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Abstract—Sharding is an effective technique to improve the
scalability of blockchain. It splits nodes into multiple groups so
that they can process transactions in parallel. To achieve higher
parallelism and concurrency at large scales, it is desirable to
maintain a large number of small shards. However, simply config-
uring small shards easily results in a higher fraction of malicious
nodes inside shards, causing shard corruption and compromising
system security. Existing sharding techniques hence demand
large shards, at the expense of limited concurrency. To address
this limitation, we propose CoChain: a blockchain sharding
system that can securely configure small shards for enhanced
concurrency. CoChain allows some shards to be corrupted. For
security, each shard is monitored by multiple other shards.
The latter reach a cross-shard Consensus on the Consensus
results of their monitored shard. Once a corrupted shard is
found, its subsequent consensus will be taken over by another
shard, hence recovering the system. Via Consensus on Consensus,
CoChain allows the existence of shards with more fraction of
malicious nodes (<2/3) while securing the system, thus reducing
the shard size safely. We implement CoChain based on Harmony
and conduct extensive experiments. Compared with Harmony,
CoChain achieves 35x throughput gain with 6,000+ nodes.

I. INTRODUCTION

Blockchain has played an important role for enabling
decentralized digital currencies [24]. However, traditional
blockchain comes at the price of throughput scalability [24],
[36]. Sharding [20] is one of the most promising approaches
to increase blockchain scalability. Its main idea is to split
the nodes in the network into multiple smaller committees
(shards), so they can process incoming transactions and reach
consensus in parallel [19]. Generally, under the same network
scale, it is desirable to configure a large amount of small shards
for better transaction concurrency and throughput [10], [25].

However, simply configuring a large number of small shards
tends to cause the corruption of some shards, which compro-
mises system security [20]. Therefore, existing works typically
configure large shards, which severely limits the transaction
concurrency of the large-scale blockchain sharding systems
[2], [17], [33]. Specifically, nodes in blockchain sharding
systems are usually randomly assigned to individual shards
[18], [20], [39]. Due to such randomness, simply configur-
ing small shards can easily over-proportion malicious nodes
in some shards and lead to shard corruption (e.g., > 1/3
within a shard for BFT-typed consensus) [10], [25]. In the
existing blockchain sharding systems, any corrupted shards
can compromise system security. As a result, existing works
typically configure large shard sizes to guarantee, with an
extremely large probability, that each shard is not corrupted.
For example, in OmniLedger [17], when the whole system can
tolerate <1/4 fraction of malicious nodes, each shard needs to

be configured with 600 nodes to guarantee no corruption (i.e.,
<1/3 fraction of malicious nodes per shard). Such large shard
sizes slow down the intra-shard consensus speed and reduce
the number of shards in the whole network, significantly
degrading the transaction concurrency in existing large-scale
blockchain sharding systems.

Some previous studies propose large-scale blockchain
sharding systems with reduced shard sizes, yet their solutions
have various limitations. For example, some works reduce the
shard size at the expense of reducing the fault resiliency of
the whole system [15], [17], [18]. For instance, in Pyramid
[15], the system resiliency is reduced from 1/4 to 1/8, meaning
the whole system can only tolerate <1/8 fraction of malicious
nodes, reducing system security. More related works are in
Section II.

In this paper, our target is to build a blockchain sharding
system with enhanced transaction concurrency without com-
promising system security. To improve concurrency, unlike
previous systems where every shard is required to be uncor-
rupted, we allow the existence of some corrupted shards due
to the randomness of node assignment. As a result, the size of
each shard can be reduced. However, without judicious design,
system security would be compromised by the presence of
corrupted shards. This leads to our first challenge.

As mentioned, the first challenge is how to guarantee
system security in the presence of some corrupted shards.
To address this, our core idea is that for each shard, there
are multiple other shards that monitor it and conduct cross-
shard Consensus on its Consensus results. Moreover, when
a corrupted shard is found, replace it with another shard to
recover system security. An illustration is shown in Figure
1. Specifically, due to the randomness of node assignment,
which shards are corrupted is unknown in advance. Therefore,
every shard needs to be monitored by multiple other shards.
Those shards form a consensus group (named CoC group)
and reach a cross-shard consensus on the consensus results of
their monitored shard (hence named Consensus on Consensus,
CoC(). For the CoC, our intuition is to analogize each shard
to a node, and design the CoC as a PBFT-typed (Practical
Byzantine Fault Tolerance [5]) cross-shard consensus. To
ensure the security of CoC, we judiciously fine-tune the size
of CoC groups and keep the fraction of corrupted shards
in each CoC group to be less than 1/3. Normally, the CoC
helps the uncorrupted shards to finalize their produced blocks.
If a corrupted shard is detected (e.g., it launches attacks),
another shard will replace the corrupted one by taking over
its subsequent consensus, thus recovering the system.

The second challenge is how to monitor other shards with
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Fig. 1: Tllustration of CoChain’s main idea.

low overhead. To detect whether other shards launch attacks
(whether corrupted), a naive design is to require each shard
store other shards’ states and verify every transaction packaged
by them. However, this imposes huge storage, communica-
tion, and computation overhead to each shard. To reduce
the overhead during CoC, our main idea is to leverage the
intra-shard consensus to guarantee the validity of specific
transactions, and leverage the cross-shard CoC to detect
other typical attacks. To achieve this, we observe that if
there are <2/3 fraction of malicious nodes in a corrupted
shard, a block containing invalid transactions will not pass the
intra-shard consensus, because it cannot collect enough votes.
However, such a corrupted shard can still launch other kinds
of attacks (e.g., equivocation, silence attack) [29]. Fortunately,
those attacks can be detected via some metadata (e.g., block
headers). Based on the observations, our solution is that
we configure any corrupted shard to have <2/3 fraction of
malicious nodes through rigorous theoretical calculations. As
a result, the shards in a CoC group do not require to store
extra states, obtain transactions, or verify transactions of their
monitored shard. They only need to obtain the block headers
from the monitored shard and detect other attacks. This design
allows each shard to conduct CoC with low overhead.

The third challenge is how to maintain high efficiency in
CoC while ensuring security. To maintain high CoC efficiency,
we mainly propose the pipelining mechanism. Each shard
optimistically produces new blocks while waiting for others
to conduct CoC for it. However, to ensure security, we re-
quire that an optimistically produced block can be considered
finalized only if it passes the CoC. Moreover, the cross-shard
transactions will be sent only after a block is finalized to
prevent rollback attacks on multiple shards.

With the above challenges addressed, we propose CoChain,
a high concurrency blockchain sharding system with recov-
ery ability. CoChain allows the existence of some corrupted
shards with a larger fraction of malicious nodes (i.e., <2/3).
To ensure security, we design an efficient and secure CoC
protocol. Through mutual monitoring between shards, CoC
enables timely shard replacement and system recovery when
a corrupted shard is detected. Therefore, CoChain can safely

reduce the shard size without compromising the overall fault
resiliency of the system, thus improving concurrency.

We implement a prototype of CoChain based on Harmony
[33], a well-known public blockchain sharding project. We
conduct extensive and large-scale experiments on Amazon
EC2. Experimental results demonstrate that in a large-scale
network of 6,100 nodes, CoChain improves 35x of the system
throughput and 5x of the throughput per shard compared to
Harmony.

II. BACKGROUND AND RELATED WORK
A. Blockchain and Sharding

Blockchain has drawn significantly attentions from research
and industry areas [11], [24], [36]. However, traditional
blockchain cannot scale its transaction processing capacity.
One promising approach to scale blockchain is via sharding,
which has been an active research topic in industry and
academia [20], [27], [32], [33]. Its main idea is to split the set
of nodes into a number of smaller committees (shards). Each
shard maintains a disjoint subset of states, processes different
transactions in parallel, and reaches intra-shard consensus in
parallel.

B. Shard Size, Concurrency and Security

If security is not a concern, a large number of small
shards will usually enhance the system concurrency under
the same network scale. This is because, first, more shards
bring higher parallelism in transaction processing. Second,
the smaller shard size reduces the communication overhead
of intra-shard consensus, hence speeding up the intra-shard
CONnsensus process.

However, security is a crucial concern in blockchain (espe-
cially permissionless) sharding [30]. Simply configuring small
shards in large-scale network can easily compromise system
security. This is because the nodes are usually randomly
assigned to each shard in blockchain sharding. Due to such
randomness, smaller shards easily cause some shards to be
assigned with a larger fraction of malicious nodes, corrupting
the shards and compromising system security. Existing works
hence configure very large shard size to guarantee, with ex-
tremely high probability, that each shard will not be corrupted
[8], [15], [17], [39] (e.g., 600 nodes per shard in OmniLedger
[17D).

Several works aim to improve the system concurrency by
reducing the shard size, yet they have various drawbacks.
Some solutions reduce the shard size with the price of reducing
the number of malicious nodes that the system can tolerate and
compromising system security [15], [17], [18]. For example,
Pyramid [15] reduces the system resiliency to 1/8 (from 1/4).

Some other attempts to reduce the shard size are, however,
less practical [8], [16], [39], [40]. For example, RapidChain
[39] increases the shard resiliency to 1/2 and reduces the shard
size by assuming a synchronous network inside each shard.
However, this assumption is less practical, especially in public
blockchain with large-scale network [29]. In [8], they reduce
the shard size by using trusted execution environment (TEE)



[31]. However, their design requires additional hardwares on
each node, limiting their generality. Some works can configure
very small shard sizes [1], [9], [14]. However, their overall
network scale is very small. Therefore, in real blockchain
systems (usually with thousands of nodes), their systems still
need to configure large shard sizes for system security.

Contrary to the previous studies, we allow the existence of
some corrupted shards (with <2/3 fraction of malicious nodes),
and propose the CoC protocol to ensure security. Therefore,
CoChain reduces the shard sizes in large-scale network for
boosted concurrency, without compromising system security
(tolerating 1/4 fraction of malicious nodes in the whole sys-
tem). Moreover, CoChain requires no additional hardware and
is adaptable to practical network environments.

C. Sharding with Corrupted Shards

Some blockchain sharding works allow the existence of cor-
rupted shards. However, they are with various limitations. For
example, works like [25], [28] require synchronous network,
which is a less practical assumption in real-world large-scale
blockchain network. Moreover, Free2Shard [28] adopts PoW
consensus, which does not guarantee deterministic finality and
is prone to forking. In [10], it requires all the nodes to run
a network-wide consensus for security, which could easily be
the performance and security bottleneck of the system. In Near
[32], nodes can play as challengers to challenge the corrupted
shards. However, the system security might be compromised
when a malicious challenger spam with invalid challenges. In
CoChain, each shard is monitored jointly by multiple shards
via the CoC protocol, which ensures security.

D. Strengthened Fault Tolerance

A few non-sharding research has studied the problem of
increasing fault resiliency [21], [37]. However, it is not proven
whether their protocols can guarantee safety and liveness in
blockchain sharding systems. Moreover, our intuition is differ-
ent. In CoChain, the corrupted shard itself is not recovered.
Instead, we leverage other uncorrupted shards to monitor and
replace the corrupted shard to recover the system.

III. SYSTEM AND THREAT MODEL
A. System Model

In CoChain, there are N nodes and S shards in the system,
each shard thus has n = N/S nodes. The CoC size in the
system is m < S, meaning that for any shard i, there are
m shards conducting CoC for it. Those m shards monitoring
shard ¢ form a CoC group, denoted as C;. Like most practical
blockchain systems [2], [6], [15], [17], [20], the nodes in
CoChain are connected by a partially synchronous peer-to-peer
network, in which there exists an unknown global stabilization
time after which all messages sent are delivered in less than
a fixed amount of time [19]. Like existing systems, each node
has a unique public/secret key pair given by a Public-Key
Infrastructure (PKI). A public key represents the identity of a
node. It will be broadcast through the network and recorded
once a node joins [15].

CoChain adopts the account model (similar to Ethereum)
[36] to represent the ledger state, in which each account has
its own states and nodes in different shards record the states
(e.g., balance) for different accounts. The states of an account
are assigned to one shard for maintenance based on the hash
of its account address [15], [33], [35]. Therefore, a transaction
in the network will be routed to the corresponding shard based
on its associated account address.

B. Threat Model

There are two kinds of nodes in CoChain: honest and
malicious. The honest nodes obey all the protocols. However,
malicious (Byzantine) nodes may corrupt the protocols in arbi-
trary manners, such as arbitrarily packing invalid transactions
into blocks (e.g., transaction manipulation), sending messages
with different values to different nodes (e.g., equivocation
attack), or failing to send any or all messages (e.g., silence
attack). The fraction of total malicious nodes in the system is
denoted as F', meaning F'N nodes are controlled by Byzantine
adversaries in the whole system. The fraction of malicious
nodes in each shard is denoted as f, meaning fn nodes are
Byzantine in each shard.

Similar to most existing blockchain sharding systems, we
assume that the Byzantine adversaries are slowly-adaptive, i.e.,
the set of malicious nodes and honest nodes are fixed during
each epoch and can be changed only between epochs [19],
[26]. Also, all nodes have access to an external random oracle
H which is collision-resistant, like other works [39], [40].

IV. ARCHITECTURE OF COCHAIN

CoChain is a high concurrency blockchain sharding system
with recovery ability. The running of CoChain proceeds in
fixed time periods called epochs. The length of the epoch can
usually be tuned according to the system requirements (e.g.,
one day, as many existing blockchain sharding systems adopt
(81, [15], [33], [39].).

During each epoch, each shard produces blocks via infra-
shard consensus in parallel and commits the blocks that
pass the consensus to its own shard chain. In CoChain, we
choose the leaderless BFT consensus protocol proposed by
Red Belly [6] as our intra-shard consensus protocol. In the
protocol, each node in a shard proposes a micro-block, which
is then merged into a complete block via consensus. The
protocol is proven to guarantee safety and liveness in partially-
synchronous network. Readers can refer to [6] for specific
descriptions. We make such a choice mainly to eliminate
the influence of a single leader on the intra-shard consensus
results. This is because a malicious leader in a shard may
cause the uncorrupted shard to temporarily fail, preventing the
CoC from being reached efficiently. Alternatively, leader-based
consensus protocols [27], [38] can also be adopted.

In a blockchain sharding system, each shard also needs to
handle cross-shard communications. In CoChain, the cross-
shard communications include cross-shard transactions and
cross-shard messages generated during CoC (details in Section
V). All the cross-shard communications are sent by all the



nodes (for security) in their source shards and are routed
(e.g., via Kademlia [22], [39]) to their destination shards for
processing, like many existing works [15], [16], [33], [39].
The cross-shard transactions are those transactions sent from
one shard to another, which are processed via the traditional
cross-shard transaction relay scheme (e.g., [33], [35]) for
efficiency and atomicity. Specifically, a cross-shard transaction
is split into two parts and processed successively by the source
shard and the destination shard. However, in CoChain, to
ensure security, only when a block is finalized, the cross-shard
transactions in it can be sent (details in Section V-D).

Between any two epochs, CoChain has a shard reconfigu-
ration process [15], [33], [39], [40] to determine which nodes
should be reassigned to which shards in the next epoch. This
is mainly designed to sustain attacks from the slowly-adaptive
adversaries. For security, each node is randomly assigned to
a specific shard based on its identity and a randomness. We
leverage a combination of verifiable random function (VRF)
[23] and verifiable delay function (VDF) [3] to generate
verifiable, unbiased, and unpredictable distributed randomness.
Moreover, there is also a beacon chain in CoChain to perform
tasks such as recording node’s identity and assisting the
process of shard reconfiguration. However, unlike previous
works which usually assume a trusted beacon chain, CoChain
allows the beacon chain to be corrupted and be replaced to
recover the system. We also assume a trusted bootstrapping
process before the first epoch, which is widely adopted in
research and industrial areas [17], [33].

V. ProTOCOL DESIGN OF COoC

The main design difference between our system and previ-
ous systems is the Consensus on Consensus protocol. During
each epoch, each shard 7 continuously sends its intra-shard
consensus result to multiple other shards, those shards reach
a cross-shard BFT consensus to determine the validity of the
intra-shard consensus result (Section V-A, V-B). If the intra-
shard consensus result is valid, the CoC protocol helps to
finalize it. Otherwise, the corrupted shard ¢ is replaced by
another shard to recover the safety (all honest nodes agree
on the same value in the same order) and liveness (system
continuously makes progress) of the system (Section V-C).

A. Basic Design of CoC

In CoChain, each shard ¢ not only processes transactions,
but also continuously sends intra-shard consensus result (de-
tails in Section V-B) to m shards in order to be monitored
by them. Those m shards form a CoC group C; that monitor
shard . Meanwhile, each shard also belongs to m different
CoC groups that monitor different shards, it receives consensus
result from m different shards in order to monitor them. The
m shards belonging to the same CoC group C; perform CoC
on shard ¢ to reach a cross-shard consensus on shard ¢’s intra-
shard consensus results.

The CoC protocol includes three main phases: pre-prepare,
prepare and commit, as illustrated in Figure 2.

Pre-prepare. In this phase, the shards participating in the same
CoC group C; receive the consensus result from the monitored
shard . Each of them first reaches intra-shard consensus on
whether the result is valid (i.e., cross-shard verification, see
Section V-B). If the result is judged to be valid, the Prepare
message is generated for it. The Prepare message is then
sent to the other shards in C; and the protocol enters the
Prepare phase. If the intra-shard consensus determines that the
received result is not valid, it generates a Complain message
and sends it to the other shards in C;. The shard replacement
is then triggered later (see Section V-C) to recover the system.

Prepare. In this phase, the shards participating in the same
CoC group C; receive each other’s voting messages in the
Pre-prepare phase. For each of them, after receiving more than
2m /3 consistent Prepare messages from different shards, it
reaches an intra-shard consensus and generate the Commit
message accordingly. After that, the Commit message is sent
to other shards in C;.

Commit. In this phase, the shards participating in the same
CoC group C}; receive each other’s voting messages in the Pre-
pare phase. For each of them, after receiving more than 2m/3
consistent Commit messages from different shards, it first
reaches intra-shard consensus and generate the Finalized
message. After that, the Finalized message is sent back to
the monitored shard <.

CoC leads to two consensus outcomes. First, the monitored
shard ¢ is uncorrupted. In this case, after receiving the CoC
consensus result (Finalized), shard ¢ will attach that mes-
sage to the block header as a proof of block being finalized,
and continue with the subsequent consensus. Second, shard ¢ is
corrupted (i.e., f > 1/3). In this case, the shard replacement
mechanism will be triggered. Among the shards in C;, one
shard will be elected to replace the corrupted shard 7 for
subsequent consensus (see Section V-C).

Designs on Security. A suitable CoC size m needs to be
decided to ensure the security of CoC. CoC can be seen as
a cross-shard PBFT consensus. Therefore, it needs to ensure
that, for each CoC group with size m, more than 2m/3 of the
participated shards are honest. For this reason, we fine-tune
m as the minimum value that guarantees the security of CoC
with extremely large probability. The specific equations and
proofs are given in Section VI-A. By configuring appropriate
m, the CoC can be ensured not to fail with extremely large
probability (e.g., one failure in hundreds of years, like existing
studies), thus not compromising system security.

We exploit the randomness generated during the shard
reconfiguration (Section IV) to determine which shards should
be in each CoC group. Each shard combines this randomness
with the ID of its own shard (e.g., shard ¢) to generate a new
random number. Shard ¢ uses the new random number as a
seed to map it (via the random oracle) to m random shards
forming the same CoC group C; that monitors it.
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B. Efficient Cross-Shard Verification

How to monitor other shards during CoC with low overhead
is a critical issue. A naive design requires each shard to store
the states of other shards, receive transactions from other
shards, and use the states to verify received transactions. While
this design can detect whether other shards are launching
attacks (whether corrupted), it imposes huge storage, commu-
nication, and computation overhead to each shard.

To address this issue, we first observe that when the fraction
of malicious nodes in a shard is controlled to be less than
2/3 (i.e., f < 2/3), those attacks against specific transactions
(e.g., replay attacks, transactions with invalid contents, data
unavailability, etc.) will not be successfully launched. This
is because honest nodes within the shard can always detect
the attacks against specific transactions during intra-shard
consensus and will not sign the blocks with such attacks for
confirmation. Therefore, in the case of f < 2/3, any block
with such attacks will not pass the intra-shard consensus due
to insufficient signatures, i.e., blocks that successfully pass the
intra-shard consensus only contain valid transactions.

However, a corrupted with f < 2/3 can still launch other
typical attacks. For instance, a corrupted shard may launch
equivocation attacks to fork the shard chain by producing
multiple blocks containing valid transactions with the same
height, or it can remain silent to compromise liveness. Those
attacks need to be detected by CoC. Fortunately, detecting
such attacks does not require the state information, but only
require the block headers, which is with low overhead.

Therefore, we conduct rigorous theoretical and empirical
calculations (details in Section VI-A), and fine-tune the size
of each shard to ensure that if a shard is corrupted, it will
has less than 2/3 fraction of malicious nodes with extremely
large probability. As a result, a monitored shard ¢ only needs
to send each block header (as the consensus result) that have
passed the intra-shard consensus to the CoC group C;. The
shards in C; then use the header to detect possible attacks
(e.g., equivocation) and reach consensus.

In case shard ¢ launches silence attack, we adopt a timeout
scheme to ensure liveness. Similar idea is used in most
BFT-typed consensus to guarantee liveness under partial-
synchronous network. However, in CoC, each node in any

CoC group C; maintains a local timer for shard 7. When more
than 2/3 fraction of the nodes in a shard of C; have their
timers timed out, the shard reaches intra-shard consensus and
generates the Complain message. When more than 2m/3
of the shards in C; generate Complain messages, shard
replacement is triggered. The timeout value increases as the
system runs and eventually stabilizes. Readers may refer to [5]
for details on configuring timeout. Although this scheme may
affect uncorrupted shards in the early stages of the system,
the effect is usually temporary (e.g., one epoch) and does
not affect system security. To sum up, the scheme does not
require synchronization between nodes and works properly as
the network stabilizes, like existing works [5], [6]. We consider
refined schemes (e.g., in [4], [12]) for our future work.

C. Shard Replacement

When a CoC group detects a corrupted shard, how to
recover the safety and liveliness of the system is an important
issue. We address this issue once and for all by leveraging
another shard to take over the corrupted shard’s subsequent
consensus until the start of the next epoch.

During cross-shard consensus, if the monitored shard @
is found to be corrupted, one of the shards in CoC group
C; will replace the corrupted shard and restores the system.
Specifically, when a shard in C; receives more than 2m/3
Complain messages from different shards, it sends these
Complain messages together as a proof to shard 7 and stops
subsequent CoC consensus work for shard i (as shard ¢ is
corrupted). After the shard i receives the proof formed by the
Complain information, each node within that shard sends
the state information that is latest finalized by CoC, the trans-
actions (including rollback transactions), along with a proof
(i.e., Finalized information) to the shard in C; who is re-
sponsible for replacing shard :. The latter after receiving those
messages, takes over the subsequent transactions processing
from the corrupted shard. Those subsequent transactions will
be routed to the new shard that replacing shard :. The shard
replacing shard ¢ will process the transactions from both shard
¢ and itself. The corrupted shard, in turn, stops subsequent
consensus until the start of the next epoch.

Designs on Security. We exploit distributed randomness to
determine which shard in the CoC group C; is responsible
for replacing the corrupted shard i. We use the randomness
generated during the shard reconfiguration, and randomly map
it to one of the shards participated in C;. The chosen shard
is then responsible for taking over the work of the corrupted
shard.

We need to guarantee the validity of the state information
passed by the corrupted shard in order to allow the successor
shard to process subsequent transactions safely. For this pur-
pose, the block header generated by each shard will contain
the root of the Merkle Tree [7] generated from its latest state
[34]. Since the CoC reaches a consensus on the block header,
the state information in the block header finalized by the CoC
can be considered valid. Therefore, each node in the corrupted
shard needs to send the state information that is latest finalized



by the CoC to the shard that replaces it, along with the header
and the CoC’s Finalized information on that header. The
received shard can then verify the validity of the state and
prevent attackers from tampering with the state information.

D. Pipelining Mechanism

Since each block proposed by each shard depends on CoC
to finalize, maintaining high efficiency for CoC is important.
For this reason, we propose the pipelining mechanism.

In the pipelining mechanism, we parallelize the production
of blocks with the execution of CoC. While each shard 7 waits
for other shards to conduct CoC for it, the shard continues
to produce blocks optimistically. Specifically, after a shard
produces a block of height h, the block needs to wait for CoC
to be finalized. Meanwhile, the shard keeps producing new
blocks optimistically while waiting for other shards to reach
CoC for its block of height h (as illustrated in Figure 2, Shard 7
keeps producing blocks while waiting for CoC). As a concern
of security, we further propose the following designs.

Designs on Security. For security, when shard 7 is detected as
corrupted, the blocks produced by the shard during the waiting
process are considered invalid. The state of that shard will
be rolled back to the latest one finalized by CoC. However,
there are not only intra-shard transactions but also cross-shard
transactions in blockchain sharding systems. Therefore, the
rollback of a shard state usually involves several other shards,
which greatly compromises the security and efficiency of the
system.

To prevent rollback behavior involving multiple shards, we
propose a mechanism for pessimistically sending cross-shard
transactions. Only when a block within a shard is finalized by
the CoC, the cross-shard transactions contained in that block
are then sent to other shards along with the proof (i.e., the
Finalized messages).

Note that optimistically producing blocks involves process-
ing transactions as well as conducting CoC for other shards.
Therefore, even if the state of a corrupted shard is rolled back,
the blocks produced during this period are kept as orphan
blocks. The reason behind such design is to leave a history of
it conducting CoC for other shards, i.e., the information about
each shard’s participation in CoC is not rolled back.

E. Discussion of CoC Protocol

In this part, we discuss and show that our CoC protocol is
feasible in practice. First, we analyze that our CoC protocol
does not increase too much cross-shard communication over-
head and still has superior performance (see Section VII-C).
Since the messages transmitted across shards during CoC
are meta messages (signed headers or voting messages), they
only account for little communication overhead (typically few
hundred bytes). Additionally, for security, we sacrifice some
communication efficiency by requiring all nodes in a shard to
send cross-shard communication, as in many previous works
[15], [16], [33], [39]. We make it our future work to reduce
the number of nodes sending cross-shard communications
while maintaining security, as in [18]. Second, there are not

too many corrupted shards in the system that need to be
replaced in each epoch. We verify this through extensive
experiments (see Section VII-B). Third, since each shard stores
only a subset of the whole state, it is efficient to transmit
state information between shards, as verified in Section VII-D
through experiments. In fact, transmitting state between shards
is extremely common in blockchain sharding (during shard
reconfiguration), and we apply the idea of state transmission
to replace corrupted shards. Moreover, the system can further
reduce the overhead of state storage by using techniques such
as state pruning [17], [39] for better feasibility.

VI. SECURITY ANALYSIS
A. Epoch Security

We now bound the failure probability for the whole system
during each epoch. We first analyze the probability for a single
shard under different cases (e.g., f < 1/3, 1/3 < f < 2/3,
f > 2/3) in each epoch, as the nodes will be reshuffled before
each new epoch during the shard reconfiguration. Similar to
previous research [8], [15], [39], we use the hypergeometric
distribution function to calculate those probabilities. Specifi-
cally, let X be a random variable representing the number of
Byzantine nodes assigned to a shard of size n = N/S. The
probability for a shard to be uncorrupted in each epoch can

be thus computed by:
[n/3]—1 (FN) (NfFN>

P = Y, (NSHU (1
=0 n

The probability for a shard to have 1/3 < f < 2/3 and
f > 2/3 fraction of malicious nodes in each epoch can be

thus computed by: |2n/3] -1 (FN) (prN)

D(1/3<f<2/3) = Z = (N;_w 2
z=|n/3] n
and
= (O
Puzam = D RGO )
x=[2n/3] n
respectively.

Based on the above probabilities, we then analyze the failure
probability of the system within an epoch. CoChain will fail
in two cases: 1), There exists shards with > 2/3 fraction of
malicious nodes. 2), The corruption ratio in each shard is <
2/3, yet the system still cannot be recovered after CoC. That
is, there exists CoC groups whose corrupted shards is > m/3.
In this case, the CoC is not secure, which may finally lead to
the system failure.

When calculating the upper bound failure probability, we
make the same assumption as the previous studies that the
failure probability of each shard is independent of each other
[15], [19], [39]. We first calculate the union bound to bound
the failure probability when there exist shards with > 2/3
fraction of malicious nodes, p(37>2/3 and fail)- Under this case
(the first case), the system will definitely fail. Thus, similar to
previous studies [8], [15], [39], the equation is as follow:

PEf>2/3and fail) = 1S P(r>2/3)- S



We now bound the probability when f < 2/3 in each shard
and the system cannot be safely recovered after CoC (the
second case):

P(3f<2/3and fail) = D(fail when f<2/3) " P(f<2/3)-  (5)

Here we calculate p(rqiiwhen 3f<2/3) (the probability that
the system cannot be safely recovered after CoC under the con-
dition that f < 2/3 in each shard) as the upper bound, since
ObViOUSIy P(fail when 3f<2/3) > P3f<2/3and fail)- Let Y and
Z be random variables representing the number of corrupted
shards in the system and in one CoC group, respectively. To
calculate p(faiiwhen 3f<2/3), We first estimate the probability
that the system has Y = y corrupted shards in the case that
J <2/3 in each shard, denoted as p(y—,):

_ <5) P/3<<2/3) vy P<1/3)
Piy=y) = ( ‘
Yy, L=pu>2s3)" 1= P2y

We then compute the union bound to bound the probability
that the CoC cannot safely reach consensus (z > |m/3]) given

)(Sfy). (6)

that the system has y corrupted shards, p(rqiiwhen y=y)-
S 06
P(fail whenY=y) = S- Z s\ @)

z=|m/3] (m)

Based on Equation 6 and 7, we can derive p( fqii when 3f<2/3)"
s

D(fail|]3X <|2n/3)) :Z P(Y=y) " P(fail whenY=y)- (8)
y=0

Combining the probabilities under the above two cases
(Equation 4 and 8), we can finally derive an upper bound

failure probability of CoChain within each epoch as follow:
D(fail) = P(3f>2/3and fail) T P(fail when3f<2/3)-  (9)
We empirically verify in Section VII-E that our estimated
theoretical upper bound failure probability can bound the true
failure probability. Moreover, by adjusting the shard size n and
CoC size m in different system scales, we can limit the upper
bound failure probability of the system to be negligible, the
specific values of the probability are shown in Section VII-B.

B. Protocol Security Analysis

Under negligible epoch failure probability, we now analyze
the security of our main designs.

Theorem 1. For any shard i, if there are less than 2/3 fraction
of malicious nodes (f < 2/3), then the honest shards in the
CoC group who monitors it (C;) can detect typical attacks.

Proof. As explained in Section V-B, for any corrupted shard
with f < 2/3, attackers can still fork a shard chain by
generating multiple valid blocks with the same height. For any
honest shard that monitor shard 7, it can determine whether
such attacks have occurred via the block header. Since each
block header is sent by all the nodes in shard ¢ and there are
always honest nodes in it, the header always can be sent by the
honest nodes. For silence attacks, we adopt a timeout scheme
to ensure liveness, as mentioned in V-B. O

Theorem 2. For any shard i, if f < 2/3, and there are less
than 1/3 fraction of corrupted shards in CoC group C;, then
our CoC protocol is secure.

Proof. In CoC, the shards in C; reach cross-shard BFT con-
sensus on the consensus results of shard . The intuition is to
analogize the shards in CoC to the nodes in PBFT consensus.
Specifically, when shard ¢ is uncorrupted, the shards in C;
will execute the Pre-prepare, Prepare, and Commit phase
accordingly. Since there are < 1/3 fraction of corrupted shards
in C;, those shards can reach a consensus and finalize the block
for shard . When more than 2m /3 Complain messages from
different shards in C; are generated, then shard i is detected as
corrupted (the security of the cross-shard verification is proved
in Theorem 1). Because < 1/3 fraction of shards in C; are
corrupted. The protocol can then safely move to the shard
replacement phase.

O

Theorem 3. In CoChain, our shard replacement mechanism
can replace corrupted shards, thus recovering the safety and
liveness of the system.

Proof. First, when the shards participating in CoC group C}
receive more than 2m/3 of the Complain messages, they
determine that shard 7 is corrupted and stop conducting sub-
sequent CoC for shard ¢. Therefore, even if the corrupted shard
1 still performs subsequent consensus, no one will recognize
its subsequent consensus results since its intra-shard consensus
results are not certified by CoC (no Finalized message).
Second, for any shard ¢, since there are always honest nodes
and the cross-shard communication is sent by each node, valid
state information can always be routed to the shard responsible
for replacing shard 7. The successor shard can use the proof
information to verify the validity of the sent state and take
over from shard ¢ for subsequent consensus. Finally, if the
shard responsible for taking over is also a corrupted shard, it
can still be taken over by other shards. O

VII. EVALUATION
A. Experimental Setup

We implement a prototype of CoChain in Golang based
on Harmony [33], a well-known permissionless blockchain
sharding project. For fair comparison, we choose Harmony
as the baseline protocol to compare the performance with
CoChain. The main protocols in CoChain can be easily applied
to most existing sharding systems for improved performance.

We simulate a large-scale network of up to 6,100 nodes
by oversubscribing up to 61 Amazon EC2 instances. Each
instance has a 96-core processor and a 25-Gbps communica-
tion link. Like existing research, we consider a latency of 100
ms for every message. The bandwidth for each node is set
as 50 Mbps. We set each transaction size to 512 bytes, and
each complete block can contain up to 4,096 transactions. The
fraction of total malicious nodes F' is set as 1/4.

B. Choice of Parameters

Choice of Shard Size and CoC Size. The shard size and
the CoC size should be adjusted to limit the system failure
probability to be negligible, as described in Section VI-A.
We choose to adjust the shard and CoC size to bound the



o

S
TPS per Shard

N

Transactions per Second

o

2000

3300 4600
Network Scale

6100

2000

3300 4600
Network Scale

6100

(a) Total TPS comparison (b) Per-shard TPS comparison

c 55

S —

b1 C

£ §%

=5 =
— ©

EX Sas

o8 a

c o >

_g = 5 40

S - 2

8 °

7] 935

] o«

L 0

2000 3300 4600 6100 2000 3300 4600 6100

Network Scale Network Scale

(c) Confirmation latency comparison (d) Time duration for system recovery

Fig. 3: Main performance results under various network scales.

TABLE I: Choice of parameters in baseline and CoChain.

Network Scale [ 2000 [ 3300 [ 4600 | 6100

# of Shards in Baseline 4 6 8 10
Shard Size in Baseline 500 550 575 610
Failure Probability
in Baseline (-10~6) 24 3.8 6.6 30
# of Shards in CoChain 20 33 46 61
Shard Size in CoChain 100 100 100 100
CoC Size in CoChain 15 18 21 24
Failure Probability
in CoChain (-10~6) 6.1 6.5 24 6.9
Avg. # of Failed Shards 0.5 0.8 1.2 1.6

failure probability to be less than 27!7 ~ 7.6 - 1076 [15].
This probability guarantees that one failure will occur in about
359 years if the system reconfigures in one-day epochs. We
determine the shard size and CoC size in CoChain based
on Equation 9. The shard size in the baseline protocol is
determined based on the classical equation used in [15], as
they do not have the CoC protocol.

As shown in Table I, the choice of shard size and CoC size
makes the failure probability in both CoChain and the baseline
less than 7.6 - 10—, ensuring security. In addition, the results
show that traditional sharding systems require large shard sizes
to secure the system at each epoch. This is confirmed in
previous studies [17]. The results also show that CoChain
reduces the shard size significantly due to the CoC protocol,
which allows CoChain to have more shards for the same
network scale as well.

Reasoning of Shard Size in CoChain. In our experiments, we
choose the shard size of 100 for CoChain, as some previous
studies have also set their shard sizes to around 100 [8],
[15]-[17], [39], which is practical. However, as mentioned in
Section II-B, previous solutions have various limitations when
reducing the shard size.

The shard size in CoChain is adjustable under the same
network scale. This is because in CoChain, the shard size
and the CoC size together determine the system failure proba-
bility. Therefore, one can choose a smaller shard size (with
a correspondingly larger CoC size) in CoChain to achieve
potentially higher concurrency while maintaining the same
failure probability. This brings better flexibility to CoChain.

Number of Failed Shards. We need to choose the appropriate

number of corrupted shards for experiments. We conduct 10
million simulations of the shard reconfiguration results and
compute the average number of corrupted shards. As shown
in Table I, we use this average value rounded upward as
the number of corrupted shards in the following experiments.
Moreover, the results show that there are few corrupted shards
in the system, so our shard replacement mechanism does not
impact the system performance too much.

C. Throughput and Latency

We first compare the average throughput (TPS) of CoChain
(including throughput during recovery) and the baseline pro-
tocol at different network scales. As shown in Figure 3a,
CoChain improves throughput by up to 35 times over baseline
in a network with 6100 nodes. The reason is mainly that
there are more shards in CoChain and the shard size is
smaller. Figure 3b shows the throughput for a single shard. The
results show that CoChain also achieves more than 5 times of
throughput per shard compared to the baseline. This is mainly
due to the smaller shard size in our system. Our pipelining
mechanism also helps with the performance improvement.

Figure 3c shows the comparative results of the transaction
confirmation latency (the latency between the time that a
transaction starts to be processed until the transaction is
finalized, similar to previous works [15], [39]). CoChain and
the baseline protocol have similar latency. Compared to the
huge improvement in throughput, CoChain does not improve
the latency significantly. The main reason is that, in CoChain,
even though the reduced shard size speeds up the intra-shard
consensus, each transaction needs to wait for a round of
CoC to finish before it can be finalized, and the cross-shard
transactions need to wait longer. The baseline has such a long
latency due to its large shard size, causing slow consensus
speed. We make it our future work to further reduce the latency
for CoChain. It is also shown that the latency of the baseline
grows faster as the network size increases. This is mainly
caused by the rapid increase in its shard size.

D. Recovery Duration

We evaluate the time required to recover the system by re-
placing corrupted shards in CoChain after replaying 1 million
Ethereum transactions [41]. As shown in Figure 3d, since each
shard in the sharding system only stores a subset of the whole
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state, the corrupted shard can be replaced in a few tens of
seconds. Moreover, as the number of shards in the system
increases, the amount of state information stored in each shard
is reduced. Therefore, the time required to recover the system
is also reduced.

TABLE II: Settings under empirical failure probability.

Network Scale 700 | 1300 | 2000 | 3300 | 4600 | 6100
# of Shards in Baseline 2 3 4 6 8 10
# of Shards in CoChain 7 13 20 33 46 61
Reduced CoC Size 6 9 12 15 18 18

Empirical Failure

Probability (-10~5) 1.0 5.0 2.5 3.7 1.3 33

E. Performance under Empirical Failure Probability

We now evaluate the performance of CoChain under the
empirical failure probability. Since the theoretical failure prob-
ability is an upper bound, the real failure probability may
be smaller than the theoretical computed value. Therefore, by
bounding the empirical failure probability to below 7.6-1075,
CoChain can achieve better performance. Specifically, we
adjust the shard size and CoC size and repeat 10 million
simulations of the shard reconfiguration process to calculate
the empirical failure probability, and the results are shown in
Table II.

The results show the following points: First, the CoC size
can be reduced under the empirical failure probability. Second,
we obtain smaller failure probabilities than the theoretical
failure probability with smaller CoC sizes (compared with
Table I). This implicitly confirms that the theoretically derived
failure probability bounds the true failure probability, since it is
obvious that an increase in the CoC size leads to a decrease in
the failure probability. Therefore, with same CoC size, the real
failure probability will be much smaller than the theoretical
failure probability upper bound. Third, as the size of the CoC
is reduced, CoChain is able to run in smaller network scales
with empirical failure probability.

The comparison results for throughput and latency are
shown in Figure 4. CoChain improves throughput by up to
37 times over baseline with 6100 nodes. Moreover, compared
to baseline, CoChain reduces the latency by 14% with 6100
nodes. However, CoChain achieves an increased latency of
1.27x in a small-scale network with 700 nodes. The reasons
for the results are similar to those in Section VII-C.
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FE. Performance under Practical Environments

To better simulate the geographically-distributed large-scale
network environment, we randomize the delay for each mes-
sage between different nodes (1-1000ms, which is practical
[13]). The throughput and latency comparison results are
shown in Figure 5. The performance of both CoChain and
baseline protocols gets degraded (compared with Figure 3a
and 3c) due to the randomly increased message delay between
nodes. CoChain improves throughput by up to 27 times over
baseline with 6100 nodes. However, the latency in CoChain
is longer than that in the baseline protocol. We speculate the
main reason is that the increased message delay has a larger
impact on CoChain: it decreases both the speed of intra-shard
consensus and the speed of reaching CoC. However, it only
reduce the speed of reaching intra-shard consensus in baseline.

VIII. CONCLUSIONS

In this paper, we propose CoChain, a high concurrency
blockchain sharding system. In CoChain, individual shards
monitor each other’s consensus results and recover the system
by shard replacement when a corrupted shard is found. To
ensure the security and efficiency of cross-shard monitoring
and replacement, we propose a cross-shard Consensus on
Consensus (CoC) protocol and elaborate the designs of each
part in the protocol. Based on the intuition of corruption-
and-recovery and the above designs, CoChain securely config-
ures small shard sizes and significantly enhances the system
concurrency. Finally, we implement CoChain and conduct
large-scale experiments to verify the superiority of CoChain.
Empirical evaluation shows that CoChain achieves tens of
times higher throughput compared to the advanced baseline
protocol.
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