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Abstract

This paper presents a new method to enforce inverse con-
sistency in nonrigid image registration and matching. Con-
ventional approaches assume diffeomorphic transforma-
tion, implicitly or explicitly. However, the inherent smooth-
ness constraint discourages discontinuity consideration. We
propose a post-processing algorithm that integrates the in-
put forward and backward fields, which are output by exist-
ing registration/matching algorithms, to produce more ro-
bust results. Given such a pair of input fields, our algo-
rithm alternately refines the fields by tensor belief propa-
gation, and enforces inverse consistency in stochastic sense
by generalized total least squares fitting. To show the effi-
cacy of our stochastic inverse consistency approach, we first
present results on very noisy fields. We then demonstrate
improvement on existing stereo matching where occlusion
is naturally handled by localizing violations of inverse con-
sistency. Finally, we propose a novel application on image
stitching, where stochastic inverse consistency is employed
in structure deformation, in order to seamlessly align over-
lapping images with severe misalignment in structure and
intensity.

Keywords: Image registration and matching.

1. Introduction
In non-rigid image registration of two input images, reg-

istering I1 to I2 and registering I2 to I1 should result in
two mappings that are inverses to each other, except at re-
gions of large topological change where no inverses exist.
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Figure 1. Enforce inverse consistency in the presence of noise and
discontinuity. (a) Input noisy fields where each component of the
vector is corrupted by Gaussian noise of zero mean and standard
deviation 0.7. (b) Refined fields obtained by smoothing the fields
respectively using TBP alone. (c) Refined fields obtained by per-
forming GTLS alone on the respective field. (d) Inverse consistent
fields computed using our TBP-GTLS, which has little difference
from the ground truth.

Integrating the registration results from both directions has
been shown to produce more robust results than considering
either direction alone ([5, 11, 12, 9, 18, 15, 1, 2] or see Fig-
ure 1). All previous works on integrating non-rigid image
registrations by symmetrizing forward and backward trans-
form assume the notion of diffeomorphism, either implicitly
(e.g. as soft constraint in a cost function [5]) or explicitly
[11, 1, 15, 2].

1.1. Diffeomorphism

Diffeomorphic transform is, by definition, continuous,
one-to-one, onto and differentiable. Many previous works
have leveraged diffeomorphism to the advantage of produc-
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ing invertible transforms. In [11], the authors enforced dif-
feomorphism by geodesic interpolating spline [4]. Inverse
consistency is achieved by enforcing the geodesic paths of
the interpolating spline to be time-symmetric. In [1], a vari-
ational energy was defined to explicitly divide the image
registration diffeomorphism into two halves such that the
source and target images contribute equally to the path. [2]
extends the mapping algorithm in [3], and makes it symmet-
ric by introducing two choices of symmetric data terms in
the matching cost function, either by symmetrizing the flow
of diffeomorphism at each point along the flow, or perform-
ing the matching only in the midpoint of the large deforma-
tion flows, so that both directions contribute equally. Us-
ing the diffeomorphic assumption, the authors in [15] sym-
metrize the common L2 and information theoretic objective
functions in nonrigid registration. In [12], the authors as-
sume a B-spline model and add an additional constraint on
the positivity of the Jacobian to preserve topology.

The mathematical differentiability of diffeomorphism
dictates that the transformation function and its inverse exist
and are smooth. While this is often true for medical imagery
(where some previous works are related), Figure 1 shows a
typical example where the forward and backward field are
noisy, and each field contains a discontinuity which is not
apparent in the input. If we apply any state-of-the-art algo-
rithms that assume diffeomorphism, the noise as well as the
inherent discontinuity will very likely be smoothed out in
order to satisfy the implicit smoothness criterion, especially
when no landmarks (interpolation constraints) are given in
this case. The resulting mappings will be far from the de-
sired ground-truth.

There is one further drawback of diffeomorphism in in-
tegrating two discrete input mappings. While symmetry is
a necessary condition for points that have a corresponding
inverse, in non-rigid image registration, the corresponding
points of I1 can be absent from I2, and vice versa. In this
case, it is desirable to have these points labeled, instead of
fitting an invertible function.

1.2. Stochastic Inverse Consistency

In this paper, we propose a stochastic approach to inte-
grate two discrete input vector fields, respectively obtained
by registering/matching I1 to I2 and I2 to I1. The resul-
tant pair of fields are inverse consistent stochastically, ex-
cept at regions where no reliable inverses are found and
these regions are labeled. We assume no diffeomorphism
or other model. Our algorithm leverages existing registra-
tion/matching algorithms to produce more robust results, by
adopting a post-processing approach which integrates the
information from both directions. This basic premise we
use is called stochastic inverse consistency:
Stochastic Inverse Consistency. Let V̄, Ū be the input
forward and backward fields, Ṽ and Ũ be the correspond-

ing inverses. Let ū, v̄, ũ and ṽ be one vector from the cor-
responding fields, such that the vectors ū, ṽ are for the for-
ward direction, and v̄ and ũ are for the backward direction.
By considering the x-dimension (the other dimensions are
similar), Ū and Ṽ are stochastically inverse consistent if

(ūx)(ṽx) = uxvx + rx or (1)
(ux + eūx

)(vx + eṽx) = uxvx + rx (2)

where for the two given error-perturbed vectors, we con-
sider their respective x-components ūx, and ṽx. Their prod-
uct is going to be deviated from the product of the ground
truth ux and vx (with unknown error terms eux , eṽx , and
rx). While the above equations are for the forward direc-
tion, replacing ūx with ũx and ṽx with v̄x results in the
equations for the backward direction.

We shall demonstrate that by adopting stochastic inverse
consistency, our algorithm is robust to noises, does not
smooth out discontinuities, symmetrizes the fields where
inverses exist, and labels in the fields where no reliable in-
verses can be found. In the rest of the paper, we will de-
scribe our algorithm in section 2, analyze our algorithm in
section 3, and demonstrate in section 4 the enforcement of
stochastic inverse consistency can improve stereo match-
ing result. We show a novel application in image stitching
where inverse consistency is employed in structure and lu-
minance deformation to produce unbiased seamless stitch-
ing results.

2. The stochastic inverse consistency algorithm
Given a pair of vector fields computed using existing reg-

istration/matching methods, we adopt a Markov Random
Field (MRF) approach to model the neighborhood relation-
ship in the vector fields. Under the MRF model, the in-
put pair of vector fields are iteratively refined by tensor be-
lief propagation (TBP) algorithm [17], which is effective
in reducing noise, preserving discontinuities, and recover-
ing missing vectors. The enforcement of the inverse consis-
tency is then achieved by fitting a pair of vector fields using
the Generalized Total Least Square (GTLS) [16].

By considering the stochastic properties of both the
forward and backward vector fields during GTLS fitting,
proper weightings are assigned, and “smart averaging” is
performed during the optimization process. The process
iterates until convergence when stochastic inverse consis-
tency is established, by alternately refining the evolving
vector mappings by TBP and stochastic fitting by GTLS.

We denote I1 to be the source image and I2 to be the tar-
get image in the forward direction, i.e., registering I1 to I2
(I2 being fixed). While in the backward direction, I1 is the
target image and I2 is the source image, i.e., registering I2
to I1 (I1 being fixed). We denote U and V as the ground
truth forward and backward vector fields respectively, so in



practice U and V are not known. Ū and V̄ are the forward
and backward vector fields given by a (nonrigid) image reg-
istration/matching algorithms. So Ū and V̄ are the input to
our method. We first summarize our algorithm as follows:

1. Tensor belief propagation (TBP) is applied to refine
both vector fields Ū and V̄.

2. Compute inverse transformations, Ũ and Ṽ. For every
vector in the forward field Ū (resp. backward field V̄),
the corresponding inverse vector in the opposite field
Ṽ (resp. Ũ) is searched within a local neighborhood
in V̄ (resp. Ū).

3. Stochastic fitting using generalized total least square
(GTLS) is applied on the forward (resp. backward)
and its computed inverse field.

4. Steps 1 to 3 are performed iteratively until all corre-
sponding vector pairs in the forward and its estimated
backward (resp. backward and its estimated forward)
fields are inverse consistent, and salient inverse incon-
sistency, if any, is detected. The final output is U∗ (and
its optimized inverse field V∗).

2.1. Field refinement by tensor belief propagation
(TBP)

We adopt the MRF approach and propose to refine the
input fields Ū and V̄ iteratively by tensor belief propaga-
tion [17], where missing data is inferred, noisy data is re-
fined, and discontinuities are preserved.

Given the MRF network induced by the image grid
where two neighboring nodes are denoted by s and t, the
MRF energy function is:

E(Ū) =
∑
s

||ū(s)− ūo(s)||+

λ
∑

t∈N(s)

log

(
1 +
||ū(s)− ū(t)||

2σ2

)
(3)

where the relevant terms are defined in the appendix. The
tensor belief propagation algorithm, also in appendix, is
used to solve Eq. (3) to refine vectors in Ū and V̄.

2.2. Computing inverse fields Ũ and Ṽ

Given the forward and backward vector fields Ū and V̄
refined by TBP, we want to find a corresponding inverse
vector fields, that is, to establish the corresponding inverse
mappings Ṽ and Ũ respectively. Note that in case a corre-
sponding inverse vector cannot be reliably computed, a null
vector will be returned. Note, after this stage, Ū and Ṽ (V̄
and Ũ) are not necessarily inverse consistent.

Given a vector ū(s) at site s in Ū, a vector ṽ(s) which
represents the inverse of ū(s) is to be found from V̄. The

simplest solution is to look at the rounded grid position p =
s + ū(s) in V̄, and check whether this vector v̄(p) points
toward s in Ū. If it is the case, then, ṽ(s) = v̄(p).

However, in many situations such vector cannot be
found, because noise and the discrete nature of the data will
render this simple point-to-point operation fail to produce
reasonable candidate matches. Instead, we adopt neighbor-
hood searching and averaging, such that the chance of find-
ing a reliable inverse is higher while some noise effect can
be effectively smoothed out at the same time. The approach
is summarized and described in Fig. 7 in appendix.

2.3. GTLS formulation for stochastic inverse con-
sistency

Recall stochastic inverse consistency:
(ūx)(ṽx) = uxvx + rx

(v̄x)(ũx) = uxvx + rx

Note that both the observations (left-hand side) and the
model (right-hand side) are perturbed by noise, and that the
stochastic property is not the same for ūx and ṽx. To solve
the problem while simultaneously considering both errors,
the Generalized Total Least Square (GTLS) ([16], also in
appendix) is adopted. Assuming in the current iteration
where tensor belief propagation has been executed and in-
verse fields has been computed, that is, V̄, Ū, Ṽ and Ũ
are available for the current iteration, the x-component is
solved at every grid position s|ṽ(s)(i) ̸= ∅ in the field:[

ūx(s)
(i)

−ṽx(s)(i)
]

X ≈
[
−ūx(s)

(i)ṽx(s)
(i)

−ṽx(s)(i)ūx(s)
(i)

]
(4)[

v̄x(s)
(i)

−ũx(s)
(i)

]
Y ≈

[
−v̄x(s)(i)ũx(s)

(i)

−ũx(s)
(i)v̄x(s)

(i)

]
(5)

where i is the iteration number. X and Y become
ūx(s)

(i+1) and v̄x(s)
(i+1) respectively. ṽx(s)

(i+1) and
ũx(s)

(i+1) are then obtained by the corresponding inverse
field establishment in the next iteration. Intuitively, Eq. (4)
performs fitting such that X will be somewhere in-between
ūx(s)

(i) and−ṽx(s)(i). The position depends on their error
properties Eūx(s) and Eṽx(s) which are estimated based on
their local variances:

η = |ūx(s)
(i) − (−ṽx(s)(i))| (6)

γ =
var(ūx(s)

(i))

var(ūx(s)(i)) + var(ṽx(s)(i))
(7)

Eūx(s) = γ · η, Eṽx(s) = (1− γ) · η (8)

where the error properties on the term −ūx(s)ṽx(s) are de-
fined by R = Eūx(s)Eṽx(s) (fitting is not performed if the de-
nominator is zero in Eq. (7)). The error equilibration matri-
ces for solving X in Eq. (4) are obtained from the Cholesky
decomposition of the error covariance matrices C and D,
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Figure 2. Synthetic data 1: field with discontinuity. (a) The noise-
perturbed field with σf = σb = 0.7. (b) Averaging with computed
inverse field. (c) Averaging with results refined by TBP. ṼBP is
computed from ŪBP followed by of TBP refinement. ŨBP is
similarly computed. (d) Our final result shows little difference
from the ground truth.

where C = ∆T∆, D = ∆∆T , ∆ =

[
Eūx(s) R
Eṽx(s) R

]
.

Similarly Y is solved. The whole iterative process will be
continued until: ∑

{s|ṽ(s)(i) ̸=∅}

||ū(s)(i) − ṽ(s)(i)||

+
∑

{s|ũ(s)(i) ̸=∅}

||v̄(s)(i) − ũ(s)(i)|| < ϵall (9)

where ϵall is a small constant. Notice that the fitting process
and convergence evaluation are omitted at the positions of
‘holes’ where reliable inverses are absent. If the inverse
does not exist, the vector should remain unchanged. So the
vectors at those positions will only be modified during the
TBP process in the next iteration. After the whole process
has converged, regions where ‘holes’ still survive in step 2
will be labeled as salient inconsistency region. Experiments
show that the number of holes is monotonically decreasing
during the process.

3. Analysis of stochastic inverse consistency
First, we use synthetic input vector fields corrupted with

various amount of noise. We compare our result with the
ground truth (Figure 2 and Table 1). Then, we show how
we detect the salient inverse inconsistency (Figure 3).

3.1. Noisy input fields with discontinuity

We first tested our proposed framework on synthetic
noisy vector fields with a salient discontinuity to demon-
strate the robustness of our framework against noises and
the capability of recovering reasonable results close to the
ground truths (Figure 2). Different amounts of noise are

σb
(a) ∥ Ū − U ∥ (e) ∥ V̄ − V ∥

σf (b) ∥ (Ū−Ṽ)
2

− U ∥ (f) ∥ (V̄−Ũ)
2

− V ∥

(c) ∥ (V̄BP+ŨBP)
2

− U ∥ (g) ∥ (ŪBP+M ṼBP)
2

− V ∥
(d) ∥ U∗ − U ∥ (h) ∥ V∗ − V ∥

Vector fields with discontinuity
0.5 0.6 0.7 0.8

257.0 258.2 248.8 306.9 261.8 362.5 257.9 417.3
0.5 254.9 272.4 272.8 277.3 279.3 322.8 297.5 341.0

96.0 96.8 106.7 116.4 125.5 141.5 101.1 165.1
25.3 26.1 41.7 40.8 37.0 36.0 23.3 23.1

298.9 271.6 322.9 311.1 300.9 361.0 330.6 406.5
0.6 283.4 266.8 303.9 289.5 294.3 292.5 324.3 332.6

119.5 108.2 131.4 121.5 135.0 155.3 172.8 163.3
96.7 95.9 42.1 42.1 44.7 43.5 42.0 40.7

360.6 266.9 359.8 311.5 354.7 362.9 372.9 401.3
0.7 309.6 297.4 317.8 299.0 312.8 327.0 323.5 349.2

132.0 110.9 157.0 132.2 146.9 161.5 160.4 176.3
24.2 23.5 41.3 38.6 48.7 50.0 83.7 81.9

408.0 261.8 406.0 313.2 431.4 361.6 423.7 417.2
0.8 335.2 291.1 341.6 329.6 344.9 323.2 350.1 357.0

165.1 124.9 159.4 137.4 199.9 181.2 200.1 210.9
47.1 48.5 42.8 43.5 60.1 60.2 87.1 90.5

Table 1. The entries in the bottom table are explained by the table
in the top. Ground truth vector fields are U and V with ∥ U ∥
= ∥ V ∥ = 512. In the top table: σf - noise level on perturbed
input Ū, σb - noise level on V̄. Note the error entry in (d) is
smallest among (a)–(d), and also (h) among (e)–(h). This table is
color-coded.

added to each dimension independently. While simple av-
eraging are unsatisfactory in all the noise levels, simple av-
eraging with TBP incorporated produces result far worse
than ours. Table 1 shows the quantitative comparison. We
compute the sum of absolute differences between the noisy
fields with the ground truth. Let the signal strength of the
ground truth field be ∥ U ∥. Excluding the boundary,
∥ U ∥= (400− 38)

√
2 = 512 as each color is a unit vector.

The terms ∥ U − Ū ∥ and ∥ V − V̄ ∥ respectively show
the exact errors of the input vector fields. ∥ U −U∗ ∥ and
∥ V−V∗ ∥measure the error of our recovered vector fields
compared with the ground truth. From the table, we can see
that even under large amount of noise (i.e., SNR = 1.64 dB
for ∥ U − Ū ∥ when σf and σb = 0.7), our method still
recovers the fields with high SNR (SNR = 15.4 dB in the
same case).

3.2. Noisy input fields where inverses may not exist
We tested our framework on input field where parts of

the vector fields have no inverse. Figure 3 shows the mod-
ified forward fields U and Ū, where the modified region
has no corresponding inverse in the backward field. The
results we obtained are similar to the previous example, ex-
cept that the total number of holes is no longer zero upon
convergence. The computed inverse from the final result
U∗ and V∗ shows a region of null vectors which actually
corresponds to the region with no inverse. This feature is
useful for occlusion detection in stereo matching, demon-
strated in the following section.

4. Applications
We apply our stochastic inverse consistency to stereo

matching in the presence of occlusions, and show that more
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Figure 3. Synthetic data 2: field with discontinuity and non-
invertible region. (a) Ground truth. (b) Input forward vector field.
The corresponding backward vector fields V and Ṽ remain un-
changed as in Synthetic Data 1. (c) Our result U∗. (d) The com-
puted inverse from the pair of converged deformation fields. No-
tice the region where corresponding inverse cannot be found. (e)-
(h) compare the convergence behavior between synthetic data 1
and 2 of our algorithm. (e) and (f) are the plot of ϵall/2 and (total
no. of holes)/2 for synthetic data 1, ϵall is defined in Eq. (9). Cor-
respondingly (g) and (h) are for synthetic data 2. While for both
cases they converge quickly, in (h), the total number of holes drops
to a constant, rather than zero, as depicted in (f). It shows the fact
that upon convergence, there exists region where inverses cannot
be reliably computed. The region is automatically labeled by the
null vectors as shown in (d).

accurate disparity can be obtained by detecting occlusion
as violations in inverse consistency. Finally, we apply
our method to general image registration, and show results
in image stitching and unconventional image compositing,
where feature matching is incorporated to deal with large
deformation, in order to align image intensity and preserve
underlying image structures without bias.

4.1. Symmetric stereo matching

We demonstrate in this section the enforcement of
stochastic inverse consistency improves the results of stereo
matching, by symmetrizing the disparity mapping from one
image to another. Occlusion is one of the major challenges
in stereo matching. Many MRF approaches have already
modeled pixel matching, visibility, occlusion constraints in
their corresponding energy functional by considering both
matching directions [14, 6]. Very good results have been

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. Symmetric stereo results for Map (top) and Sawtooth
(bottom). (a) I1. (b) I2. (c) Ground truth disparity map, taking
I1 as reference, denoted as U (forward direction). (d) Forward
disparity map Ū. (e) Backward disparity map V̄. (f) Refined
forward disparity map U∗ by taking Ū and V̄ as the input. (g)
The forward occlusion map, i.e., taking I1 as reference, detected
as violation of inverse consistency using our method. (h) Refined
backward disparity map V∗. (i) The backward occlusion map.

obtained, but the disparity maps obtained by swapping the
images may still not be consistent, because each term con-
tributes only a part to the overall energy. Another approach
proposed the symmetric Potts model [19], which is a sym-
metric cost function, and did not explicitly model occlusion.

Enforcing stochastic inverse consistency in stereo match-
ing can be regarded as a data-driven approach to refine a
pair of disparity maps, which are obtained by any stereo al-
gorithm by swapping the input images. During the GTLS
fitting process, occlusion and depth discontinuities are de-
tected as salient violation to inverse consistency. We
demonstrate the idea by applying our method using the
stereo framework created by Scharstein and Szeliski [13],
which can be found at http://www.middlebury.edu/stereo.

Figure 4 shows the improved disparity maps of the Map
and Sawtooth examples. The input disparity maps are
computed by the Graph Cuts algorithm [8] provided in
Scharstein and Szeliski’s package. Figure 4 (d) and (e) show
their results, which in turn become our input. From Figure
(d) and (e) we can observe that the disparities that signifi-
cantly deviate from the ground truth (e.g. the noisy dispar-
ities in Map) are due to occlusion, where matching corre-
spondences are lacking. Our framework refines the dispar-
ity maps from both directions with discontinuity consider-
ation. Violation of inverse consistency will be regarded as



occlusion. Notice that our goal is not on introducing a new
stereo matching algorithm; rather our contribution here is to
simultaneously refine the results obtained from any reason-
able stereo algorithm and detect scene occlusion. Note in
Sawtooth where potential occlusion regions in the dispari-
ties are detected.

4.2. Image stitching with large discrepancy in
structure and intensity

Global registration is often preferred to pairwise registra-
tion in constructing image mosaics in order to minimize ac-
cumulation error in registering more than two overlapping
images. Here, we address a new problem of stitching multi-
ple images with large discrepancy in structure and intensity,
where the images may not capture the same scene or ob-
ject. Besides these new challenges, similar to conventional
mosaic construction, to produce a seamless stitching result,
a global method is preferred to avoid accummulation error
or biased results. In the following, we shall show how our
post-processing approach to enforcing inverse consistency
can naturally achieve the following goal: Let I1, I2, · · · , In
be the image sequence to be stitched, where successive im-
ages Ii and Ii+1 are pairwise-overlapping. The same un-
biased result is desired when we reverse the stitching se-
quence, that is, In, In−1, · · · , I1.

Existing image stitching algorithms that eliminate across
the input images luminance discrepancy [10] and structure
mismatch [7] deform input images to a reference image to
solve the misalignment problems, therefore generating re-
sults dependent on the input order. Our approach to com-
puting an unbiasd result is to deform all input images, so
that all structures and luminance can be aligned across the
stitched result. This is a property often desirable in image
stitching.

In order to generate an unbiased stitching result, we de-
form both input fields under our new inverse consistency
framework. The detailed steps are as follows:

1. Similar to stitching algorithms [10, 7], given two im-
ages that are roughly aligned, we compute the opti-
mal partition in the overlapping region. Then, detect
and match 1D features along the stitching boundary to
form a sparse set of deformation vectors, similar in [7].

2. Propagate the deformation vectors to the entire over-
lapping region. This is different from [7] where the
deformation propagation will not be applied across the
stitching boundary. The propagation is performed in
both the forward and backward directions.

3. The forward and backward vector fields obtained in
step 2 become the input of our TBP-GTLS framework.
The iterative refinement is performed until a pair of
inverse-consistent vector fields is obtained.

(a)

(b)

(c) our input partition

(d) deform left image only

(e) deform right image only

(f) deform both images

Figure 5. Brush example. Example in [7] for comparison of con-
ventional stitching methods. (a) is the input image. (b) Optimal
seam result as shown in [7]. Since we cannot replicate the yellow
region directly, for fair comparison we use a new input partition as
shown in (c). (d) and (e) are results by [7] where only the left side
or the right side is deformed, respectively, showing that the shape
transition is not smooth across the stitching boundary, especially
in (d). (f) is our result where both sides are deformed to the mean
shape. Our result is better since both images are deformed, the
shape and luminance transition are smoother. [7] also performed
exhaustive comparison using the same example.

Since we cannot replicate the overlapping region as ex-
actly as in [7], for fair comparison, we form a new partition
of the two brushes as shown in Figure 5(c). Stitching results
for the forward and backward directions are shown in Fig-
ure 5(d) and Figure 5(e). In Figure 5(d), it is obvious that
a smooth transition of the shape cannot be obtained. Our
result is shown in Figure 5(f), where a smooth deformation
for both overlapping images is obtained.

Next, we show a complex stitching example of a pho-
tomontage created by stitching five images of Frank Lloyd
Wright’s architectural masterpieces (Figure 6(a)). Three
images are real photos and two are artist’s renderings. The
discrepancy in structure and colors are evident as shown
in the globally aligned and blended result in Figure 6(b).
Note in particular the curved ramps (Guggenheim Mu-
seum) which necessitates nonrigid structure deformation
here. Figure 6(b) shows the stitching result generated by



(a)

(b)

(c)

(d)

(e)

Figure 6. Architecture example. (a) Input images. Note the
large discrepancy in structure and color among these images. (b)
Roughly aligned images. The overlapping areas are blended. (c)
is the stitching result generated by deforming Ii, i = 2, · · · , n, to
align with the current stitching result {I1, · · · , Ii−1}, which are
fixed during each stitching step. (d) is the stitching result gener-
ated by deforming Ii, i = n − 1, · · · 1, to align with the current
stitching result {Ii+1, · · · , In} which are fixed in the current step.
(e) Our final stitching result shows a better unbiased photomontage
where all images are deformed during the stitching process.

deforming Ii to align with the stitched set {I1, · · · , Ii−1}
while the latter are fixed during each stitching process. No-
tice the curved ramp is squeezed. Figure 6(d) is analogous
to (c) with the stitching direction reversed. Observe the
stretched ramp. Figure 6(e) shows the stitching result of an
unbiased photomontage where the four pairwise transforms
are post-processed successively by enforcing stochastic in-
verse consistency to avoid biases and accumulation errors.

5. Conclusion
We propose a post-processing algorithm for enforcing

stochastic inverse consistency, given a pair of forward and
backward fields. By using synthetic data, we showed that
the fields processed by our algorithm can satisfy stochas-
tic inverse consistency when applicable. The symmetrized
output is unbiased to any input image, allowing the same re-
sult (in a stochastic sense) be obtained regardless of the im-
age order. We exploit this advantage and proposed two ap-
plications. One application involves symmetrizing match-

ing between a stereo pair, where occlusion boundaries can
be localized as violations to inverse consistencies, without
any modifications to the chosen matching algorithm. An-
other application is general image stitching in the presence
of severe intensity and structure misalignment among the
images. Our result suffers less biases as a result of enforc-
ing stochastic inverse consistency among the input images
during the stitching process.
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A. TBP algorithm
1. Initialize mst(s, t) as a n × n identity matrix, and

ms(s) = ūo(s)ūo(s)
T to indicate the initial belief in

the vector for site s, where ūo(s) ∈ Ū.

2. Update messages mst(s, t) iteratively for N iterations
(N is set according to the size of input image):

2.1 Find the current vector with the highest probability:

bs(s) ← ms(s) +
∑

k∈N(s)

mks(k, s) (10)

ū(s) ← ê1[bs(s)] (11)

where N(s) is the first-order neighborhood of s, and
ê1[bs(s)] is the unit eigenvector associated with the
largest eigenvalue of the tensor bs(s).

2.2 Compute new messages:

mst(s, t) ← φst(ū(s), ū(t))(normalize[ms(s) +∑
k∈N(s)\t

mks(k, s)]) (12)

where the normalization scales all eigenvalues so that
the largest one equals to 1 and φst(ū(s), ū(t)) =

exp(− log(1+ 1
2 (

||ū(s)−ū(t)||
σ )2)

2σ2
1

) is defined by the robust
estimator (Lorentzian) to preserve the discontinuity
between s and t.

3. Compute beliefs:

bs(s) ← ms(s) +
∑

k∈N(s)

mks(k, s) (13)

ū(s) ← ê1[bs(s)] (14)

B. Computing inverse map
See Figure 7.

C. GTLS
We summarize GTLS [16] here. Consider an overde-

termined system of linear equations with a set of m linear
equations in n× d unknowns X:

AX ≈ B A ∈ Rm×n, B ∈ Rm×d and
X ∈ Rn×d, m > n+ d (15)

Partition A = [A1;A2], where A1 ∈ Rm×n1 , A2 ∈
Rm×n2 and n = n1 + n2, and also partition X =

[XT
1 ;X

T
2 ]

T , where X1 ∈ Rn1×d and X2 ∈ Rn2×d. As-
sume that the columns of A1 are error free and that non-
singular error equilibration matrices RD ∈ Rm×m and
RC ∈ R(n2+d)×(n2+d) are given such that the errors on
R−T

D [A2, B]R−1
C are equilibrated, that is, uncorrelated with

zero mean and same variance. Then, a GTLS solution of
Eq. (15) is any solution of the set ÂX = A1X1 + Â2X2 =

B̂ where Â = [A1, Â2] and B̂ are determined such that

Range(B̂) ⊆ Range(Â) (16)
and

∥ R−T
D [△Â2,△B̂]R−1

C ∥F
= ∥ R−T

D [A2 − Â2, B2 − B̂]R−1
C ∥F (17)

is minimal. The problem of finding [△Â2,△B̂] such that
Eqs (16) and (17) are satisfied is referred to as the GTLS
problem. Whenever the solution is not unique, GTLS sin-
gles out the minimum norm solution, denoted by X̂ =

[X̂T
1 ; X̂

T
2 ]

T

.


