Swarm. Our in-house cluster
demonstrates that George can maximize the LRA perfor-
mance while enforcing the hard constraints and the soft con-
straints with a pre-defined threshold. The experiments show
that George improves LRA performance and scale tremen-
dously by requiring less than 1 hour scheduling time in
a large cluster with 2K containers and 700 machines, 16×
faster than existing schedulers. Compared with state-of-the-
art alternatives, George also achieves 26% higher container
performance with up to 70% lower constraint violation.

CCS Concepts: • Information systems→ Enterprise re-
source planning.

Keywords: Cloud Computing, Container, Resource Schedul-
ing, Reinforcement Learning

1 Introduction
Production clusters deploy a wide variety of long-running
applications (LRAs) to provide real-time services in response
to dynamic requests. Examples include stream processing [7,
9, 11, 78], storage services [8, 19, 22], machine learning [20,
26, 36, 43, 54, 69], and web services [24, 53]. These LRAs run
a large number of instance replicas in long-lived containers
which continue execution for hours to months [42, 44, 48,
73]. In comparison, conventional offline batch processing
workloads (e.g., Spark and MapReduce jobs) run short-lived
tasks that typically finish within minutes or shorter.

LRAs usually have stringent service-level objectives (SLOs)
and demand a large number of resources in production clus-
ters [42, 44, 48, 73]. Given the long duration of LRA con-
tainers, optimally placing container is critically important in
attaining the best performance. However, this turns out to
be particularly challenging as LRA containers have complex
interference patterns. For instance, they often contend on
shared resources such as memory bandwidth, I/O, and sys-
tem cache. Co-locating contending containers in a physical
machine can result in severe interferences. In addition, many
LRA containers have I/O dependencies, where the output of
one container can be the input for another in data processing
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pipelines. Placing such dependent containers on separate
machines is highly undesirable as it incurs significant com-
munications across different machines.
To make the matter worse, container placements in pro-

duction clusters are often subject to a number of operation
constraints, specified by cluster operators to meet various
deployment requirements. For example, a business-critical
LRA may require its multiple instance replicas to run on dif-
ferent machines in order to provide high availability against
node failures; when launching a new cloud service, phased
deployment is commonly used, where container placements
are confined to a small set of machines in the initial phase
before committed in the entire cluster. Specifically, operation
constraints can be categorized as hard or soft constraints,
where hard constraints must be strictly enforced, while soft
constraints can be violated within a pre-defined threshold at
the expense of performance degradation, e.g., reduced fault
tolerance.
Given these challenges, existing schedulers, either rule-

based [2, 3, 17, 42, 71, 72] or learning-based [73], fall short
in concerning LRA container scheduling under operation
constraints. Rule-based schedulers rely on experts to sum-
marize the sophisticated interference between containers, in
particular in terms of affinity and anti-affinity, and explicitly
express them as placement rules in scheduling. While this
seems natural to support operation constraints, the funda-
mental limitation is that the constraints are represented only
in a qualitative manner with manual specification. This is
inaccurate and does not capture the quantitative effect on
cluster performance [73]. Learning-based schedulers, on the
other hand, by utilizing reinforcement learning techniques,
can automatically place LRA containers. These schedulers
learn to schedule LRAs from past workload logs or offline
profiling with the intelligence in characterizing the com-
plex interference between containers, however, none of the
existing learning-based schedulers take into account the op-
eration constraints.
Motivated by the objective of optimizing container per-

formance subject to the operation constraints, in this paper
we present George1, a novel learning-based LRA scheduler.
The core of George runs a tailored constrained policy opti-
mization algorithm, which intelligently captures the interfer-
ence between containers, complies with the strict operation
constraints, and produces high-quality placement decisions
efficiently. Our major contributions are summarized below.
Constrained scheduling policy. The core of George is
a constrained scheduling policy. We propose a projection-
based proximal policy optimization (PPPO) algorithm, which
schedules LRA containers under the operation constraints
intelligently. We seamlessly integrate PPPO with Integer Lin-
ear optimization techniques to handle the hard constraints.

1"George" is a colloquialism used unofficially to represent the autopilot
system.

Compared with the traditional constrained policy optimiza-
tion algorithms [27, 77] using RL techniques, our policy can
satisfy all operation constraints and obtain high-quality LRA
placement performance with significantly less training time.
Transfer learning. We design a transfer learning mecha-
nism, which reduces the training time from hours to tens of
minutes. The trace analysis [4, 15] shows that LRA sched-
uling events in clusters are similar in a long period of time,
which implies that a well-trained LRA scheduler can be pos-
sibly reused. Therefore, upon a scheduling event, we opt to
train a scheduler based on the results from prior schedul-
ing events. We apply the transfer learning technique, which
helps to reduce the training time drastically.
We have implemented George as a pluggable scheduling

service in Docker Swarm [12]. We evaluate its performance
in large-scale EC2 [6] clusters with over 700 machines. Com-
pared with the state-of-the-art LRA schedulers, George sat-
isfies the operation constraints and achieves substantially
higher container performance. Compared with the state-of-
the-art CPO algorithms [27], George reduces the RL model
update time by up to 40%. With the transfer learning mecha-
nism, the model training process is accelerated by 6×.

2 Background and Formulation
2.1 Long Running Application (LRA)
Cloud service providers, like Google [15] and Alibaba [4,
34], operate large production clusters and execute online
cloud applications in supporting various interactive, latency-
critical services such as stream processing [7, 9, 11, 78], in-
teractive data analytics [59, 75], storage services [8, 19, 22],
and machine learning applications [10, 20, 26, 36, 43, 54, 69].
These applications usually run in long-lived containers, in
responding to dynamic queries in real-time. A study shows
that in Microsoft clusters, the containers of online services
typically run for hours to months [42]. Our communications
with Alibaba Cloud also confirm this, where nearly 50% of
Alibaba containers last over a day, and some of core applica-
tions run for several months.
LRAs occupy a large number of cluster resources to pro-

vide critical services with stringent SLOs [34, 42, 44, 48].
For instance, a recent trace from Alibaba of an 8-day pe-
riod [4, 44] shows that 94.2% of the CPU cores on average
are allocated for LRAs. In Microsoft, many large clusters are
entirely dedicated to LRA workloads [42]. Therefore, sched-
uling LRAs plays a critical role in dictating both the overall
performance and cluster utilization.

2.2 Placing LRA Containers
To provide high-available services, an LRA typically de-
ploys multiple container replicas, each running a service
instance. Over time, an LRA scheduler responds to continu-
ous container launching requests in coping with the work-
load changes such as diurnal fluctuations and unexpected
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bursts. Given the dynamic arrivals of container launching
requests, a scheduler needs to examine the current cluster
state (i.e., the running containers on each machine) and de-
termine the placement of each container by selecting a target
physical machine.
Per-groupContainer Scheduling. To achieve better sched-
uling decisions in the long run and avoid myopic placements,
a scheduler batches the received container launching re-
quests into groups, each consisting of nomore than𝑇 contain-
ers [42, 73]. The scheduler then makes placement decisions
on a per-group basis. Once a container is deployed, it runs
for an extended period of time, during which no preemption
or migration is allowed.
Performance Interferences between Containers. De-
spite the continuous efforts on service isolation techniques [17,
79], the interferences between containers co-located on a
physical machine are inevitable from two aspects: On the
negative side, although CPU and memory of the co-located
containers can be isolated properly, other resources—like
network, disk I/O and cache, not managed by OS kernel—are
not easily manageable, and containers competing for those
resources may impair the performance of each other [42].
On the positive side, the container performance in term of
throughput can be substantially improved if the data needed
can be provisioned locally in co-locating containers—rather
than through remote requests. Previous studies [42, 73] show
that different container placement decisions cause up to 40%
throughput variations.
Operation Constraints. Placing containers in production
clusters is subject to a set of operation constraints such as hard-
ware requirements, fault-tolerance, and incremental deploy-
ment [4, 15]. These constraints may require certain specific
container placement in order to ensure steady and healthy
cluster operations. Noticing, however, such constraints, of-
ten manually specified, are independent of container inter-
ferences. We summarize the commonly supported operation
constraints as follows.
First, LRA containers should be placed to machines that

match specific hardware requirements (e.g., GPU version,
number of CPUs, minimum memory, available public IP ad-
dresses [15]), without which a container cannot run. Sec-
ond, the container replicas launched by an LRA are typically
placed on different physical machines, racks and zones for
high-availability and disaster-avoidance. For example, in Al-
ibaba clusters [4, 44], each online service has two or more
container replicas, and these replicas are required to be sched-
uled on different physical machines, referred as deployment
spreading. Consequently, a single machine failure will not
crash any service. Third, placing new-version containers on
specific machines for incremental updates. Online services
are routinely updated to newer versions, which are usually

deployed incrementally, i.e., deploying the new-version con-
tainers on a specific machine subset for A/B testing [1].
Hard and Soft Operation Constraints. In production
clusters [4, 15], these operation constraints are categorically
represented by two classes: hard constraints must be strictly
enforced, and soft constraints should be guaranteed within a
pre-defined violation threshold (e.g., 5%). On one hand, the
constraints such as hardware requirement are naturally hard
constraints without which applications cannot run, while
others like the incremental deployment are soft constraints
with certain violation tolerance. On the other hand, satisfy-
ing all operation constraints are costly and may not even
be feasible in production clusters. From our conversations
with Alibaba Cloud, out of thousands of LRAs running in
clusters, only a handful of core LRA services are scheduled
with 100% operation constraint guarantee, while others are
running under bounded violation rates.

2.3 Placement Formulation
Based on the discussion above, an LRA scheduler should
be aware of the inter-container interferences for better con-
tainer performance, while categorically satisfying the opera-
tion constraints. We, therefore, formulate the LRA container
placement as a constrained combinatorial optimization prob-
lem as follows.
Formulation. Formally, given an 𝑁 -node cluster with node
𝑛 ∈ {1 . . . 𝑁 }, and a group of𝑇 containers {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑇 }
to be placed, the scheduler determines the hosting machines
for these containers, and outputs the placement decision
A = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑇 }, where 𝑎𝑡 ∈ {1 . . . 𝑁 } is the node to
host 𝑐𝑡 . The objective is to maximize the container perfor-
mance, subject to satisfying hard constraints and bounding
the violation of soft constraints, i.e.,

maximize 𝑃 (A),
s.t. 𝐶𝑠 (A) ≤ ℎ𝑠 ,

𝐶ℎ (A) = 0.

(1)

Here 𝑃 (A) measures the container performance under the
placementA, e.g., the average container service throughput.
𝐶𝑠 and 𝐶ℎ measure the constraint violations for the soft and
hard operation constraints, respectively. In particular, for
hard constraints, the violation is guaranteed to be 0, and a
violation threshold ℎ𝑠 is pre-defined for soft constraints.

2.4 Challenges
Solving the above constrained combinatorial optimization
problem in Eq. (1) is technically challenging in several as-
pects.
Maximizing Container Performance Subject to Opera-
tion Constraints. Incorporating the operation constraints
in LRA scheduling formulates a constrained optimization
problem, which is fundamentally different from the previous
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formulations [73]. The constrained optimization problem
itself is hard to solve [27, 77], as the performance optimality
and the operation constraints are independent. Specifically,
the operation constraints are usually set manually with no
relevance to the container performance. Satisfying these
constraints reduces the container placement decision space,
which negatively affects the container performance.
Categorically Support Hard and Soft Operation Con-
straints.Categorically satisfying the hard and soft operation
constraints further complicates the problem, as they demand
different designs. The hard operation constraints have the
highest priority and need to be strictly enforced, even at the
expense of sacrificing the container performance. This also
implies that a statistically low bound on hard constraint vio-
lation, like those in [27, 77], is not acceptable. In contrast, the
pre-defined violation rate of soft constraints can be properly
exploited to benefit the container performance.
Scalability. In large-scale clusters where tens of thousands
of LRA containers run on thousands of machines, making
timely placement decisions are critically important. Notic-
ing that placing containers in a per-group manner shown in
Eq. (1) requires a global view involving all containers, which
is essentially a combinatorial optimization problem. The com-
plexity grows exponentially with the increases of the cluster
size and the number of containers in a group [42, 46]. The
operation constraints further complicate this problem and
significantly increase the scheduling latency. In Cloudera
and Yahoo cluster traces, the scheduling latency is more
than doubled [32, 33, 68], and in Google traces, the latency
increases up to six times [62], because of the operation con-
straints.

3 Existing LRA Schedulers
In this section, we first outline the existing rule-based and
learning-based LRA scheduling algorithms and discuss how
they fail in optimizing performance or capturing the oper-
ation constraints. We then present the recent advances in
machine learning techniques that explicitly consider con-
straints during policy learning, and we illustrate why they
cannot be used in our LRA scheduling formulation.

3.1 Rule-based LRA Schedulers
Existing rule-based LRA schedulers use various placement
rules to capture the complex interferences between LRA
containers [2, 3, 17, 42, 71, 72]. The typical placement rules
considered in cluster management systems [12, 17, 71] in-
clude affinity, which co-locates I/O-dependent containers to
provide data locality or places containers to satisfy machines
attributes, and anti-affinity, which schedules contending con-
tainers on separate machines to avoid resource interference
or spreads container replicas for disaster avoidance. The
operation constraints can also be naturally represented as
placement rules. These rules are usually specified through

scheduler-provided APIs [17, 42, 71]. The schedulers make
container placement decisions to satisfy as many rules as
possible, either with simple greedy strategies [38, 39] or
by solving a constrained combinatorial optimization prob-
lem [42, 49, 56, 57, 70, 76].
However, such rule-based LRA scheduling can be highly

inefficient [73]. First, it requires manual summarization of
placement rules, which is inefficient to capture inter-container
interferences, especially in large-scale production clusters.
Second, placement rules only provide qualitative schedul-
ing guidelines, and cannot quantify the actual performance
impact (e.g., to what degree can the throughput be compro-
mised under certain constraint violations). In this case, when
a scheduler cannot satisfy all the rules, it may well end up
selecting some with negative impacts on the container per-
formance. Third, complex placement constraints often lead
to an extremely complex optimization formulation in large
clusters. As we will see in § 6.3, when scheduling containers
in a large cluster with 729 nodes, state-of-the-art rule-based
LRA scheduler [42] spends more than 16 hours to search
a feasible yet non-optimal solution, 16× longer than our
proposed scheme.

3.2 Learning-based LRA schedulers
Another paradigm of LRA scheduling takes advantage of ma-
chine learning techniques in decision-making. The learning-
based LRA scheduler [73] typically applies Reinforcement
Learning (RL) techniques [29, 40, 64] to automatically learn
the container placement decisions. More specifically, an RL
agent learns to place containers by encoding the scheduling
policy into a neural network and training it with trial-and-
error experiments, in which it places LRA containers and
iteratively refines the policy based on feedback. The state-of-
the-art RL-based LRA scheduler, Metis [73] utilizes a novel
REINFORCE algorithm [64], and decomposes the container
placement into a series of sub-problems with hierarchical
Reinforcement Learning (HRL) [29, 40] to achieve scalability.

RL-based solutions seem to be more promising compared
with rule-based alternatives, as they eliminate the need to
manually specify complex and inaccurate placement rules,
and offer concrete quantitative scheduling criteria that di-
rectly help to improve the container performance in an end-
to-end manner. In addition, by encoding the policy into the
neural network, the optimal placement decision can be de-
rived timely through model inference.

However, existing RL-based LRA schedulers [73] concern
only container performance optimization, but do not con-
sider operation constraints. Incorporating operation con-
straints results in a constrained combinatorial optimization
formulation as shown in Eq. (1). This is more complex than
the optimization formulation in [73]. First, solving a con-
strained optimization problem, especially satisfying hard
constraints is challenging for RL, as we will discuss in § 3.3.
Second, it often takes an excessively long training time to
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Figure 1. Inefficiency of existing constraint-aware RL algorithms.
We adopt normalized RPS (requests per second) as the performance
metric [39, 42].

solve the constrained combinatorial optimization problem
when applying the existing RL algorithms [63].

3.3 Constraint-Aware Reinforcement Learning
We next discuss the difficulties for an RL agent in solving
a constrained combinatorial optimization problem shown in
Eq. (1), which motivates us to design a new RL algorithm.
Fixed Penalty Optimization (FPO). A naive way to incor-
porate constraints in an RL formulation is to combine the
performance-oriented objective 𝐽𝑅 and constraint violation
𝐽𝐶 into the reward signal by a weighted sum, i.e.,

𝑅𝑡 = 𝜆𝐽𝑅 − (1 − 𝜆) 𝐽𝐶 , (2)

where 𝜆 is a tunable knob that assigns different weights
to the two objectives.
However, in FPO, the RL agent’s behavior is highly sen-

sitive to the hyper-parameter 𝜆, as illustrated in Fig. 1a. A
larger 𝜆 (e.g., 𝜆 = 1) leads to excessive constraint viola-
tions (the blue, dashed-dotted curve), while a smaller 𝜆 (e.g.,
𝜆 = 0.01) leads to poor container performances (the red,
dashed curve). It indicates that FPO requires painstaking
hyperparameter tuning and is not a justified solution.
Constrained Policy Optimization (CPO). More sophis-
ticated constraint-aware RL algorithms [27, 67, 77] are re-
cently proposed in the area of robotics to prevent robots
from dangerous actions. State-of-the-art algorithms such as
CPO [27] and PCPO [77] explicitly formulate a constrained
optimization problem. Through principled approximation
and primal-dual optimization, the constrained optimization
can be solved by iterative model training. Theoretical analy-
sis proves these RL algorithms can simultaneously maximize
the RL reward and approximately satisfy constraints.

However, we find these solutions cannot be directly used
in our LRA scheduling formulation, due to the following
two reasons. First, these algorithms do not guarantee hard

constraints. As a matter of fact, probability-based RL algo-
rithms cannot guarantee hard constraints. A probability-
based RL agent makes decisions by sampling actions with
different probabilities. Hence, any actions, including those
violating hard constraints, are possible to be triggered. CPO
and PCPO [27, 67, 77] only support soft constraints by limit-
ing the mathematical expectation of the violations within a
small but non-zero threshold. To further confirm this, we test
CPO [27] with only hard constraints and set the threshold as
0. Experimental results reveal that hard constraint violations
cannot be completely eliminated, as shown in Fig. 1b.
Second, these algorithms require complex second-order

derivative calculation in the implementation [27, 60, 77], lead-
ing to an unacceptable time complexity when updating neural
network parameters. More specifically, these algorithms use
the trust region policy optimization method [60] to constrain
an RL agent’s behaviors, which relies on calculating the KL-
divergence [27, 60]—the similarity between the current and
the updated policies. The computational complexity grows
rapidly when the neural network gets deeper [27, 60, 67, 77].

4 George Design
Given the inefficiencies in the existing schedulers, we now
propose George, an intelligent RL-based LRA scheduler that
enables scalable learning under the operation constraints in
large clusters. We next present the key designs in George
that target to solve the two problems: (1) How to categori-
cally support the hard and soft operation constraints during
learning process? (2) How to provide scalability with timely
decision-making?We illustrate howGeorge trains a learning-
based scheduler with the key designs in Algorithm 1.

4.1 Preliminaries

RL Workflow. Recall in § 2 that a scheduler schedules a
group of 𝑇 containers at their arrivals. We treat each group
scheduling as an episode consisting of𝑇 steps, where in each
step 𝑡 , only one container 𝑐𝑡 is placed onto amachine 𝑎𝑡 . Each
placement decision is made by George’s RL agents, which
encodes the scheduling policy into a neural network with
parameters 𝜃 , known as policy network 𝜋𝜃 . After all the 𝑇
containers have been placed, the scheduler evaluates the out-
come of the placement A = {𝑎1, 𝑎2, . . . , 𝑎𝑇 } with two parts:
𝑃 (A)—the container performance, and 𝐶ℎ (A), 𝐶𝑠 (A)—the
violations of the hard and soft operation constraints, respec-
tively. Based on these feedbacks, George updates its policy
𝜋𝜃 iteratively.
State and Action. At each step 𝑡 in an episode, assume 𝑐𝑡
is the next container to be scheduled. To embed container
𝑐𝑡 , we encode it into a one-hot vector 𝑒𝑒𝑒 = ⟨𝑒1, . . . , 𝑒𝑀 ⟩, where
each element 𝑒𝑖 is 1 if container 𝑐𝑡 belongs to application 𝑖
else 0. To represent the current cluster state, we first define
the state of amachine 𝑛 as the vector𝑣𝑣𝑣𝑛 = ⟨𝑣1, . . . , 𝑣𝑀 ⟩, where
𝑣𝑖 is the number of containers that run for application 𝑖 . The
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concatenation of all machines’ states and the one-hot vector
𝑒𝑒𝑒 defines the cluster state 𝑠𝑠𝑠𝑡 . The agent chooses to perform
action 𝑎𝑡 in state 𝑠𝑠𝑠𝑡 , which schedules container 𝑐𝑡 to machine
𝑎𝑡 and transits the system to a new state.
Reward and Cost. In each episode, the agent evaluates the
container performance and examines the constraint viola-
tions of the group placement in the final step 𝑇 after all 𝑇
containers are scheduled. We denote the container perfor-
mance objective as the reward function 𝐽𝑅 (𝜋𝜃 ), which can
be any performance measurements such as the average con-
tainer throughput, SLO satisfaction rate, cluster utilizations,
or their combinations. We represent the constraint violation
as the cost function 𝐽𝐶 (𝜋𝜃 ) = 𝐽ℎ

𝐶
(𝜋𝜃 ) + 𝐽 𝑠𝐶 (𝜋𝜃 ), a summed

violation rates of soft and hard constraints. In RL training,
it is common to discount the future reward and cost with
a discount factor 𝛾 ∈ [0, 1) [51, 60, 61, 73, 77, 77]. In policy
optimization, we consider the reward advantage function
𝐴
𝜋𝜃
𝑅
(𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡 ), which measures the quality of an action 𝑎𝑡 at the

state 𝑠𝑡𝑠𝑡𝑠𝑡 and is defined as the difference between the value of
reward and its expectation.
Designs Inherited fromMetis [73]. Inspired byMetis [73],
George adopts three mechanisms to enable scalable learning
in large-scale clusters.
1) Cluster Environment Simulator. Similar to [28, 51,

73], we develop a high-fidelity cluster environment simulator
that can faithfully predict containers’ performance imme-
diately after a placement. This enables the RL policy to be
trained in a very efficient manner, without the need to in-
teract with real clusters. Previous work [73] reveals that
collecting only 20% of the container co-location samples is
sufficient for a Random Forests [30] regressor to accurately
predict the container performance (e.g., container through-
put) under any possible co-locations.
2) In-place Model Training. George trains a dedicated

RL model upon the arrival of each new group of containers.
Note that the possible combinations in a container group is
large. For example, a small group of 30 containers launched
by seven LRAs requires the scheduler to handle over one
million possible container combinations in input. Due to
such highly-variant possible input, offline trained RL models
inevitably result in poor scheduling performance [52].

3)Hierarchical Cluster Decompositions. George incor-
porates the hierarchical RL (HRL) training framework from
Metis [73] for manageable RL state and action space. George
recursively divides the original large cluster into 𝐾 equal-
sized sub-clusters at multiple layers. This decomposition es-
tablishes a decision tree, where each tree node corresponds
to a sub-task that selects one smaller sub-cluster at the next
layer out of the 𝐾 candidates, as shown in Fig. 2. Follow-
ing such as decision tree, George places each container by
recursively making several 𝐾-choose-1 decisions, each is
independently modeled as an RL problem with its own state,
action, reward and cost.With such anHRL design, scaling the

Original cluster
(All Machines)

Sub-clusters 
at Level 1

Sub-clusters 
at Level 3
(Single Machines)

George RL agents
at level 1

George RL agents
at level 2

Sub-clusters 
at Level 2

George RL agents
at level 3

Figure 2. An illustration of hierarchical cluster decompo-
sitions from Metis [73]. Following this design, George re-
cursively divides the original cluster into 𝐾 equal-sized sub-
clusters at multiple levels, transforming the original problem
into a sequence of 𝐾-choose-1 subproblems.

cluster with more machines only leads to a deeper decision
tree and more sub-tasks, but each sub-task still maintains
manageable state/action space.

4.2 Satisfy Hard Constraints with ILP-Based Filter

Insights. As discussed in Sec 3, RL algorithms cannot sat-
isfy hard operation constraints. To address this problem, we
divide the decision-making process when placing each con-
tainer into two stages: At the first stage, we filter the original
action space—the entire cluster with all machine candidates—
to exclude those actions that will violate hard constraints. In
another word, after the filtering, the action space is in a “safe
action space”, in which any actions cannot violate hard con-
straints. We next proceed to the second stage, in which the
RL agent determines the placement within this “safe action
space” by focusing on maximizing container performances
subject to a set of soft constraints.
Difficulty in Filtering the Action Space. George filters
the original action space by identifying and excluding those
“unsafe” actions. In simple cases where the “unsafe” actions
are independent and easily identified, we can directly exclude
those actions. However, for sequential actions (i.e. placing
a group of containers), it becomes difficult to myopically
ensure if an action will eventually violate hard constraints.
In specific, when filtering the action space, a scheduler needs
to have a global view of all containers in the group and all
hard constraints, filtering “unsafe” actions in the long term.
Filtering the Action Space with ILP. We propose that the
filtering decisions can be derived by integer linear program-
ming (ILP) techniques [32, 42]. Formally, given a𝑇 -container
group {𝑐1, 𝑐2, . . . , 𝑐𝑇 }, assume 𝑐𝑡 is the next to place. The
original action space is the entire cluster, i.e., 𝑎𝑡 ∈ {1 . . . 𝑁 },
where N is the cluster size. For each node 𝑛 ∈ {1 . . . 𝑁 }, sup-
pose it is the placement decision for 𝑐𝑡 (i.e., 𝑎𝑡 = 𝑛), George
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verifies if the remaining containers {𝑐𝑡+1, 𝑐𝑡+2, . . . , 𝑐𝑇 } can
be placed without violating hard constraints, i.e., to check if
the following integer programming problem has a feasible
solution:

𝐶ℎ (A = {𝑎𝑡+1, 𝑎𝑡+2, . . . 𝑎𝑇 |𝑎1, 𝑎2, . . . , 𝑎𝑡 = 𝑛}) = 0. (3)

By checking each node 𝑛, we obtain a “safe actions”, based
on which George then makes the placement decision for
container 𝑐𝑡 using RL-based algorithms.
Benefits. Compared with rule-based schedulers [38, 42]
and learning-based schedulers [73], the two-stage method
seamlessly integrates the intelligence of RL algorithms and
the capability of ILP in supporting hard constraints.

Algorithm 1 Training process in George
Input An 𝑁 -node cluster; a group of 𝑇 containers; Policy
𝜋0 from a pre-trained base model or random initialization;
Output An allocation of {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑇 } of the 𝑇
containers;

Initialize the environment, performance indicator 𝑅,
and the threshold for constraint violations ℎ.
Set replay buffer 𝐵 and the best performance 𝑅∗ as
empty.
for epoch k=1,2,. . .K do

Initialize the state 𝑠 = {𝑒, 𝑣1, 𝑣2, . . . , 𝑣𝑁 }.
for t=1,2,. . . T do

Check the action space with ILP-based filter
Choose an action 𝑎𝑡 with policy 𝜋𝑘 (𝑎𝑡 | 𝑠𝑡 ).
Execute the action and observe a new state 𝑠𝑡+1.

Collect all performance indicators as reward
𝑟 =

∑
𝑡 𝑅(𝑐𝑡 )

Collect all constraint violations as cost 𝑐 =
∑
𝑡 𝐶 (𝑐𝑡 )

if 𝑟 ≥ 𝑅∗ 𝑐 ≤ ℎ then
Store experience {𝑠1, 𝑎1, 𝑠2, 𝑎2, . . . , 𝑠𝑇 , 𝑎𝑇 } in B
𝑅∗ ←𝑚𝑎𝑥 (𝑟, 𝑅∗)

Use PPPO algorithm to update 𝜋𝑘
Return the action {𝑎1, 𝑎2, . . . 𝑎𝑇 } of the experience with
the highest reward 𝑟 = 𝑅∗ in replay buffer 𝐵.

4.3 Efficient Policy Optimization with PPPO
To satisfy soft constraints, we next present a projection-based
proximal policy optimization (PPPO) algorithm, a first-order
constrained policy optimization technique. We show PPPO
drastically reduces the computation complexity for policy
updates, with guaranteed performance improvement and
bounded constraint violation.
Insights. It turns out that the second-order derivative calcu-
lation, i.e. the computation of the inverse of Hessian matrix,
in existing constraint-aware algorithms [27, 77] can be ap-
proximated by a first-order alternative, with much reduced
complexity and bounded performance. To obtain such an

approximation, we take advantage of the two-step strategy
from [77], which decouples the constrained policy optimiza-
tion into a reward improvement step that only concerns
the performance-oriented goals and a projection step that
projects the policy update to a “safe zone” that satisfies soft
constraints.
Reward Improvement Step.The reward improvement step
is designed to optimize performance-oriented goals. We per-
form an update to optimize the policy by maximizing a "sur-
rogate" objective function as Eq. (4) [27, 60, 77], i.e.,

𝐿(𝜃 ) = E[ 𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 )
𝜋𝜃old (𝑎𝑡 | 𝑠𝑡 )

𝐴
𝜋𝜃old
𝑅
(𝑠𝑡 , 𝑎𝑡 )] . (4)

Intuitively, Eq. (4) suggests that the probability an action
𝑎𝑡 at state 𝑠𝑡 increases or decreases, if the advantage func-
tion of the pair (𝑠𝑡 , 𝑎𝑡 ) is positive or negative, as a positive
or negative advantage function indicates the quality of the
action 𝑎𝑡 is above or below the average.
While updating the policy, existing algorithms [27, 67,

77] apply a trust region method [60] to limit the differ-
ences between 𝜋𝜃 and 𝜋𝜃old with a KL-divergence inequal-
ity 𝐷𝐾𝐿 (𝜋𝜃 ∥ 𝜋𝜃old ) ≤ 𝛿 . However, the calculation of KL
divergence involves computing the inverse of its Hessian
matrix [60], making its computation intractable especially
for high-dimension policies, e.g., policy network. Inspired
by [61], we replace KL-divergence constraint with a clipping
function, 𝑐𝑙𝑖𝑝 (𝑖𝑛𝑝𝑢𝑡, 1−𝜖, 1+𝜖), which limits the input term
in the interval [1 − 𝜖, 1 + 𝜖]. We therefore transform Eq. (4)
as

𝐿(𝜃 ) = E
[
min

(
𝑟𝑡 (𝜃 )𝐴

𝜋𝜃old
𝑅

, clip (𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴
𝜋𝜃old
𝑅

)]
,

(5)

where 𝑟𝑡 (𝜃 ) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃old (𝑎𝑡 |𝑠𝑡 )

. Denote 𝛼 the learning rate. Take
the first order gradient of Eq. (5) with respect to 𝜃 . The update
rule in the reward improvement step of the 𝑘𝑡ℎ epoch is

𝜃𝑘+ 1
2
= 𝜃𝑘 + 𝛼

∑
𝑡

∇𝜃𝐿 (𝜃𝑘 ) . (6)

Projection Step. Considering that the updated scheduling
policy 𝜋𝑘+ 1

2
may violate the operation constraints, we then

perform the projection step to project it into a "safe" zone,
in which 𝐽𝐶 (𝜋) ≤ ℎ. The projection step is performed by
minimizing a distance measure 𝐷 , between 𝜋𝑘+ 1

2
and 𝜋𝑘

while controlling operation constraint violations:

𝜋𝑘+1 = argmin
𝜋

𝐷

(
𝜋, 𝜋𝑘+ 1

2

)
s.t. 𝐽𝐶 (𝜋) < ℎ.

(7)

The projection step guarantees that the constraint-satisfying
policy 𝜋𝑘+1 is close to 𝜋𝑘+ 1

2
, subject to constraints. Let 𝒂 be

the first-order derivative of the cost function 𝐽𝐶 (𝜋𝜃 ). By solv-
ing Eq. (7) with convex programming [77], we obtain the
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Figure 3. Update procedures for PPPO: Reward improve-
ment and projection steps. The first step (blue dashed arrow)
follows the reward improvement direction, leading to 𝜋𝑘+ 1

2
.

The second step (red solid arrow) projects the policy 𝜋𝑘+ 1
2

onto the "safe" zone (light orange), leading to policy 𝜋𝑘+1.

projection step which projects the policy update to the “safe”
zone, i.e.,

𝜃𝑘+1 = 𝜃
𝑘+ 12
−max

©­­«0,
𝒂𝑇

(
𝜃
𝑘+ 12
− 𝜃𝑘

)
+max

(
0, 𝐽𝐶

(
𝜋𝜃𝑘

)
− ℎ

)
𝒂𝑇 𝐿−1𝒂𝑇

ª®®¬𝐿−1𝒂.
(8)

We derive Eq. (8) based on the Lagrangian of the Eq. (7)
and Karush-Kuhn-Tucker (KKT) conditions. The detailed
solution is included in [14]. Fig. 3 depicts the reward im-
provement and projection steps in PPPO. Compared with
CPO and PCPO [27, 77], PPPO eliminates the complex cal-
culation of KL-divergence and achieves faster model update.
As we will show in § 6.2, PPPO accelerates the model updat-
ing time by by 40% on average without compromising the
scheduling performance.
Performance Bounds.We analyze the worst-case perfor-
mance of the proposed PPPO. The following two theorems
provide a lower bound on reward improvement, and an upper
bound on constraint violation for each policy update.

Theorem 1 (Lower bound on reward improvement). For
any policies 𝜋 ′, 𝜋, with 𝜖𝜋

′
� max

𝑠

��E𝑎∼𝜋 ′ [𝐴𝜋𝑅 (𝑠, 𝑎)] �� and 𝛾 ∈
[0, 1), the following bound holds:

𝐽𝑅 (𝜋 ′) − 𝐽𝑅 (𝜋) ≥ −
√
2𝛾𝜖𝜋

′

(1 − 𝛾)2
√
log(1 + 𝜖). (9)

Theorem 2 (Upper bound on constraint violation). For any
policies 𝜋 ′, 𝜋 , with 𝜖𝜋

′

𝐶
� max

𝑠

��E𝑎∼𝜋 ′ [𝐴𝜋𝐶 (𝑠, 𝑎)] �� and 𝛾 ∈
[0, 1), the following bound holds:

𝐽𝐶 (𝜋 ′) ≤ ℎ +
√
2𝛾𝜖𝜋

′

𝐶

(1 − 𝛾)2
√
log(1 + 𝜖) . (10)

Theorem 1 provides a worst-case performance degrada-
tion guarantee which depends on the hyperparameter 𝜖 . 𝜖
captures the difference between the new and the old policies,
which is often set below 0.2. Theorem 2 provides a perfor-
mance guarantee for the satisfaction of constraints. Here, ℎ

is the pre-defined threshold on the percentage of constraint
violation.

The general idea of their proofs follows two steps. First,
we bound the differences in 𝐽 and 𝐽𝐶 between two arbitrary
policies 𝜋 ′, 𝜋 in terms of the total variational divergence (TV-
divergence) between their action distributions [27]. Then we
relate the TV-divergence to the clipping functions in Eq. (5)
and get final results step by step. The detailed derivation and
mathematical analysis are included in [14].

4.4 Temporal Model Reuse: Transfer Learning

Motivation. Although our PPPO algorithm accelerates the
RL agent learning process, the model training is still time-
consuming which may not be practically feasible in making
timely decisions, esp., for large clusters. As we will show in
Fig. 7c, scheduling thousands of containers in a large cluster
with ~700 machines requires more than 6 hours for the train-
ing convergence. Such a long scheduling latency may not be
justifiable in real-world production cluster operations.
Insights. We note that training a tailored RL agent from
scratch for each container scheduling event is unnecessary.
This is because, although different scheduling events involve
different container groups and different RL models, the com-
prehension of the problem and learned knowledge can be
temporally reused across different scheduling events.
Transfer Learning (TL). George addresses the problem of
rapid model training by leveraging transfer learning tech-
niques in the domain of RL [31, 65, 66]. The basic idea is that
experiences gained in learning to perform one task can help
improve learning performance in related, but different tasks.
Instead of training an RL model from scratch, George’s

model training is initialized based on a pre-trained model, re-
ferred to as basemodel. The basemodel can be obtained either
from a previous scheduling event or a general offline trained
model. George inherits the neural network parameters of the
input layers and hidden layers from the base model, while
randomly initializing the parameters of the output layer. By
inheriting these parameters, the knowledge learned previ-
ously is transferred and reused in a new scheduling event,
which considerably accelerates the model training. As we
will show in Fig. 7c, employing transfer learning speeds up
the model training by 6× than training each model from
scratch.
Transfer Learning vs. Offline-trained Model. Previous
study [73] reveals that training a unified RL model offline
and applying it for inference online for various container
scheduling events may not perform well. In general, a con-
tainer group produces a large number of combinations, and
an LRA scheduler needs to handle a highly variant input—in
our experiments with seven applications (Fig. 1), scheduling
a group consisting of 30 containers requires the scheduler
to handle over one million possible container combinations
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Figure 4. Docker Swarm Implementation of George.

as input. With a large cluster, offline training a scheduling
policy for extremely variant workloads inevitably results
in poor performance. In contrast, transfer learning tech-
niques inherit the learned knowledge from previous sched-
uling events, while still having the opportunity to refine the
model into a specific container group online. Even without
considering the operation constraints, temporally reusing
the RL models with transfer learning can also speed up the
decision-making process for other RL-based LRA schedulers
like Metis [73]. We believe this can be extended into other
RL applications, especially for RL-based scheduling where
the subsequent decision-making events share high-degree
similarities.

5 Implementation
We implement George as a pluggable scheduling service
in Docker Swarm [12], which is widely compatible with
various container orchestrations [3, 17]. Fig. 4 describes the
components in our RL-based scheduling algorithm2.
Container Scheduling Component and Workflow. As
shown in Fig. 4, given an LRA cluster, George first collects
abundant container co-location data samples by an Perfor-
mance Profiler, using direct benchmarking [18, 25] or trace
analysis [4, 15, 45] ( 1○). More specifically, it logs the machine-
level container co-location vectors along with the observed
RPS/latency of each resident container. The collected data
is fed to a Cluster Environment Simulator ( 1○). The Cluster
Environment Simulator builds a RandomForestRegressor
with scikit-learn [58] which takes an ensemble of 100 clas-
sifying decision trees with a maximum depth of 20. Based
on the Cluster Environment Simulator, for each group of
container launch requests, George initializes the RL model
training, which is an iterative interaction process between
the Cluster Environment Simulator and the RL agent ( 2○).
Once the model is converged, the optimized placement deci-
sion is produced, which is used by the Container Launcher
to execute the actual container placement ( 3○).
2We have open-sourced George on GitHub [13].

Parallel RLModel InferencewithRay [55]George batches
episodes of agent-environment interactions and trains the
policy network in a mini-batch manner. To speed up the
batching process, we distribute the agent-environment in-
teraction tasks to processes with Ray [55] and execute them
in a synchronized parallel manner. This can substantially
reduce the data sampling time in RL training.
ILP-based Filter George verifies the feasibility of the ILP
problem using Z3 solver [37]. Z3 is a state-of-the-art theorem
prover from Microsoft Research. It can be used to check the
satisfiability of logical formulas over one or more theories.
The set of formulas in the Z3 stack is satisfiable if there is an
interpretation that makes all asserted formulas true. While
placing LRA containers, the ILP-based filter helps George
avoid hard constraint violations.
PPPO Algorithm The PPPO algorithm in the RL agent is
written in Python code. We encode its RL policy into a 2-
layer policy neural network and implement it with Tensor-
Flow [26]. As shown in Algorithm 1, PPPO follows the ILP-
based filter to update scheduling policy.

6 Evaluation
In this section, we evaluate George on EC2 clusters using
container workloads of seven real applications covering ma-
chine learning, stream processing, I/O and storage services.
Our evaluations focus on addressing the following three
questions: (1) How does George perform compared to the
rule-based LRA schedulers? (§ 6.2) (2) Can George sched-
ule LRAs in large clusters with short model training time?
(§ 6.3) (3) Can George support different scheduling objec-
tives? (Sec. 6.4)

Our evaluations aiming to answer the above questions are
conducted in three cluster scales. The first is a small-sized
cluster with 27 nodes. We examine and compare the schedul-
ing performance and constraint violations between George
and baseline schedulers by focusing on the first and third
questions. The second is a large-sized cluster with 729 nodes,
in which we evaluate the scalability of George, and illustrate
the benefits of transfer learning in addressing the second
question. Lastly, we run George at a micro-benchmark level
in the third tiny-sized cluster with only 9 nodes and present
some of the detailed scheduling behaviors.

6.1 Methodology

Cluster Setup.We use the small-sized cluster with 27 nodes
in §6.2 and §6.4, the large cluster with 729 nodes in §6.3 and
the tiny-sized cluster with 9 nodes in §6.5. All the containers
are running with the same resource demands of 2vCPU and
8GB memory. For simplicity, we assume a homogeneous
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cluster with identical machines 3. For each machine, we use
an m5.4xlarge AWS EC2 instance [5] with 16 vCPU and 64
GB RAM, hosting at most 8 containers simultaneously.
Workloads.We have implemented seven open-source LRAs:

• Redis [22]: a stand-alone Redis server instance with
redis-benchmark[23] requests.
• MXNetModel Server (MMS) [20]: executing DNNmod-
els with MXNet [10] for image classification.
• Image Super Resolution (ISR) [41]: super-scaling low-
resolution images by executing DNN.
• File Checksum (CKM) [16]: loading files from disks,
hashing and verifying the checksums.
• Yahoo! Cloud Serving Benchmark workload A & B
(YCSB-A and YCSB-B) [35]: read-write-balanced (A)
or read-heavy (B) workloads [35].
• Video Scene Detection (ScD) [21]: differentiate colors
between video frames to detect scene changes.

Metrics.We focus on both the container performance (RPS)
and constraint satisfaction.
1) Container performance metric: We adopt RPS (re-

quests per second) as the performance metric [42]. Particu-
larly, we normalize values by a container’s stand-alone RPS.
2) Operation constraint satisfaction metric: We mea-

sure constraint violation, the percentage of containers that
violate the operation constraints.
LRA Interactions. Our LRAs have sophisticated perfor-
mance interactions, here we focus on the following two:

1) Affinity: Owing to data dependencies, both MMS and
ISR containers benefit from co-located Redis instances by
caching input images and accessing them locally. However,
such benefit is one-way as co-location harms the RPS of the
Redis instance, due to the memory bandwidth competition.

2)Anti-affinity: Co-locating YCSB-A/B, Redis, CKM, and
ScD containers reduces RPS as they contend on CPU cache
and memory bandwidth. In particular, CKM and ScD need
large cache space close to CPUs and highmemory bandwidth
for fast file read, whereas Redis andMemcached in YCSB-A/B
are sensitive to these resources.
Operation ConstraintsWe set four operation constraints
based on production traces [4, 34, 48].

• Node Capacity (hard constraints): The number of con-
tainers placed to a machine should not exceed the node
capacity, which is 8 in our experiment.
• Deployment Spreading (hard constraints): Each LRA
can launch at most one container on a machine for
load-balance.

3Our approach can easily incorporate heterogeneous clusters and different
container resource demands by embedding machine/container properties
into the RL state.

• Incremental deployment (soft constraints): We use one
LRA, ISR, to mimic the new-version deployment sce-
nario. The containers are limited to be placed on a
specific machine subset (50% of the machines).
• Hardware affinity (soft constraints): To mimic the hard-
ware requirement, we assume one LRA, CKM, requires
a particular kernel version and can only be deployed
on a machine subset (30% of the machines).

BaselinesWe evaluate George against the state-of-the-art
rule-based and RL-based schedulers:

1)Medea [42]. Similar to [73], we exhaustively profile the
container co-location performance, and specify affinity/anti-
affinity performance constraints. We fix the weight of per-
formance constraints as 1, while associating the operation
constraints with various weight values 𝛽 for 𝛽 ∈ {1, 10}.
Based on these constraints, Medea solves an ILP problem
using the branch-and-bound heuristic [47].
2) Fixed Penalty Optimization (FPO). We modify the

RL-based LRA scheduler, Metis [73] to incorporate the op-
eration constraints by revising the reward function as the
combination of two parts: rewarding high container RPS and
punishing high constraint violation: 𝜆𝐽𝑅 (𝜋𝜃 ) − (1−𝜆) 𝐽𝐶 (𝜋𝜃 )
for 𝜆 ∈ {0.01, 1.0}. A smaller 𝜆 implies a higher preference
to satisfy the operation constraints.
3) Constrained Policy Optimization (CPO). We also

modify Metis [73] by replacing its Policy Gradient algo-
rithm with CPO [27], the state-of-the-art constraint-aware
RL method. We set the constraint violation threshold as 5%.

6.2 Schedule LRAs with PPPO and ILP-Based Filter
We first compare George with baseline schedulers in terms
of container RPS, constraint violations and model training
time. To identify and isolate the contributions from PPPO
and ILP-based filter, we do not incorporate transfer learning
in this part. The experiments are carried out in a small-sized
cluster with 27 nodes. For each evaluated case, we randomly
generate 30 container groups for statistical analysis. For
George and CPO, we set the violation threshold of the soft
constraints as 5%.
The End-to-end Scheduling Comparison Fig. 5a com-
pares the average RPS and constraint violations under dif-
ferent schedulers. As we can see, the normalized RPS under
George is consistently higher than 1, meaning the container
throughput is higher than its stand-alone RPS. We attribute
this to George’s awareness of the inter-container perfor-
mance interferences. Moreover, the soft constraint violation
is steadily controlled to under 5%, the pre-defined threshold,
while the hard constraints are strictly enforced. In contrast,
both Medea and FPO are sensitive to the weighted knob: a
higher value of 𝜆 and a lower value of 𝛽 lead to higher con-
tainer RPS, but more constraint violations. On the other hand,
a lower value of 𝜆 and a higher value of 𝛽 inevitably hurt
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Figure 5.George vs baselines in small clusters with 27 nodes.
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Figure 6. Additional calculation time of ILP-based filter.

the container RPS. In particular, neither Medea nor FPO can
enforce constraint violations, while George limits it under
5%. At the same time, George provides 16% and 26% higher
RPS than FPO and Medea, respectively.
Speed Up the Model Training with PPPO. Fig. 5b com-
pares end-to-end scheduling latency (including model train-
ing and inference time) and the model training time between
CPO [27] and PPPO. Both algorithms are executed within a
filtered “safe action space” using our ILP-based filter. As we
can see, our PPPO algorithm accelerates the model training
time by 40% on average without compromising the schedul-
ing performance. The end-to-end scheduling latency is also
reduced by 20% on average.
Satisfy Hard Constraints with ILP-Based Filter. George
fundamentally differs from all existing schedulers by cate-
gorically satisfying the hard and soft operation constraints.
To concretely illustrate this, we generate 10 container groups
each with 100 containers for George to schedule. We con-
figure all the operation constraints are hard constraints, i.e.,

the violation threshold is 0, and compare the performance
between George and CPO [27] algorithm. Fig. 1b illustrates
the learning curve of George and CPO [27]. As we can see in
the red dotted line, CPO by no means controls the constraint
violation to zero although the pre-defined violation thresh-
old is set as 0. In contrast, George’s ILP design can ensure no
hard constraint is violated during the entire training process.
AdditionalCalculationTimeof ILP-Based Filter. While
using ILP techniques can strictly satisfy the hard operation
constraints, it causes additional calculation time to check if
the optimization problem shown in Eq. (3) is feasible. Fig. 6
quantifies this time consumption when scheduling contain-
ers in a small-size cluster with 27 nodes and a large clus-
ter with 729 nodes. As we can see, when scheduling in a
small-sized cluster with 27 nodes, the ILP calculation time
per episode is less than 0.3s (~30%). For a large cluster with
729 nodes, this time is still less than 5s per episode (~20%).
We believe such a calculation time is well justified in large
clusters.

6.3 Accelerate RL Training with Transfer Learning
To better examine the effect of transfer learning technique,
we run George to schedule 2000 containers in a large cluster
of 729 nodes. We generate 30 container groups for statistical
analysis, and the violation threshold of soft constraints is
also set at 5%.
Transfer Learning vs. Training from Scratch. Fig. 7a
compares the training process of two RL schemes under
George: training from scratch for each scheduling event, and
refining the training models with transfer learning based on
a pre-trained general model. It is clear that training from
scratch suffers from a long training time, i.e., spending more
than 6 hours before model convergence, as shown with the
blue dashed curve. This long latency is primarily caused by
the computation complexity. In particular, scheduling con-
tainers in such a large cluster requires an exponentially large
solution space, within which searching for a local optimal
solution is practically difficult. Employing transfer learning
technique can temporally reuse the previous model, where
the model training is based on a pre-trained general model.
Compared with training an RL model from scratch, this sig-
nificantly accelerates the learning process, as shown in the
red solid curve. Fig. 7a and Fig. 7b further demonstrate that,
reusing the model provides comparable container RPS and
constraint violation as training from scratch.
George vs. Medea. Medea [42], as discussed in [73], can
not make timely decisions when the cluster size increases,
due to the hardness in solving the ILP heuristics. Fig. 7c
confirms that, Medea spends more than 16 hours to reach a
sub-optimal solution, 16× higher than George. In addition,
the scheduling performance under Medea suffers up to 23%
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Figure 7. Transfer learning speeds up George’s model training in a large cluster with 729 nodes.

George
(5%)

FPO 
(0.01)

FPO 
(0.5)

FPO 
(1.0)

Medea 
(1.0)

Medea 
(5)

Medea 
(10)

60

70

80

90

100

S
L
O

 S
a
ti

. 
(%

)

George
(5%)

FPO 
(0.01)

FPO 
(0.5)

FPO 
(1.0)

Medea 
(1.0)

Medea 
(5)

Medea 
(10)

Scheduling method

0
5

20

40

60

80

C
o
n
s
tr

a
in

t 
V

io
la

ti
o
n
 (

%
)

Figure 8. George supports maximizing SLO stratification.

lower container RPS or up to 8.5x higher constraint violations
than George.

6.4 Various Scheduling Objectives
Motivated by George’s intelligent scheduling mechanism de-
scribed earlier, we next demonstrate that George is a general-
purpose scheduler that can support various objectives be-
yond maximizing the average container RPS. The experi-
ments below are conducted in a 27-node cluster.
Case Study: Maximizing Container RPS SLO Satisfac-
tions. LRAs running in production cluster often have strin-
gent SLO (Service-Level objective). Apart from maximizing
the average container RPS as shown in Fig. 1, George can
directly maximize the SLO satisfactions (i.e., the percentage
of containers whose RPS meet a pre-defined requirement)
while still satisfying the operation constraints. For illustra-
tion, we set the RPS SLO as 0.8, meaning that this requires

the RPS of each container to be higher than 80% of the RPS
when the container running alone on the machine.

Fig. 8 compares the SLO satisfaction rates under different
schedulers. Compared with baselines, George consistently
achieves both high SLO satisfactions and under-controlled
constraint violations. In particular, under George, all the con-
tainers can meet the SLO requirement (RPS > 0.8) with less
than 5% violation of the operation constraints. To achieve the
same SLO satisfaction, we configure 𝜆 = 0.1 for Metis [73]
with FPO, which however leads to more than 80% violation
of the constraints. A higher value of 𝜆 (1.0), on the other
hand, results in more than 30% SLO satisfaction violations.
Medea [42] also encounter similar problem as shown in Fig. 8.

6.5 A Close Look at George’s Behavior
We next run George in a tiny-sized cluster and examine its
placement decisions at a micro-benchmark level in compari-
son with Metis [73]. We consider a cluster with 9 nodes and
a group of 67 containers.
Operation Constraints vs. Performance Interferences.
For simplicity, we only set one soft constraint: {Redis, MMS}
should not be co-located on the same machine, and one hard
constraint: each node has a capacity of 8.We set the threshold
of constraint violation as 6%4. Note that, {Redis, MMS}, and
{Redis, ISR} should be co-located on the same nodes for better
performance, owing to the data dependencies, as discussed
in § 6.1. However, our soft constraint here requires {Redis,
MMS} to be separated.
Results. George strives for a balance in such a conflicting
scenario, in which it places all ISR containers as co-located
with Redis containers due to the affinity requirement. For
MMS, George exploits the violation threshold (i.e. 6%) to
maximize container performance. Only one Redis container
and three MMS containers are co-located due to the affinity
4Setting 6% as the threshold yields only one optimal solution in this setting.
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Figure 9. Prediction accuracy of the Cluster Environment
Simulator (§5) with varying data sampling rates.

requirement, leading to an acceptable operation constraint vi-
olation, i.e. 5.97% < 6%. The remaining containers on other
nodes all satisfy the operation constraints. Metis satisfies the
affinity between LRA containers, in which all containers of
MMS and ISR are co-located with those of Redis. However,
it does not address the operation constraints, leading to a
100.0% constraint violation.

6.6 Cluster Environment Simulator
As RL training critically relies on the prediction given by
the Cluster Environment Simulator (§5), we validate its accu-
racy with different training samples. In particular, we profile
the resultant container RPS in all 6435 possible container
co-location options of the seven LRAs on one machine. We
randomly sample the training sets covering 1%–90% of the
profiled results—the remaining data is used as the test set.
We train the predictor of the simulator with a multivari-
ate Random Forests regression model (an ensemble of 100
decision trees with a maximum depth of 20), and evaluate
its accuracy in terms of mean square error (MSE) over the
test set. We find collecting only 20% co-location samples is
sufficient to suppress MSE below 0.15%. As generally rec-
ognized, Random Forest regression model produces good
performance even when dealing with small sample sizes and
high-dimensional feature spaces [30].

7 Discussion

HandlingWorkloadChangesGeorge’s RLmodel depends
on the representative training set, and one concern would be
how it performs in handling new LRAs. From our conversa-
tions with Alibaba Cloud, the set of core LRA services is sta-
ble over time, where the containers are performance-critical
and require dedicated placements. When incorporating a
new LRA set, one may need to retrain the RL model before
scheduling. Our Cluster Simulator (§5) enables the training
to be conducted in a simulated environment quickly. Though,
George’s current RL design can only afford to handle dozens
of core applications, we notice from production traces [4, 50]

that only 21 out of 9k LRAs have more than 200 containers
co-existing in the cluster.
Handling Varying Request Loads LRA services exhibit
diverse request patterns such as diurnal changes and work-
load spikes [74]. Tomeasure the container performance infer-
ences, we stress-tested each LRA by configuring a constant
and high load, which simulates the most challenging sce-
nario in rush hours where sustained high loads stretch the
processing capabilities of all LRA containers, creating the
most severe interferences. We leave the evaluation under
different workloads in our future work.
Handling Heterogeneous Containers Currently, George
only considers LRAs deployed in homogeneous containers.
However, our approach can be easily extended to incorporate
heterogeneous clusters or container resource demands by
embedding machine/container properties into the RL state,
e.g., machine configurations and container resource requests.
Implementations on Other Container Orchestrations
George is currently implemented on Docker Swarm [12], for
its simplicity. George’s scheduling workflow, i.e., in-place
model training, the ILP-based filter, PPPO training and trans-
fer learning techniques can also be extended to other frame-
works like Kubernetes [17].

8 Conclusion
In this paper, we first examined the inefficiency of existing
LRA scheduling in coping with the operation constraints.
We then presented George, an intelligent end-to-end general-
purpose scheduler driven by a novel projection-based proxi-
mal policy optimization (PPPO) algorithm tailored to LRA
scheduling. To enforce hard constraints, George filters the
action space by excluding those that violate the hard con-
straints through verification of the feasibility with an ILP
formulation, followed by RL-base decision making. To satisfy
the soft constraints, the proposed PPPO algorithm projects
the RL model update to a “safe zone”, such that the violation
of soft constraints can be guaranteed within a pre-defined
threshold. George applies transfer learning techniques by
taking advantage of the similarity between LRA scheduling
events, which significantly reduces the model training time.
Our EC2 deployment demonstrated that George can guar-
antee the operation constraints without compromising the
container scheduling performance, and can scale to a large
cluster running thousands of containers.
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