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Abstract
We present GASS, an LLVM-based open-source compiler
for NVIDIA GPU’s SASS machine assembly. GASS is the
first open-source compiler targeting SASS, and it provides a
unified toolchain for currently fragmented low-level perfor-
mance research on NVIDIA GPUs. GASS supports all recent
architectures, including Volta, Turing, and Ampere.
Our evaluation shows that our specialized optimizations

deliver significant speedup over LLVM’s algorithms.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; • Software and its engineering →
Source code generation.
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1 Introduction
The compiler toolchain for NVIDIA GPUs is not yet fully
open-sourced. At the time of writing, the only way to auto-
matically generate NVIDIAGPUmachine assembly (SASS) [2]
is to use NVIDIA’s proprietary compiler, ptxas [1]. The lack
of open-source support makes many optimizations inacces-
sible to the public.

In this paper, we present GASS, an open-source GPU com-
piler that translates LLVM-IR into optimized SASS code.
GASS employs the following optimization techniques in

compilation: 1. Instruction scheduling: We design and im-
plement optimized instruction scheduler for compute-bound
kernels. The evaluation shows that for matrix multiplica-
tion, our scheduler improves the performance by 5% to 23%,
compared to LLVM’s scheduler. 2. If-conversion: We place
our if-conversion pass, which translates short branches into
predicated instructions, before instruction scheduling. This
pass gives 23% extra throughput for matrix multiplication.
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GASS opens up a new avenue for a wide spectrum of GPU
research in the future, such as • Branch divergence anal-
ysis. • Performance modeling. • Register allocation.
• Compile-time instrumentation.

GASS is based on LLVM 12.0, and is implemented in C++
and LLVM’s TableGen language in about 14k lines of code.

We summarize our major contributions as follows: 1. We
present GASS 1, the first open-source compiler targeting
SASS, making implementations of new GPU optimizations
much easier on NVIDIA GPUs. 2. We introduce our high-per-
formance instruction scheduler for compute-bound kernels.
3. We evaluate optimizations including if-conversion and
instruction scheduling.

1.1 Background: CUDA Compilation Trajectory
NVIDIA GPUs can only execute SASS code. There are several
ways to compile high-level languages to SASS, as Fig 1 shows.

The first approach is to use the toolchain provided by
NVIDIA. nvcc compiles CUDA C++ to PTX. The PTX code
is then compiled to SASS by ptxas. Note that both nvcc and
ptxas are proprietary compilers and are close-sourced.
Another approach is to leverage the NVPTX backend in

LLVM. Compilers can first generate LLVM-IR, which is fur-
ther compiled to PTX by the NVPTX backend. Finally, the
PTX code is compiled to SASS by ptxas.

Ptxas hides important transformations, including instruc-
tion scheduling. In comparison, we present GASS, which
gives users a full control over the entire compilation pipeline,
thus enabling customized optimizations.

1.2 Modeling GPU Hardware
First we need to model the GPU hardware by modeling the
register set, the instruction set, and the schedule model.

GASS models the GPU register set by providing 255 allo-
catable 32-bit registers and 7 allocatable 1-bit vector predi-
cate register. GASS also supports 64-bit and 128-bit vector
registers. We also model uniform registers, which store val-
ues that are shared between all threads within a warp.
The GASS instruction representation is a direct SASS

representation. Each GASS instruction has its opcode and a
list of operands and flags. A GASS operand can be a register,
immediate, or constant memory address. Each GASS instruc-
tion has a predicate mask, which can mask the execution of
the instruction.

1https://github.com/hkust-adsl/gass
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Figure 1. Different CUDA compilation trajectories.

The schedulingmodel describes the latency and through-
put of each instruction. Such information is critical for in-
struction schedulers to generate high-quality outputs. We
conduct micro-benchmarking to retrieve enough informa-
tion to construct complete scheduling models.

1.3 Compilation Pipeline
The LLVM-based GASS backend takes LLVM-IR as input, and
generates encoded SASS code (.cubin) or textual assembly.

The input LLVM-IR first go through the IR passes, includ-
ing Dead Code Elimination (DCE). After IR passes, GASS
does instruction selection (ISel), which translates LLVM-IR
to the GASS instruction representation.
After common SSA optimizations (e.g., Loop Invariant

Code Motion) the program needs to exit SSA to get ready
for Scheduling (PreRA Sched) and Register Allocation
(RegAlloc). We insert our customized if-conversion before
the PreRA schedule pass. The if-conversion pass transforms
short branches into predicated instructions. We customize
the PreRA instruction scheduler for compute-bound kernels.

NVIDIA GPUs require the compiler to set proper control
information to prevent data hazards. After RegAlloc, GASS
sets wait barriers to prevent data hazards for instructions
with variant latency, and sets stall cycles to prevent data
hazards for instructions with a fixed latency.

Finally, GASS emits binary or textual output.

2 Experimental Results
We evaluate GASS in the context of tensor core matrix multi-
plication on V100 GPUs. Kernels are generated by Triton [3].
We compare GASS with LLVM 12.0’s NVPTX backend

along with ptxas 11.4.

2.1 Tensor Core Matrix Multiplication on V100
We evaluate Tensor Core matrix multiplication (𝐶 = 𝐴 ×
𝐵) on V100 GPUs. Both 𝐴, 𝐵, and 𝐶 are in float16, and
the accumulators of computation are of float32 type. We

evaluate two settings, one is to let each thread block load a
128 × 32 tile of 𝐴 and a 128 × 32 tile of 𝐵 in each iteration.
Global memory loads are double-buffered. This setting is
denoted as 128x128_32x2. The other setting is 64x64_32x2.

As Fig 2 shows, GASS achieves a geometric-average speedup
of 1.03×.
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Figure 2. The throughput of Tensor Core matrix multiplica-
tion on V100. GASS achieves 1.03× speedup over ptxas 11.4
under different settings.

Ablation study. We evaluate the effectiveness of differ-
ent optimizations. The if-conversion pass gives 23% extra
throughput. The benefits of this pass are in three-fold: • Ex-
posing more opportunities for the instruction scheduler to
reorder instructions. • Exposing more opportunities for the
barrier setter to set wait barriers. • Eliminating branch in-
structions. Our specialized instruction scheduler gives us 5%
higher throughput over LLVM’s scheduler as it gives a more
balanced schedule, avoiding overwhelming load/store units.
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