
Beware of Fragmentation: Scheduling GPU-Sharing Workloads with
Fragmentation Gradient Descent

Qizhen Weng†∗ Lingyun Yang†∗ Yinghao Yu§† Wei Wang†

Xiaochuan Tang§ Guodong Yang§ Liping Zhang§

†Hong Kong University of Science and Technology §Alibaba Group
{qwengaa, lyangbk, weiwa}@cse.ust.hk, {yinghao.yyh, xiaochuan.txc, liping.z}@alibaba-inc.com, luren.ygd@taobao.com

Abstract
Large tech companies are piling up a massive number of

GPUs in their server fleets to run diverse machine learning
(ML) workloads. However, these expensive devices often
suffer from significant underutilization. To tackle this issue,
GPU sharing techniques have been developed to enable mul-
tiple ML tasks to run on a single GPU. Nevertheless, our
analysis of Alibaba production traces reveals that allocating
partial GPUs can result in severe GPU fragmentation in large
clusters, leaving hundreds of GPUs unable to be allocated.
Existing resource packing algorithms fall short in addressing
this problem, as GPU sharing mandates a new scheduling
formulation beyond the classic bin packing.

In this paper, we propose a novel measure of fragmenta-
tion to statistically quantify the extent of GPU fragmentation
caused by different sources. Building upon this measure, we
propose to schedule GPU-sharing workloads towards the di-
rection of the steepest descent of fragmentation, an approach
we call Fragmentation Gradient Descent (FGD). Intuitively,
FGD packs tasks to minimize the growth of GPU fragmen-
tation, thereby achieving the maximum GPU allocation rate.
We have implemented FGD as a new scheduler in Kubernetes
and evaluated its performance using production traces on an
emulated cluster comprising more than 6,200 GPUs. Com-
pared to the existing packing-based schedulers, FGD reduces
unallocated GPUs by up to 49%, resulting in the utilization
of additional 290 GPUs.

1 Introduction

Graphics Processing Units (GPUs) are widely deployed in
production clusters to accelerate machine learning (ML) tasks
for a plethora of AI applications [14, 16, 17, 21, 31, 39]. Com-
pared to CPUs and other resources, GPUs are considerably
more expensive but often underutilized in production clusters,
with the reported utilization rates ranging from 25% to below
50% [16, 19, 22, 31].

The primary reason for low GPU utilization is that a large
number of ML tasks, mostly inference, cannot fully utilize

∗Equal contributions.

 Node B

 Node A
GPU 

Sharing

1 GPU6 CPUs

CPU 
(9 total)

Task A

GPU 
(1 total)

1 GPU2 CPUs

CPU 
(6 total)

Task B

GPU 
(1 total)

& Down-
scaling

.75 GPU6 CPUs

CPU 
(9 total)

Task A

GPU 
(1 total)

Task B

.25 GPU2 CPUs

CPU 
(6 total)

GPU 
(1 total)

CPU 
(9 total)

GPU 
(1 total)

CPU 
(6 total)

GPU 
(1 total)

Packing

.75 GPU

Task A

6 CPUs

Fragmentation

Lack 
CPU

Lack 
GPU

Task A + B

.25 GPU

.75 GPU6 CPUs

2 CPUs

Figure 1: The allocation of partial GPUs results in fragmenta-
tion, which can be addressed with packing.

the capacities of modern GPUs, which have seen exponential
performance improvements in recent years. This trend is ex-
pected to continue in the foreseeable future [36]. To address
this issue, GPU sharing techniques have been developed to
enable multiple ML tasks to safely run on a single GPU with
guaranteed isolation, where each task is allocated partial re-
sources by means of virtualization [9, 13, 27, 33, 35] or the
Multi-Instance-GPU (MIG) feature supported in NVIDIA’s
Ampere architecture [3].

However, simply enabling GPU sharing does not necessar-
ily lead to high utilization. In many cases, allocating partial
GPUs results in fragmentation, preventing the remaining GPU
resources from being allocated. Figure 1 illustrates this prob-
lem in a toy example. Consider a cluster of two nodes A and
B with ⟨9 CPUs, 1 GPU⟩ and ⟨6 CPUs, 1 GPU⟩, respectively.
There are two tasks A and B running on the two nodes, each
demanding ⟨6 CPUs, 0.75 GPU⟩ and ⟨2 CPUs, 0.25 GPU⟩,
respectively. Without GPU sharing, both tasks are allocated an
entire GPU even though they cannot fully utilize it (Figure 1,
left). This problem can be addressed by allocating partial
GPUs, using the GPU sharing technique (Figure 1, middle).
Now supposing another instance of task A arrives, it cannot
run on either node even though the cluster has sufficient ag-
gregate GPU resources (0.25+0.75 = 1 GPU).

GPU fragmentation has been widely observed in our pro-
duction clusters that support GPU sharing. Figure 2 shows a
7-day trace collected from a 1280-GPU cluster. On average,
the aggregate GPU allocations account for 77.6% of the total



0 24 48 72 96 120 144 168
Hours from the beginning

0

25

50

75

100
Pe

rc
en

ta
ge

GPU Occupation

GPU Allocation

GPU Utilization

GPU Frag Rate

Figure 2: A 7-day trace from a large GPU-sharing cluster.
GPU occupation measures the number of GPU devices that
are not fully idle; GPU allocation measures the total amount
of allocated GPU resources; GPU utilization refers to the pro-
portion of actual GPU resources used by tasks; GPU frag rate
is the percentage of unallocated GPU resources that become
unusable due to fragmentation (defined in §3.2).

capacity (orange dashed line). These allocations, many being
partial GPUs, are distributed across almost all GPU devices
(blue solid line), turning 21–42% of the unallocated GPU re-
sources into fragments (red dotted line) that cannot be utilized
by the current workload. In general, higher allocations result
in more severe fragmentation. In our operational experience,
complaints about scheduling failures usually surge in rush
hours, although the cluster still has sufficient aggregate idle
GPUs, indicating severe fragmentation.

An effective approach to addressing fragmentation is to
perform packing. Returning to the previous example, the
scheduler can instead pack the two original tasks to node A,
thereby leaving the entire node B to the new instance of task
A (Figure 1, right). A large body of work formulates workload
scheduling as a multi-dimensional bin packing problem, in
which tasks and nodes are respectively modeled as balls and
bins with sizes in multiple resource dimensions, and the goal
is to pack balls to the fewest number of bins. Many heuristics
have been proposed to schedule cluster workloads, such as
best-fit [11, 21, 24, 30], vector alignment scoring [8, 23, 24],
and “GPU Packing” [31, 33].

However, our experiments show that none of these heuris-
tics work well in scheduling GPU-sharing workloads (§6).
The fundamental reason, we believe, is that the problem is
intrinsically different from the classic bin packing when a
node has multiple GPUs. Consider two natural bin packing
formulations. The first is to model a server’s multiple GPUs as
one large device with the aggregate capacity. This formulation
pools together all unallocated GPUs, and the fragments on
individual GPUs become irrelevant, which is not the case in re-
ality. Alternatively, one can treat a server’s multiple GPUs as
different “resource dimensions”. Yet, unlike other resources
such as CPU and memory, these GPUs are not independent
but interchangeable for a task that can run on any of them,
mandating a new formulation beyond classic bin packing.

In this paper, we develop a novel fragmentation-aware
scheduling approach for GPU-sharing workloads. Central
to our approach is a new analytical framework that quanti-
fies statistically the degree of GPU fragmentation in a cluster.

Given a task, we identify the GPUs on each node that cannot
be used to run the task (e.g., lacking sufficient GPU or other
resources). These GPUs are fragmented from the view of that
task as none of their remaining resources can be utilized. Now,
consider the target workload, which consists of a set of tasks
that are of interest (e.g., ML inference and training). We quan-
tify the degree of GPU fragmentation as the expected number
of GPUs that cannot be allocated to a task which is randomly
sampled from the target workload. Intuitively, it measures the
expected GPU resources that cannot be utilized by the target
workload. We can further break down the fragmentation anal-
ysis into different causes, such as the node having insufficient
or stranded GPUs, or the mismatch between the workload and
the node spec. This analysis provides more insights for the
operator to reason about the cluster state (§3).

Based on the GPU fragmentation analysis, we propose a
simple, yet effective heuristic to schedule workloads towards
the direction of the steepest descent of fragmentation, which
we call Fragmentation Gradient Descent or FGD. For each
GPU task submitted, FGD chooses a node and the available
GPU(s) on it to run the task so that the growth of GPU frag-
mentation caused by this decision is minimized (§4). By doing
so, FGD can minimize GPU fragmentation, saving a large
amount of expensive resources for more workloads.

We have implemented FGD as a new scheduler in Kuber-
netes [1] (§5) and evaluated its performance with production
and synthesized workload traces on an emulated cluster con-
sisting of more than 1,200 nodes and 6,200 GPUs (§6). FGD
consistently outperforms existing packing-based scheduling
algorithms in various settings: it reduces the unallocated
GPUs by up to 49%, allowing 290 GPUs to be utilized in
a large production cluster. Our implementation, including the
scheduler and the emulator1, as well as the trace data2 used
in the evaluation, are available as open-source software.

2 Background and Motivation

In this section, we briefly introduce the GPU sharing tech-
nique and illustrate the resulted fragmentation problem
through production trace analysis. We discuss the unique
scheduling challenge brought by GPU sharing that invalidates
the classic bin packing formulation.

2.1 GPU Sharing

Underutilized GPUs. GPU underutilization has been widely
observed in production clusters that run diverse ML work-
loads. Many tech companies report the low GPU utilization
averaging between 25% to below 50% [16, 19, 22, 31], which
has become a thorny pain point in reducing the total cost of
ownership of large GPU clusters.

1https://github.com/hkust-adsl/kubernetes-scheduler-simulator
2https://github.com/alibaba/clusterdata

https://github.com/hkust-adsl/kubernetes-scheduler-simulator
https://github.com/alibaba/clusterdata


There are multiple factors that contribute to the low GPU
utilization. Most importantly, thanks to the exponential im-
provement of GPU performance in recent years, many ML
tasks, especially inference, cannot saturate the compute ca-
pacity of a modern GPU. Taking the latest A100 GPU as
an example, the peak inference speed of a ResNet50 [15]
model reaches over 36k images per second [36], far exceed-
ing the usual throughput requirement of an object detec-
tion application. In fact, even for training tasks, increasing
evidences show that many of them cannot fully utilize a
GPU [5, 6, 28, 31, 33, 34, 37].

GPU Sharing. GPU sharing techniques have recently been
developed to enable multiple tasks to run on a single GPU
with guaranteed performance isolation, where each task is
allocated a partial GPU. In production systems, GPU sharing
can be implemented at three levels.

1) Framework-level: This approach adds new dynamic scal-
ing mechanisms and sharing primitives to the existing ML
frameworks (e.g., TensorFlow, PyTorch, JAX) to allocate each
task the exact amount of required GPU memory and compute
units [6, 33, 34, 37]. The benefit of this approach is that it
can achieve fine-grained sharing between tasks by leveraging
their semantics information (e.g., training accuracy and loss),
which is available to the framework. On the other hand, it
requires users to switch to the modified framework to enable
GPU sharing – not all users are willing to do so.

2) Device runtime-level: This approach uses the API re-
moting technique to implement GPU sharing and virtualiza-
tion [9,13,27,28,32]. It deploys a GPU manager on each host.
The manager intercepts compute- and memory-related run-
time APIs (e.g., cuLaunchKernel and cuMemAlloc in CUDA
Library) to keep track of the compute and memory resources
requested by each task. A task’s memory allocation request
is accepted only when the its allocation is within the spec-
ified limit. The manager also controls kernel scheduling to
enforce the specified allocation of compute capacity by time-
multiplexing the device’s compute units between tasks (e.g.,
a task with 0.1 GPUs is guaranteed to receive at least 10% of
GPU time). This approach requires no framework changes or
user cooperation.

3) Hardware-assisted: Starting with Ampere architecture,
NVIDIA GPUs support the Multi-Instance GPU (MIG) fea-
ture. MIG can partition a GPU into as many as seven separate
instances [3]. Compared with the software approaches, MIG
provides the strongest isolation guarantee as each GPU in-
stance has dedicated resources for compute, memory, and
memory bandwidth. On the downside, MIG only supports
resource sharing at a coarse granularity and is available ex-
clusively to A100, A30, and H100 GPUs at the moment.

Production Deployment in Our Clusters. At Alibaba, we
have developed our own GPU sharing solution based on
CUDA Runtime API interception and deployed it in produc-
tion clusters that run a mixture of training and inference tasks.

A task can have one or multiple instances, each running in
a container and requesting multiple resources such as CPUs,
memory, and GPUs. We observe the GPU requests to be ei-
ther a partial GPU or full GPU(s), but rarely the combination
of both (e.g., 1.5 or 2.3 GPUs). In our implementation, the
minimum GPU allocation unit is 0.01 GPUs, in which a task
instance is allocated 1% of the GPU memory and at least 1%
of the GPU time.3 Tasks and their instances are orchestrated
using a customized Kubernetes system [1] with many new
features tailored to the production needs. In the following dis-
cussions, unless otherwise specified, we do not differentiate
between tasks and instances as their meanings are usually
clear from the context.

2.2 The Prevalence of GPU Fragmentation
Operational Experience. GPU sharing greatly reduces the
number of allocated GPUs for a workload, allowing more
tasks to run in a cluster than before. However, as we consol-
idate more workloads, an increasing number of users com-
plained about the long task wait time or even scheduling
failures due to the timeout of pending tasks, although they
still have sufficient GPU quotas to spare. In many clusters,
the GPU allocation rate can reach 85–90% maximum, leaving
hundreds of GPUs unable to utilize. In some extreme cases,
pending tasks start to build up when the GPU allocation rate
reaches above 80%. All these indicate heavy fragmentation.

Trace Analysis. We perform trace analysis to confirm the
fragmentation problem, which occurs when a GPU has insuf-
ficient resources or becomes stranded as the host runs out of
the other resources, such as CPU and memory. We choose
a highly crowded ML cluster H consisting of 1.2k nodes
with over 6.2k GPUs and 107k CPU cores. After scheduling
over 7.6k tasks, the GPU (CPU) allocation ratio reaches 92%
(75%), which is among the highest in all clusters. At this point,
cluster H is fully packed and cannot accommodate new tasks
despite having a total of 500 GPUs unallocated, causing a
significant resource waste. Figure 3a depicts the distributions
of unallocated GPUs on each node and the requested GPUs
of each pending task. Around 92% of nodes have < 1 GPU
left unallocated (blue solid line), whilst 49% of the pending
tasks request ≥ 1 GPU (orange dashed line). Figure 3b gives
the boxen plot of the nodes’ unallocated CPUs and the tasks’
requested CPUs, grouped by their GPU resources. Among the
nodes with ≥ 1 unallocated GPU, over 75% have ≤ 10 CPUs
left (blue boxes), which are insufficient to allocate to most
tasks (orange boxes), leaving the unallocated GPUs stranded.

2.3 Inapplicable Bin Packing Formulation
While fragmentation is not a novel problem in cluster man-
agement, GPU fragmentation is noteworthy because it (1)

3In our system, a task instance can opportunistically use more GPU time
if the computing capacity of the said GPU is not exhausted by the other tasks.



0.0 0.5 1.0 1.5 2.0
Num of GPUs (up to 8.0)

0
20
40
60
80

100

CD
F 

(%
)

Idle on Node
Req by Task

(a) CDF of idle and requested GPUs.

0 20 40 60 80 100
Num of CPUs

8
4
2
1

<1

Nu
m

 o
f G

PU
s

Idle on Node
Req by Task

(b) Boxen of idle and requested CPUs.

Figure 3: Illustration of GPU fragmentation in a fully packed
cluster H. (a) Most nodes have insufficient GPUs. (b) Nodes
with abundant GPUs are usually in short of CPUs.

inherently differs from other resource fragmentation problem
and (2) is aggravated by partial-GPU allocation (Figure 1).

GPU Fragmentation Cannot be Handled Similarly as
Other Resources. Fragmentation is a common problem
in resource allocation. Taking file allocation as an example,
when the disk has no enough contiguous space to store a file,
the fragmentation occurs [4], and the solution is to chunk the
file into blocks for non-contiguous allocation. However, GPU
allocation must be contiguous: Consider a task requesting one
full GPU, it is not possible to allocate it two partial GPUs
(e.g., 0.3 GPUs + 0.7 GPUs).

Partial-GPU Allocation Invalidates Bin Packing Formu-
lation. Bin packing is known effective to address the frag-
mentation problem [23,24]. In the standard formulation, tasks
and nodes are respectively modeled as balls and bins of sizes
in Rd , where d is the number of concerned resources, such
as CPU, memory, and GPU. The goal is to pack balls to as
fewest bins as possible. However, unless a node has a single
GPU, this formulation does not apply to GPU-sharing tasks,
which we illustrate through two formulation attempts.

Attempt-1: Treating Multiple GPUs as a Unified Log-
ical Device. This formulation pools together all the
available GPU resources of a node into a large log-
ical GPU, leading to a node resource vector such as
⟨16 CPUs,24 GiB memory,1.3 GPUs⟩. However, this formu-
lation is problematic as it ignores the allocation boundary of
physical GPUs, making it unable to differentiate the fragmen-
tation state on each individual device. For example, consider
a 2-GPU node with the remaining capacity of 0.4 GPUs and
0.9 GPUs. For a task that requests one full GPU, although
in total the node has 1.3 GPUs, neither of its two GPUs has
sufficient capacity to run the task, to which both GPUs are
fragmented.

Attempt-2: Treating Each GPU as an Independent Re-
source Dimension. An alternative formulation is to model
each GPU on a node as an independent resource dimen-
sion, just like CPU and memory. This formulation is also
problematic as GPUs are interchangeable as long as they
have sufficient capacity to run a task. Returning to the
previous example and assuming that the node has 16

CPU cores and 24 GiB memory available, its resource
vector is ⟨16 CPUs,24 GiB memory,0.4 GPUs,0.9 GPUs⟩.
For a task that requests 2 cores, 8 GiB memory, and
0.3 GPUs, it can run on the node with any of the
two GPUs. The task hence has two interchangeable de-
mand vectors ⟨2 CPUs,8 GiB memory,0.3 GPUs,0 GPUs⟩
or ⟨2 CPUs,8 GiB memory,0 GPUs,0.3 GPUs⟩. This invali-
dates the classic bin packing formulation as the balls are now
“deformable” and can transform to various sizes.

To summarize, we stress that the inapplicability of bin pack-
ing formulation stems from the contiguous GPU allocation
requirement and the partial-GPU allocation practice, in which
each GPU has its own allocation boundary (Attempt 1) but is
also interchangeable to one another (Attempt 2). Through ex-
tensive experiments in §6, we will show that none of the exist-
ing packing heuristics, including best-fit [11,21,24,30], vector
alignment scoring [8, 23, 24], and “GPU Packing” [31, 33],
work well in scheduling GPU sharing workload.

3 The Fragmentation Measure
“You keep using that word. I do not think it means what you
think it means.” — Inigo Montoya, The Princess Bride

While the term fragmentation has been frequently men-
tioned in the existing cluster scheduling works [8, 11, 29, 30,
33, 34, 39, 40], its formal definition and quantitative measure
remain unclear. In this section, we answer what fragmentation
is and how can it be measured. We start with a conventional
measure defined in absolute terms and discuss its ineffective-
ness (§3.1). We next present a new measure that statistically
quantifies the fragmentation degree in a cluster (§3.2). We
show in case studies that the new measure can help operators
better reason about the cluster state (§3.3).

3.1 Fragmentation in Absolute Terms
Basic Assumption. In general, whether a node has frag-
mented resources depends on the target workload. For exam-
ple, a node with 0.6 GPUs is considered fragmented by a task
that requests one full GPU, but not by the one that demands
0.5 GPUs. In this paper, we assume that the target workload,
which contains a set of tasks with popularity (e.g., number
of instances) following a certain distribution, is known to the
cluster. This is reasonable as production ML workloads con-
sist of a large number of recurring tasks [31]. We also assume
that each task can request either a partial GPU or full GPU(s),
but not both, as mentioned in §2.1.

An Absolute Fragmentation Measure. Although not for-
mally defined, it is commonly accepted that a node is frag-
mented if its remaining resources cannot be allocated to run
any tasks in the target workload. In this definition, fragmenta-
tion is measured in absolute terms: regardless of task schedul-
ing, the fragmented resources cannot be utilized anyway and
are inevitably wasted.



GPU

O

Node A

Task B

Task C

Task D

Node B
Node C

Task Skyline

Frag Non-Frag

Task A

CPU

(a) Absolute fragmentation defined by task skyline is defective.

CPU

GPU

O
Task B Task C

Task D

Task E

Node ATask A

Frag (Stranded)
IV

Frag (Deficient)
III

III

(b) Statistical fragmentation in expectation of randomly sampled tasks.

Figure 4: Fragmentation definition in the example cluster with
nodes of various unallocated resources (squares) and tasks of
various requested resources (circles).

Figure 4a gives a pictorial illustration. For simplicity, we
only consider CPU and GPU resources in a two-dimensional
plane. A task is depicted as a circle (ball) with x- and y-
coordinates being the requested CPUs and GPUs, respectively.
Similarly, a node is depicted as a box (bin) with the two
coordinates being the unallocated CPUs and GPUs. In case
that a node has multiple GPUs, we map their unallocated
capacity (a vector) to a scalar number as follows. Let f be
the number of fully-unallocated GPUs and p the maximum
unallocated partial GPU. We map the vector of unallocated
GPUs to a scalar u = f + p.4 For example, a 4-GPU node
with an unallocated capacity of ⟨1,1,0.5,0.25⟩ is considered
having u = 2.5 unallocated GPUs. Under this mapping, a
node has sufficient GPUs to run a task that requests g GPUs
if and only if u≥ g, provided that the task requests either a
partial GPU or full GPU(s), i.e., g ∈ [0,1)∪Z+.

With nodes and tasks depicted in the resource plane, we
see that a node has sufficient GPUs and CPUs to run a task
if it is located above and on the right of the task (e.g., node
A and task B). We call this region the non-fragmentation
region of the task. Taking the union of the non-fragmentation
regions of all tasks gives the non-fragmentation region of the
target workload (the green area in Figure 4a). It encompasses
all tasks, with the “innermost” ones (e.g., tasks A, B, and C)
located on the region’s border which we call the skyline [38].
The area below the skyline is the fragmentation region, within

4The mapping is not unique. For example, alternatively one can map the
capacity vector to u = max{ f , p}, which serves the same purpose.

0 20 40 60 80 100 120
Arrived workloads (in % of cluster GPU capacity)

0

25

50

75

100

Al
lo

c 
(F

ra
g)

 / 
To

ta
l (

%
)

BestFit Alloc.
Random Alloc.

BestFit Frag.
Random Frag.

Figure 5: Trace-driven emulations with two scheduling poli-
cies (details in §6.1). The x-axis is the cumulative GPU de-
mands of arrived tasks, divided by the total cluster capacity.
Fragmentation in absolute terms (lower-right corner) stays at
a low level (< 5%) throughout the allocation of arrival work-
loads, failing to provide useful feedback to the scheduler.

which a node cannot run any task due to insufficient resources
and is thus fragmented (e.g., nodes B and C).

The Inefficiency of the Absolute Measure. Under the abso-
lute measure, resource fragmentation is identified in a rather
biased manner. Whether a node is fragmented solely depends
on if it has sufficient resources to run a task that is located
on the skyline (i.e., the skyline task), whereas the other tasks
are irrelevant. Yet, skyline tasks can rarely represent the en-
tire workload. Compared with the other tasks, they request
fewer CPUs and/or GPUs, and usually have a small popula-
tion. In our clusters, only 0.06% of instances belong to the
skyline tasks. On average, a skyline task requests ⟨3.2 CPUs,
0.07 GPUs⟩, as opposed to the average demand of ⟨9.4 CPUs,
0.9 GPUs⟩. As a result, even if a node has a small amount
of resources that cannot be allocated to run the majority of
the tasks in the target workload, it may still be considered
non-fragmented as long as it can run a tiny skyline task.

For the reasons above, the absolute fragmentation measure
cannot be used as a good metric to guide task scheduling. To
see this, we run trace-driven emulations with two different
scheduling policies (details in §6.1) and depict in Figure 5
the fragmented and allocated GPUs in percentage of the total
capacity. The fragmentation measure stays at a low level
(< 5%) throughout the process regardless of the scheduling
logic and its placement decisions, failing to provide useful
feedback to the scheduler. Increased fragmentation is only
observed when the cluster starts crowded, by which it is too
late for the scheduler to take actions. In fact, even when the
cluster becomes fully packed (i.e., the allocation curve flattens
when the cumulative GPU demands reach over 100% of the
cluster capacity), over 50% of unallocated GPUs are still
deemed non-fragmented under the absolute measure.

3.2 A Statistical Fragmentation Measure

We believe a good fragmentation measure should not be de-
fined against a small subset of tasks, but a joint calibration
of the entire workload. We hence use a statistical measure
to quantify the degree of fragmentation. Formally, let M be
the target workload in which each task m has popularity pm.



Without loss of generality, we assume normalized popular-
ity where ∑m∈M pm = 1. Given a node n, Fn(M) denotes the
GPU fragmentation measured by workload M, and Fn(m) is
the fragmentation measured by a certain task m in the work-
load. We define the node-level measure as the weighted sum
of the task-level, i.e.,

Fn(M) = ∑
m∈M

pmFn(m). (1)

One can interpret Eqn. (1) as the expected fragmentation
measured by a task that is randomly sampled from the target
workload. We next describe how Fn(m) can be computed.

Pictorial Interpretation. From the view of a task, it con-
siders a GPU of a node being fragmented if it cannot be
allocated to the task. As a pictorial interpretation, we refer
to Figure 4b and consider node A. In case that the node has
multiple GPUs, we map their unallocated capacity (a vector)
to a scalar representation following the approach described
in §3.1. We partition the resource plane into four quadrants
with node A at the origin. The node has insufficient resources
to run any of the tasks that are located in Quadrants I, II, and
IV, among which those in Q-I are in short of CPUs and GPUs
(e.g., task D), Q-II in short of GPUs (e.g., task A), and Q-IV
in short of CPUs (e.g., task C). From the point of these tasks,
the unallocated GPUs are all fragmented, as they either have
insufficient capacity (Q-I and Q-II) or become stranded due
to the lack of CPU resource on the node (Q-IV).

Things become a bit more complex when it comes to Q-III.
While the node has sufficient resources to run a task in that
quadrant, not every unallocated GPU has enough capacity. For
example, on a 4-GPU node with an unallocated capacity of
⟨1,1,0.5,0.25⟩, the two partial GPUs cannot be assigned to a
task that requests 2 GPU, even though the node has sufficient
GPU resources. In this case, the two partial GPUs should be
counted as being fragmented for the task. More generally,
given a task in Q-III, we check each unallocated GPU, and
those with insufficient capacity are considered fragmented.

In addition to the four quadrants, tasks can also locate
on the x-axis if they request no GPU resource (e.g., task
E). For these tasks, all the unallocated GPUs are considered
fragmented as none of them can be utilized.

Formal Description. We now give a formal description of
the computation of Fn(m), where we consider only GPU and
CPU resources. That being said, the fragmentation measure
can be easily generalized to a high-dimensional space with
more resources such as memory and network.

We start with a few notations. Given a node n with Gn
GPUs, denote by Rn = ⟨RCPU

n ,RGPU
n,1 , · · · ,RGPU

n,Gn
⟩ the unallo-

cated resource vector, where 0 ≤ RGPU
n,g ≤ 1 for all GPU g.

Let RGPU
n be the scalar representation of the unallocated GPU

vector, which is defined as the number of fully unallocated
GPUs plus the maximum partial GPU (u = f + p in §3.1),
i.e., RGPU

n = ∑g⌊RGPU
n,g ⌋+maxg(RGPU

n,g −⌊RGPU
n,g ⌋). For each

task m, denote by Dm = ⟨DCPU
m ,DGPU

m ⟩ the resource demand
vector, where DGPU

m ∈ [0,1)∪Z+. We compute Fn(m) in the
following three cases.

Case-1 (Q-I, Q-II, and Q-IV): Task m cannot run on node n
due to the lack of CPU or GPU resources, i.e., DCPU

m > RCPU
n

or DGPU
m > RGPU

n . In this case, all the unallocated GPUs are
considered as fragments by task m. We have

Fn(m) = ∑
1≤g≤Gn

RGPU
n,g . (2)

Case-2 (Q-III): Task m can run on node m and has a GPU
request, i.e., DCPU

m ≤RCPU
n and 0<DGPU

m ≤RGPU
n . In this case,

we check each unallocated GPU and those with insufficient
capacity are identified as fragment in the view of task m. Note
that if m requests one or more GPUs, all partial GPUs cannot
be allocated and are hence fragmented. We have

Fn(m) = ∑
1≤g≤Gn

RGPU
n,g 1(RGPU

n,g < min{DGPU
m ,1}), (3)

where 1(·) is an indicator function that returns 1 if the given
condition holds, and 0 otherwise.

Case-3 (x-axis): Task m requests no GPU, i.e., DGPU
m = 0.

In this case, all the unallocated GPUs are deemed fragments
by task m, as none of them can be utilized. We have Fn(m)
computed the same way as in Eqn. (2).

In essence, Fn(m) measures the amount of available GPUs
on node n that cannot be allocated to task m. Taking the ex-
pectation of Fn(m) with respect to the popularity distribution
of tasks (see Eqn. (1)), we obtain Fn(M), which measures the
unallocated GPU resources on node n that are expected to be
fragmented (hence wasted) from the viewpoints of the entire
workload M.

Fragmentation Rate. Once Fn(M) is obtained, we compute
the node’s fragmentation rate as the ratio between the amount
of fragmented GPUs and the unallocated GPUs, i.e.,

fn(M) =
Fn(M)

∑1≤g≤Gn RGPU
n,g

. (4)

Intuitively, Eqn. (4) measures the severity of GPU fragmenta-
tion on a node.

Cluster-Level Fragmentation Measure. Given a cluster N
and the target workload M, the cluster-level GPU fragmenta-
tion, denoted by FN(M), is the aggregate fragmentation of all
nodes n in N, i.e.,

FN(M) = ∑
n∈N

Fn(M). (5)

Normalizing FN(M) by the unallocated GPUs in the cluster
gives the fragmentation rate of the cluster, i.e.,

fN(M) =
FN(M)

∑n∈N ∑1≤g≤Gn RGPU
n,g

. (6)



0 20 40 60 80 100
Fragmentation Rate

0
20
40
60
80

100
CD

F 
(%

)

Lack CPU (Stranded)
Lack GPU
Lack CPU and GPU
All Fragment

(a) CDF of node fragmentation rate.

0 16 40 80 120
CPU-to-GPU Ratio

0
20
40
60
80

100

CD
F 

(%
)

Node Spec
Task Request

(b) CPU:GPU of nodes and tasks.

0 20 40 60 80 100
Fragmentation Rate

0
20
40
60
80

100

CD
F 

(%
)

CPU:GPU of Node
52
32
24

16
12
8

(c) Frag rate among various nodes.

0 20 40 60 80 100
Stranded Fragmentation Rate

60

70

80

90

100
CD

F 
(%

)

CPU:GPU of Node
52
32
24

16
12
8

(d) Stranded frag rate among nodes.

Figure 6: Distribution of node fragmentation and CPU-to-
GPU ratio of node and task in the fully packed cluster H.

3.3 Fragmentation Analysis in Action

The fragmentation measure described above can help opera-
tors better reason about the cluster state. To demonstrate its
practical utility, we perform fragmentation analysis in various
production clusters.

High Fragmentation Blocks Further Allocation. We reex-
amine a production cluster H previously described in §2.2. For
each node, we measure its GPU fragmentation rate (Eqn. (4))
and depict the distribution in Figure 6a (red dash-dotted line).
We observe that 25% of the nodes have GPUs fully allocated
and are free of fragmentation, while the other 75% nodes
measure over 99% fragmentation rate. This explains why the
cluster cannot run any tasks even if it still has a capacity of
500 unallocated GPUs.

Breakdown Analysis of the Fragmentation Causes. Using
the quadrant interpretation descried in §3.2, we can break
down the fragmentation of a node into different causes: (1)
having insufficient CPUs and GPUs to run tasks in Q-I (Fig-
ure 4b); (2) having insufficient GPUs to run tasks in Q-II,
some GPU-sharing tasks in Q-III, and tasks that request dif-
ferent types of GPUs (not shown in Figure 4b); (3) having
insufficient CPUs to run tasks in Q-IV (stranded GPUs); (4)
running non-GPU tasks (x-axis) on a GPU node.

Figure 6a attributes the fragmentation rate to different
causes and depicts their distributions. We see that the high
fragmentation is primarily caused by the node lacking suffi-
cient CPU and GPU resources (green dashed line), followed
by lacking GPUs only (orange dotted line). This suggests
that in cluster H, the allocation of CPUs and GPUs are rel-
atively balanced. But still, a small number of nodes (4.6%)
attribute stranded GPUs as the dominant factor (over 80%) of
fragmentation (blue solid line).

Impact of CPU-to-GPU Ratio. In our analysis, we are in-

terested in knowing which nodes are more likely to become
fragmented and find the CPU-to-GPU ratio a good indicator.
Figure 6b compares the CPU-to-GPU ratio of the node specs
and the task requests. On one hand, 65% nodes (tasks) have
(request) ≤ 16 CPUs per GPU, for which it is a good match
between the node specs and workload demands. On the other
hand, the cluster workload also contains 13% non-GPU tasks
(with an infinite CPU-to-GPU ratio), and they account for
23% of all CPU requests. The existence of non-GPU tasks
renders nodes with low CPU-to-GPU ratios more likely to
become fragmented, especially with stranded GPUs.

Figure 6c correlates the fragmentation rate with the node’s
CPU-to-GPU ratio. Among the nodes with CPU-to-GPU ratio
≤ 16, 80% of them measure high fragmentation rate over 98%
(dark red lines near the bottom). This proportion drops to only
47% when it comes to the nodes with 52 CPUs per GPU (light
blue lines in the center). As for the fragmentation caused by
stranded GPUs, Figure 6d shows that they are more commonly
observed on the low-CPU nodes (e.g., 8 or 12 CPUs per GPU).
We therefore recommend adding more high-CPU nodes to the
cluster for reduced fragmentation and improved utilization.

Fragmentation in a Less-Crowded Cluster. Fragmentation
is not a unique problem to fully packed clusters. Referring
back to Figure 2, we measured the the cluster-wide fragmen-
tation rate (Eqn. (5)) between 21% and 42% in a 1280-GPU
cluster in a normal (off-peak) period with 77.6% average GPU
allocation rate. Breakdown analysis further shows that 60%
of the fragmentation was caused by GPU shortage. This high-
lights the importance of reducing fragmentation by packing
existing GPU tasks, even in periods where the cluster is less
crowded. Additionally, non-GPU tasks contributed only 13%
to fragmentation in this cluster.

Running CPU Workloads in GPU Clusters. Our fragmen-
tation analysis has also identified a pathological case. We
have observed in a large cluster B consisting of 6.4k GPUs
and 750k CPU cores, there were 84% of tasks requesting no
GPU, resulting in many pending GPU tasks when the GPU
and CPU allocation ratios reached only 80% and 86%, respec-
tively. This led to the waste of 1.2k GPUs, with 95% of them
considered being stranded. The main cause of this issue was
the lack of CPU reservation on GPU nodes when scheduling
non-GPU tasks. To address this problem, we recommend mi-
grating non-GPU tasks to CPU nodes or even CPU clusters
in order to decrease fragmentation and improve resource uti-
lization. However, implementing this solution requires coor-
dination and collaboration in areas such as scheduling, quota
design, admission control, and capacity planning.

4 Fragmentation Gradient Descent

The fragmentation measure not only helps operators reason
about the cluster state, but can also be used to guide task
scheduling. In this section, we present the Fragmentation Gra-



dient Descent (FGD) algorithm that schedules tasks towards
the direction of the steepest descent of fragmentation (§4.2),
thereby achieving the maximum GPU allocation rate. We start
with a description of the scheduling problem (§4.1).

4.1 Online Task Scheduling

We consider a GPU cluster managed by a container orchestra-
tion system such as Kubernetes [1] and Borg [30], in which
tasks are submitted as pods and maintained in a queue. In its
simplest form, tasks are scheduled in a first-come-first-served
(FCFS) manner. For each task pod, the scheduler finds the
best node and, if necessary, GPU(s) for it to run on. If no node
can be assigned, the pod remains unscheduled and is pend-
ing for another scheduling attempt (e.g., placed to the end of
the queue after a certain timeout). This formulates an online
scheduling problem, in which tasks are revealed sequentially
to the scheduler for placement decision making.

Fragmentation as a Metric. Each time a pod is assigned to
a node, the remaining resources decrease, moving the node
closer to the origin in the resource plane (Figure 4b). As a
result, the fragmentation region (Q-I, Q-II, and Q-IV) expands
and the fragmentation rate grows. Figure 7a depicts the grow-
ing fragmentation rate as the arriving tasks are scheduled
under different policies in our trace-driven emulations (details
in §6.1). Compared with the absolute measure (§3.1), the frag-
mentation rate is more sensitive to the placement decision and
can be used as an indicator of the scheduling quality: higher
fragmentation rate suggests a poorer scheduling decision.

Unlike the fragmentation rate, the fragmentation amount
has no clear trend of growing or decreasing, as shown in Fig-
ure 7b. This is because by Eqn. (5), it is the product of the
fragmentation rate and the unallocated GPUs – whilst the for-
mer grows as more tasks are scheduled, the latter decreases.
Also note that the fragmentation starts with 13% of the total
GPU capacity – all attributed to non-GPU tasks – but ends
up at different degrees under different policies when the clus-
ter is fully packed. At that point, all unallocated GPUs are
fragmented (100% fragmentation rate in Figure 7a).

4.2 FGD Algorithm

Key Insight. From the previous discussions, we see that an
effective approach to minimizing fragmentation is to suppress
the growth of fragmentation rate as much as possible. This
can be achieved by scheduling tasks towards the steepest
descent of fragmentation, a heuristic called Fragmentation
Gradient Descent or FGD.

Algorithm Description. Algorithm 1 formalizes the descrip-
tion of FGD scheduling. Given a task (pod) to schedule, the
scheduler first filters out all the unavailable nodes with insuf-
ficient resources or unsatisfied placement constraints (lines
3–4), such as the lack of requested GPU types. The scheduler

0 20 40 60 80 100 120
Arrived workloads (in % of cluster GPU capacity)

0
25
50
75

100

Fr
ag

 R
at

e 
(%

) Random
DotProd
Clustering
Packing
BestFit
FGD

(a) Fragmentation rate grows to 100% as more resources are allocated.

0 20 40 60 80 100 120
Arrived workloads (in % of cluster GPU capacity)

0
5

10
15
20

Fr
ag

 / 
To

ta
l (

%
) Random

DotProd
Clustering
Packing
BestFit
FGD

(b) Percentage of fragmented GPUs to total resources under our measure.
It reveals the differences between various strategies from the early stage.

Figure 7: FGD pursues the lowest fragmentation among vari-
ous policies in scheduling production workloads (more results
under the same experiment settings are shown in Figure 9).

then hypothetically assigns the task to each node and calcu-
lates the increment (can be negative) of fragmentation that
would be caused by each assignment. In case a task requests
a partial GPU, the hypothetical assignment needs to try each
GPU as well (line 6). Note that the hypothetical assignment
can be performed in parallel for acceleration (lines 2–7). The
scheduler finally assigns the task to the node (and the GPU)
that causes the minimum increment of fragmentation (line 9).

Complexity and Scalability. FGD has a low computational
complexity and scales to a large cluster. For a cluster with
N nodes, the score of each node can be evaluated in paral-
lel (Algorithm 1 line 2) and the scheduler simply selects the
minimum. Besides, the scale of M is also limited since it
only represents the number of distinct task resource require-
ments (e.g., 80 among 7.6k tasks). In our evaluation (§6), each
scheduling decision can be made in hundreds of milliseconds
on a cluster of N = 1.2k nodes.

A Running Example. To better illustrate the scheduling
process of FGD, we refer to Figure 8 for a running exam-
ple. Consider a node with ⟨0.5,1⟩ unallocated GPUs. The
target workload has three tasks with equal popularity, each
requesting 0.3 GPUs (task-A), 0.5 GPUs (task-B) , and 0.7
GPUs (task-C). Originally, only GPU-A is considered frag-
mented (by task-C only). It thus measures the fragmentation
of 0.5× 1/3 = 1/6 GPUs. Assume that task-A arrives first.
Assigning it to GPU-A increases the fragmentation to 0.2
GPUs whereas assigning it to GPU-B results in no increase.
FGD hence assigns task-A to GPU-B, leaving the node with
⟨0.5,0.7⟩ unallocated GPUs. Next for task-B, FGD assigns it
to GPU-A, reducing the fragmentation to 0. In comparison,
assigning it to GPU-B would increase the fragmentation by
0.2 GPUs. Finally for task-C, it has no choice but to run on
GPU-B, the only GPU with the sufficient capacity.



0.7

Task A
0.3 GPU

1.0 GPU idle

FGD

Task B
0.5 GPU

Task C
0.7 GPU2 accessible GPUs

A

B

0.5 FGD

0.7

0 0

0

FGD0.5 GPU idle

Figure 8: A running example of FGD scheduling. The target
workload contains three tasks with equal popularity.

Algorithm 1: Task scheduling of FGD
Input :Cluster N, incoming task m, target workload M
Output :Assigned node n∗

1 Initialize node score set S ←∅, and output n∗←∅.
2 parallel for node n ∈ N do
3 if Insufficient resources ∥ constraints not met then
4 Return ▷ Filter out unavailable nodes

5 n−← AssignTaskToNode(m,n) ▷ Hypothetically
6 ∆← Fn−(M)−Fn(M) ▷ Fragmentation increment
7 S ← S ∪ (n,∆)
8 if S ̸=∅ then
9 n∗← argminn∈S ∆ ▷ pick the node with the least ∆.

As FGD considers both the resource availability and task
distribution, it exhibits distinct behavior compared to other
scheduling algorithms. Back to the provided example, for task-
A scheduling, the best-fit (and similar bin packing policies)
would prioritize GPU-A (0.5 GPUs idle) over GPU-B (1 GPU
idle), whereas for task-B scheduling, the worst-fit (and other
load-balancing policies) would choose GPU-B (0.7 GPUs
idle) over GPU-A (0.5 GPUs idle). These policy preferences
diverge from the scheduling choices made by FGD.

5 System Implementation

We have implemented a prototype scheduling system on top
of Kubernetes v1.25.0 [1] in over 10k lines of Go codes.
Our system consists of two main components: a standalone
scheduler and an event-driven emulator.

A Standalone Scheduler. Kubernetes provides a pluggable
architecture called the scheduling framework [2] for devel-
opers to implement a customized scheduler. Following this
standard approach, we have implemented FGD and many
other scheduling policies as individual score plugins. The
scheduler listens for task creation events from the Kubernetes
API server and maintains a queue to cache submitted tasks
which are scheduled on a first-come-first-served basis.

Also, to enable fine-grained GPU allocation, which is not
supported by native Kubernetes, we have implemented a GPU-
sharing plugin to manage GPU resources. It filters out nodes
with insufficient GPUs or mismatched GPU types, assigns
tasks to the node with the highest scheduling score, and keeps
track of the allocatable GPU resources on each node.

Event-Driven Emulator. The event-driven emulator inter-

acts with the API server to manage the creation and deletion
of nodes and tasks. It supports two modes: high-fidelity sim-
ulation, which can receive production traces as input and
simulate the scheduling process in a large cluster consisting
of tens of thousands of GPUs within a few hours; and real
deployment, which can take over a production cluster with
valid certificates and create task pods on real nodes. The goal
of our system is to study the packing efficiency and resource
fragmentation of different scheduling policies, which are crit-
ical in large clusters. Although it is not possible to perform
experiments on real clusters with thousands of nodes, we
use the high-fidelity simulation mode in our evaluation. This
mode uses real traces as input and simulates task placements
and resource allocations based on the scheduling logic, which
yields the same scheduling results as real deployment.

6 Evaluation

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our scheduling policy FGD. We first
compare FGD with several state-of-the-art mechanisms in
scheduling production workloads (§6.2). Further, we examine
the generality of FGD in various scenarios, covering a variety
of traces featured by GPU-sharing (§6.3), multi-GPU (§6.4),
GPU-type-constrained (§6.5), and non-GPU tasks (§6.6).

6.1 Methodology
Baselines. We compare FGD with five state-of-the-art heuris-
tic policies for scheduling GPU workloads:

1. Best-fit (BestFit) [11,21,24] assigns tasks to the node with
the least remaining resources, computed as the weighted
sum of all resource dimensions.

2. Dot-product (DotProd) [8, 23, 24] allocates tasks to the
node with the smallest dot-product value between the
node’s remaining resources and the task demands.

3. GPU Packing (Packing) [31] prioritizes task assignment
to occupied GPUs, followed by idle GPUs on occupied
nodes, and finally to fully idle nodes. The intuition is to
reserve available resources for multi-GPUs tasks.

4. GPU Clustering (Clustering) [33] packs the tasks of the
same GPU request together (GPU-sharing tasks are packed
together). It avoids heterogeneous distribution of task re-
source requirements on the same node.

5. Random-fit (Random) distributes the task randomly to any
node that meets the requirements for load balancing.

Since most of the policies above provide no native sup-
port of GPU-sharing workloads, we made some simple exten-
sions as follows: 1) GPU resources of multi-GPU nodes are
summed up as one dimension; 2) GPU-sharing tasks sched-
uled to a node are placed on the available GPU with the least
remaining resources (i.e., BestFit); 3) multi-resource vectors
are normalized by the maximum node capacity in the cluster.



GPU Request per Task 0 (0,1) 1 2 4 8

Task Population (%) 13.3 37.8 48.0 0.2 0.2 0.5
Total GPU Reqs. (%) 0 28.5 64.2 0.5 1.0 5.8

Table 1: Distribution of tasks in the traces of cluster H.

Monte-Carlo Workload Inflation and Metrics. To assess
the cluster’s ability to accommodate workload under a given
scheduling policy, we employ the Monte-Carlo workload in-
flation approach [29]. Specifically, we repeatedly submit tasks
to the cluster for scheduling until they no longer fit. The tasks
are randomly sampled from the traces with replacement [12],
along with their resource requests and scheduling constraints.
We repeatedly conduct each experiment 10 times and report
the average and standard deviation of the key metric—the per-
centage of unallocated GPUs in the cluster when cumulative
GPU requests reach 100% of the cluster capacity5.

6.2 Allocation of Original Production Traces

To evaluate the performance of different scheduling policies,
we emulate the scheduling of over 8k tasks on the heteroge-
neous cluster H (§2.2) with 6.2k GPUs. As shown in Table 1,
the majority tasks are the 1-GPU and GPU-sharing ones. De-
spite the small population of 8-GPU tasks, they still occupy a
non-negligible portion in terms of requested GPUs (5.8%).

FGD Saves More Unallocatable GPUs. Figure 9a illus-
trates how the unallocated GPUs in the cluster decrease as
tasks arrive under different scheduling policies. Ideally, the
arrived tasks should be scheduled successfully until all GPUs
are allocated (gray dotted line). However, in practice, the frag-
mentation rate also increases with the allocation of arrived
tasks (Figure 7a). After a certain point when the fragmentation
rate reaches 100%, all unallocated GPUs become fragmented
and the allocation rate plateaus at a certain level, depending
on the used scheduling policy (e.g., DotProd at 90%). Com-
pared to classic scheduling policies, FGD achieves the highest
allocation rate and reduces wasted GPUs by 33–49%, which
translates to the additional allocation of 150–290 GPUs.

FGD Occupies Fewer Nodes in Scheduling. Figure 9b
shows how the number of nodes that have at least one task
running (occupied nodes) grows during the scheduling pro-
cess under different policies. We observe that FGD packs
tasks onto nodes whenever possible, leading to the fewest
occupied nodes among all policies. Especially in early stages
when the GPU allocation rate is 20%, FGD requires 55–70%
fewer nodes to host all the tasks compared to other policies.
As a result, FGD can enable significant savings in energy
consumption (on premises) or operational cost (on clouds).

FGD Schedules More GPU-Sharing and One-GPU Tasks.

5Although a slight decrease in unallocated GPUs may still occur thereafter
(thanks to few tiny tasks), the cluster is oversubscribed and rejects the majority
of incoming tasks; this is not a desirable state to be considered in our metric.

80 90 100 110 120
Arrived workloads (in % of cluster GPU capacity)

0
5

10
15
20
25

Un
al

lo
c.

 G
PU

 (%
) Random

DotProd
Clustering
Packing
BestFit
FGD
Ideal

(a) The percentage of unallocated GPUs given arriving workloads.

0 20 40 60 80 100
Arrived workloads (in % of cluster GPU capacity)

0
250
500
750

1000
1250

Oc
cu

pi
ed

 n
od

es Random
DotProd
Clustering
Packing
BestFit
FGD

(b) The number of GPU nodes occupied during the scheduling.

FGD BestFit Packing Clustering DotProd Random
0

100
200
300
400
500
600
700

Su
m

 o
f P

en
di

ng
 Ta

sk
 G

PU
s When arrived workloads equals 96% GPU capacity

Task GPU Req
8
2
1
<1

(c) GPU requests of failed tasks when the cluster is almost full (i.e.,
cumulative GPU requests reach 96% of the cluster capacity).

FGD BestFit Packing Clustering DotProd Random
0

25

50

75

100

Fr
ag

m
en

te
d 

GP
Us

 (%
)

non-gpu
stranded
deficient

(d) The breakdown of GPU fragmentation into three causes.

Figure 9: Performance comparison of FGD and various
scheduling policies. FGD outperforms all baselines with
fewer unallocated GPUs and failed tasks.

Figure 9c depicts the distribution of GPU requests of unsched-
uled tasks under different policies when the cluster is almost
full (i.e., the cumulative GPU requests of arrived tasks reach
96% of the cluster capacity). Except for Random, all policies
schedule multi-GPUs tasks well. Compared to classic poli-
cies, FGD schedules up to 5.9× GPU-sharing tasks and 6.6×
one-GPU tasks while reserving multi-GPU slots.

Early Detection of Fragmentation. Being able to detect
fragmentation early on is the key to improving the GPU al-
location rate. Referring back to Figure 7a, we see that FGD
consistently achieves the lowest fragmentation rate among all
policies, indicating better scheduling quality. As tasks arrives,
the advantage of FGD becomes larger. When the cumulative
requests grow to 90% of the total capacity, although most poli-
cies can still successfully schedule tasks, FGD outperforms
alternative policies with 24–44% lower fragmentation rate.
Figure 9d further decomposes the fragmented GPUs gener-
ated by each scheduling policy. It shows that < 10% of the
fragmented GPUs by FGD come from stranded resources,



0.0 0.2 0.4 0.6 0.8
GPU requests

0
20
40
60
80

100

CD
F 

(%
)

0 2 4 6 8 10 12
CPU requests

0
20
40
60
80

100

CD
F 

(%
)

Figure 10: Distribution of resource requests of GPU-sharing
tasks in cluster H.

40% 60% 80% 100%
Proportion of GPU-sharing workloads in terms of GPU requests

0

5

10

15

20

Un
al

lo
ca

te
d 

GP
U 

(%
)

6.0%
8.7%

10.9%
13.4%

FGD
BestFit

Packing
Clustering

DotProd
Random

Figure 11: Scheduling results when the traces contain a vary-
ing number of GPU-sharing tasks. Y-axis shows the percent-
age of unallocated GPUs when the overall GPU requests of
the arrived tasks reach 100% of the cluster’s GPU capacity
(same for the following figures).

which is 63–79% fewer than other policies. This confirms that
reducing the amount of stranded resources provides better
packing efficiency, which is in line with Borg’s insights [30].

6.3 Allocation of More GPU-Sharing Tasks

GPU-sharing techniques enable finer-grained resource allo-
cation. For GPU-sharing tasks, their resource requests are
typically based on the actual usage of model execution. Fig-
ure 10 depicts the CDF of resource requests of GPU-sharing
tasks. We observe that around 35% of GPU-sharing tasks re-
quest 0.8 GPUs, while no more than 5% tasks request less than
0.2 GPUs. This indicates that fractional GPUs (i.e., GPUs
with partial resources allocated), after scheduling 0.8-GPU
tasks, will mostly become fragmented. Nonetheless, there
are still many packing combinations of tasks that can ef-
fectively maximize the use of shared GPUs. For example,
0.32-GPU tasks and 0.65-GPU tasks account for nearly 10%
tasks, respectively—they can be placed together to reduce
fragmentation.

FGD Tailors Resources for GPU-Sharing Tasks. To eval-
uate the impact of GPU-sharing tasks on scheduling, we con-
struct different experimental settings based on production
traces (§6.2), increasing the proportion of GPU-sharing tasks
while keeping their resource requests in line with the original
distribution. Fragmented GPUs increase as the proportion
of GPU-sharing tasks rises (Figure 11). FGD considers the
chances that remaining resources after packing can be utilized
and tailors proper resources for subsequent tasks (Figure 8). It
outperforms the other policies in all cases; even when the clus-
ter has only GPU-sharing tasks, FGD reduces the unallocated
resources of 125–290 GPUs.

20% 30% 40% 50%
Proportion of multi-GPU workloads in terms of GPU requests

0

5

10

15

20

Un
al

lo
ca

te
d 

GP
U 

(%
)

4.5% 3.6% 3.1% 2.9%

FGD
BestFit

Packing
Clustering

DotProd
Random

Figure 12: Various proportions of multi-GPU tasks.

10% 20% 25% 33%
Proportion of workloads with GPU type constraints in terms of GPU requests

0

5

10

15

20

Un
al

lo
ca

te
d 

GP
U 

(%
)

5.3% 5.3% 6.1%

12.2%

FGD
BestFit

Packing
Clustering

DotProd
Random

Figure 13: Proportions of task with GPU-type constraint.

6.4 Allocation of More Multi-GPUs Tasks

To better understand the scheduling impact of multi-GPUs
tasks, we artificially adds more of them to the input workload,
increasing their GPU requests from 20% to 50% of the overall
demands. Figure 12 shows the scheduling results given by
different policies. We observe that all policies except Random
perform well when the workloads contain more multi-GPUs
tasks. The reasons are two-fold: (1) As the population of
multi-GPUs tasks increases, the scheduling impact caused
by GPU-sharing tasks becomes less significant, making the
classic multi-resource bin packing algorithms more effective.
(2) Reserving multi-GPUs slot is desirable due to the presence
of multi-GPU tasks. Compared to other scheduling policies,
FGD avoids stranded resources and judiciously reserves GPU
cards on nodes, reducing unallocated GPUs by 26–45% even
when the multi-GPU tasks account for 50% of GPU requests.

6.5 Allocation of Tasks with GPU Constraints

In previous experiments, we have mainly considered fragmen-
tation caused by mismatches of resources. Yet, production
tasks also have placement constraints of desired GPU type.
They typically request high-end GPUs for better performance;
models are sometimes optimized for a specific generation of
GPU. In our clusters, around 33% of GPU tasks have specified
desired GPU types, while the rest can run on any GPUs. Het-
erogeneous GPUs in a cluster are often unevenly distributed,
posing a challenge to resource scheduling.

Figure 13 shows the performance of different policies with
varying numbers of tasks that specify GPU-type constraints.
Classic heuristic policies only consider the alignment of re-
source demands, which is likely to cause severe fragmentation.
In comparison, FGD reduces 32–40% of fragmented GPUs
when tasks with GPU-type constraints account for 33% of the
total GPU requests. FGD selectively reserves popular GPUs
to avoid fragmentation caused by mismatches of GPU types.



5% 10% 20% 25%
Proportion of non-GPU workloads in terms of task number

0

5

10

15

20

Un
al

lo
ca

te
d 

GP
U 

(%
)

5.0% 4.8% 5.2%
6.8%

FGD
BestFit

Packing
Clustering

DotProd
Random

Figure 14: Various proportions of non-GPU tasks.

6.6 Allocation of More Non-GPU Tasks
In GPU clusters, there are often many tasks that request no
GPU but other resources, such as CPU, memory, and disk. Ex-
amples include parameter servers and data processing tasks.
These non-GPU tasks are usually not resource-intensive. Yet,
if scheduled unwisely, they may cause some GPUs to become
stranded. To evaluate their impact to scheduling, we vary the
number of non-GPU tasks and compare the performance of
different scheduling policies in Figure 14. FGD consistently
maintains the unallocated GPUs at a low level, demonstrat-
ing its strong capability of avoiding stranded resources when
making scheduling decisions. In fact, as the proportion of
non-GPU tasks increases from 5% to 20%, fragmented GPUs
caused by FGD increase by < 3% while other policies in-
crease fragmentation by 18–45%.

7 Discussion

Scheduler Independence of Fragmentation Metrics. Our
proposed fragmentation metric quantifies how fragmented
the current cluster is considering only the next incoming task.
This narrow focus ensures scheduler independence. Specifi-
cally, if we consider two or more incoming tasks, each node
would need to determine the likelihood that the first task
has consumed its resources when assessing the fragmenta-
tion measured by the second task. This determination would
involve the scheduling policy. In contrast, our one-step frag-
mentation metric determines if a node is fragmented based
solely on whether its remaining resources can be fully utilized
by the next task, agnostic to the scheduler or other nodes.

Combining with Other Heuristics. Guided by the one-
step fragmentation metric, schedulers may perform subop-
timally in early stages when the cluster has abundant re-
sources and little fragmentation is observed. However, the
fragmentation-guided scheduling heuristic can be combined
with other heuristics to navigate this initial period. For exam-
ple, the scheduler could fall back to a best-fit approach if no
increase in fragmentation is detected.

8 Related Work

Resource Fragmentation. Many research works address
resource fragmentation in clusters [8,29,30,39,40]. For exam-
ple, Tetris [8] shows that fair schedulers usually result in frag-

mented resources and delayed job completion, and proposes to
combine them with an alignment-based policy. Borg [30] uses
a hybrid scoring model to reduce the amount of stranded re-
sources. HiveD [39] eliminates external fragmentation across
multiple tenants by constructing virtual clusters. However,
these works do not give a formal definition of fragmentation.
We propose a statistical measure to quantify the degree of
resource fragmentation and use it to guide task scheduling.

Multi-Resource Bin Packing. Resource allocation is of-
ten formulated as a multi-dimensional bin packing problem,
which has been extensively studied [24]. Many heuristic poli-
cies, such as best-fit, vector alignment scoring (dot-product),
are proven effective with high packing efficiency for schedul-
ing big data analytics workloads [8] and virtual machines
consolidation [11, 23]. However, it can be observed from
our experiments that they do not work well in GPU sharing
scenarios. Our work advocates resource allocation from the
perspective of mitigating fragmentation, which can further
reduce wasted resources.

GPU Cluster Scheduling. Recent works on GPU schedul-
ing concern various objectives, such as cluster utilization [21,
32–34,37,40], job completion time [10,18,25,26], job perfor-
mance [22], and fairness [7, 20]. Although some research ef-
forts (e.g., Gandiva [33], Salus [37], AntMan [34], TGS [32])
exploit GPU sharing techniques to improve resource utiliza-
tion, they do not address GPU fragmentation. Our work com-
plements them by reducing fragmentation and improving the
GPU allocation rate.

9 Conclusion

In this paper, we have identified the significant fragmentation
problem caused by GPU-sharing workloads that are increas-
ingly deployed in production clusters. To address this prob-
lem, we have proposed a novel metric to statistically quantify
the degree of GPU fragmentation caused by various sources.
Based on this measure, we have proposed a simple, yet ef-
fective scheduling approach, named Fragmentation Gradient
Descent (FGD), that schedules tasks towards the direction
of the steepest descent of GPU fragmentation. Large-scale
trace-driven emulations show that FGD substantially achieves
higher GPU allocation rate compared to existing packing-
based heuristics, saving hundreds of GPUs.

10 Acknowledgment

We thank our shepherd Feng Zhang and anonymous reviewers
for their valuable comments. We also thank colleagues from
Alibaba Group for their feedback and assistance in the early
stage of this work. This work was supported in part by the Al-
ibaba Innovative Research (AIR) Grant and RGC GRF Grants
(#16213120 and #16202121). Qizhen Weng was supported in
part by the Hong Kong PhD Fellowship Scheme.



References

[1] Kubernetes: Production-grade container orchestration.
https://kubernetes.io, 2023.

[2] Kubernetes scheduling framework. https://kubernetes.i
o/docs/concepts/scheduling-eviction/scheduling-frame
work/, 2023.

[3] NVIDIA multi-instance GPU, seven independent in-
stances in a single GPU. https://www.nvidia.com
/en-us/technologies/multi-instance-gpu/, 2023.

[4] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces. 2018.

[5] Andrew Audibert, Yang Chen, Dan Graur, Ana
Klimovic, Jiri Simsa, and Chandramohan A Thekkath.
A case for disaggregation of ml data processing. arXiv
preprint arXiv:2210.14826, 2022.

[6] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
PipeSwitch: Fast pipelined context switching for deep
learning applications. In Proc. USENIX OSDI, 2020.

[7] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-
ancing efficiency and fairness in heterogeneous GPU
clusters for deep learning. In Proc. ACM EuroSys, 2020.

[8] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In Proc. ACM
SIGCOMM, 2014.

[9] Jing Gu, Shengbo Song, Ying Li, and Hanmei Luo. Ga-
iaGPU: Sharing GPUs in container clouds. In Proc.
IEEE ISPA/IUCC/BDCloud/SocialCom/SustainCom,
2018.

[10] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In Proc. USENIX NSDI,
2019.

[11] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek
Pan, Esaias E. Greeff, David Dion, Star Dorminey,
Shailesh Joshi, Yang Chen, Mark Russinovich, and
Thomas Moscibroda. Protean: VM allocation service at
scale. In Proc. USENIX OSDI, 2020.

[12] John Hammersley. Monte carlo methods. Springer
Science & Business Media, 2013.

[13] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
GPU-accelerated DNN inferences. In Proc. USENIX
OSDI, 2022.

[14] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyan-
skiy, Liang Xiong, and Xiaodong Wang. Applied ma-
chine learning at Facebook: A datacenter infrastructure
perspective. In Proc. IEEE HPCA, 2018.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proc. IEEE/CVF CVPR, 2016.

[16] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen,
and Tianwei Zhang. Characterization and prediction of
deep learning workloads in large-scale GPU datacenters.
In Proc. ACM/IEEE SC, 2021.

[17] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In Proc. USENIX ATC, 2019.

[18] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhen-
hua Liu. AlloX: Compute allocation in hybrid clusters.
In Proc. ACM EuroSys, 2020.

[19] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong
Guo, and Cong Wang. Lyra: Elastic scheduling for deep
learning clusters. In Proc. ACM EuroSys, 2023.

[20] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In Proc. USENIX NSDI,
2020.

[21] Jayashree Mohan, Amar Phanishayee, Janardhan Kulka-
rni, and Vijay Chidambaram. Looking beyond GPUs
for DNN scheduling on multi-tenant clusters. In Proc.
USENIX OSDI, 2022.

[22] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In Proc. USENIX OSDI,
2020.

[23] Rina Panigrahy, Vijayan Prabhakaran, Kunal Talwar,
Udi Wieder, and Rama Ramasubramanian. Validating
heuristics for virtual machines consolidation. Technical
report, Microsoft Research, 2011.

[24] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. Technical
report, Microsoft Research, 2011.

[25] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: An efficient dynamic

https://kubernetes.io
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/


resource scheduler for deep learning clusters. In Proc.
ACM EuroSys, 2018.

[26] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning.
In Proc. USENIX OSDI, 2021.

[27] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vCUDA:
GPU-accelerated high-performance computing in vir-
tual machines. IEEE Trans. Comput., 61(6):804–816,
2012.

[28] Dharma Shukla, Muthian Sivathanu, Srinidhi
Viswanatha, Bhargav Gulavani, Rimma Nehme,
Amey Agrawal, Chen Chen, Nipun Kwatra, Ramachan-
dran Ramjee, Pankaj Sharma, Atul Katiyar, Vipul
Modi, Vaibhav Sharma, Abhishek Singh, Shreshth
Singhal, Kaustubh Welankar, Lu Xun, Ravi Anupindi,
Karthik Elangovan, Hasibur Rahman, Zhou Lin, Rahul
Seetharaman, Cheng Xu, Eddie Ailijiang, Suresh
Krishnappa, and Mark Russinovich. Singularity:
Planet-scale, preemptive and elastic scheduling of AI
workloads. arXiv preprint arXiv:2202.07848, 2022.

[29] Abhishek Verma, Madhukar Korupolu, and John Wilkes.
Evaluating job packing in warehouse-scale computing.
In Proc. IEEE CLUSTER, 2014.

[30] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Proc.
ACM EuroSys, 2015.

[31] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the Wild: Workload analysis and
scheduling in large-scale heterogeneous GPU clusters.
In Proc. USENIX NSDI, 2022.

[32] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu,
and Xin Jin. Transparent GPU sharing in container
clouds for deep learning workloads. In Proc. USENIX
NSDI, 2023.

[33] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In Proc. USENIX
OSDI, 2018.

[34] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clus-
ters for deep learning. In Proc. USENIX OSDI, 2020.

[35] Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. Kube-
Share: A framework to manage GPUs as first-class and
shared resources in container cloud. In Proc. ACM
HPDC, 2020.

[36] Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang,
Xulong Tang, Chenchen Liu, and Xiang Chen. A sur-
vey of large-scale deep learning serving system opti-
mization: Challenges and opportunities. arXiv preprint
arXiv:2111.14247, 2021.

[37] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
grained GPU sharing primitives for deep learning appli-
cations. In Proc. MLSys, 2020.

[38] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jef-
frey Xu Yu, and Qing Zhang. Efficient computation of
the skyline cube. In Proc. VLDB, 2005.

[39] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang,
Fan Yang, Lidong Zhou, Mao Yang, Francis C. M. Lau,
Yuqi Wang, Yifan Xiong, and Bin Wang. HiveD: Sharing
a GPU cluster for deep learning with guarantees. In Proc.
USENIX OSDI, 2020.

[40] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu,
Xuanzhe Liu, and Xin Jin. Multi-resource interleaving
for deep learning training. In Proc. ACM SIGCOMM,
2022.


	Introduction
	Background and Motivation
	GPU Sharing
	The Prevalence of GPU Fragmentation
	Inapplicable Bin Packing Formulation

	The Fragmentation Measure
	Fragmentation in Absolute Terms
	A Statistical Fragmentation Measure
	Fragmentation Analysis in Action

	Fragmentation Gradient Descent
	Online Task Scheduling
	FGD Algorithm

	System Implementation
	Evaluation
	Methodology
	Allocation of Original Production Traces
	Allocation of More GPU-Sharing Tasks
	Allocation of More Multi-GPUs Tasks
	Allocation of Tasks with GPU Constraints
	Allocation of More Non-GPU Tasks

	Discussion
	Related Work
	Conclusion
	Acknowledgment

