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Due to the advancement of geo-positioning technology, the terrain data has become increasingly
popular and has drawn a lot of research effort from both academia and industry. The distance com-
putation on the terrain surface is a fundamental and important problem that is widely applied in
geographical information systems and 3D modeling. As could be observed from the existing studies,
online computation of the distance on the terrain surface is very expensive. All existing index-based
methods are only efficient under the case where the distance query must be performed among a small
set of predefined points-of-interest known apriori. But, in general cases, they could not scale up to
sizable datasets due to their intolerable oracle building time and space consumption.

In this paper, we studied the arbitrary point-to-arbitrary point distance query on the terrain surface
in which no assumption is imposed on the query points, and the distance query could be performed
between any two arbitrary points. We propose an indexing structure, namely Efficient Arbitrary Point-
to-Arbitrary Point Distance Oracle (EAR-Oracle), with theoretical guarantee on the accuracy, oracle
building time, oracle size and query time. Our experiments demonstrate that our oracle enjoys excellent
scalability and it scales up to enormous terrain surfaces but none of the existing index-based methods
could be able to. Besides, it significantly outperforms all existing online computation methods by
orders of magnitude in terms of the query time.
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1 Introduction
With the development of geo-positioning technology, terrain data has become popular and
query processing on terrain surface becomes an emerging research topic in both academia
and industry [11, 13, 22, 23, 29, 34, 41, 42, 44, 45]. As Figure 1 shows, a terrain surface is a
planar graph consisting of faces, edges and vertices. Each face on a terrain surface is a triangle
with three adjacent vertices and three adjacent edges. Each edge connects two adjacent
vertices and each vertex is a 3D point. As the figure shows, the terrain in this example
contains 18 vertices (represented by solid dots), 39 edges and 23 faces (i.e., triangles).
The shortest distance between two points on the terrain surface is called geodesic shortest

distance. It is defined to be the length of the shortest path between the two points on the
terrain surface, namely geodesic shortest path. Consider the example in this figure. There are
two arbitrary points on the terrain surface, namely 𝑠 and 𝑡 , defined by two hollow dots. The
dashed line 𝐺𝑃 which consists of many line segments denotes the geodesic path between
𝑠 and 𝑡 . The length of the path is their geodesic distance. The dashed line 𝐸𝑃 corresponds
to their shortest path in the Euclidean space and the length of this path is their Euclidean
distance. It is worth mentioning that the geodesic distance is significantly different from
the traditional Euclidean distance. According to the existing studies [11], the difference
between the geodesic distance and the Euclidean distance could be as large as 300%.
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Fig. 1. An Example of Terrain Surface

The distance query on terrain surfaces has many applications. (1) With the rise of Meta-
verse [27, 28], 3Dmodeling of buildings and infrastructures in the urban area and the objects
such as mountains, hills and valleys in the rural areas become more and more popular.
The shortest geodesic distance computation [27, 28] is a fundamental building block for
location-based services such as the POI recommendation in its own virtual world. (2) In Ge-
ographical Information System (GIS), the geodesic distances are used to compute the travel
cost (e.g., travel time and energy consumption) from one place to another [33]. Besides, life
scientists study the travel patterns of animals by using the geodesic distances between their
residential sites [14, 30]. (3) In the scientific 3D modeling [1, 20, 25, 35], each 3D object such
as an organ has many reference points and the geodesic distances between the reference
points are used as their key features for scientific analysis. (4) In spatial data-mining, many
techniques frequently invoke geodesic distance queries. One typical example is clustering
where the inner-cluster geodesic distances and inter-cluster geodesic distances are used
frequently [7, 40]. In spatial co-location pattern mining, the geodesic distance queries are
also largely invoked for checking co-location patterns [18, 32].
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Although there are a lot of existing studies on distance queries on terrain surfaces [2, 4,
8, 15, 22, 23, 26, 29, 31, 41–43], they are not efficient enough for distance query processing
between two arbitrary points. The first category of the existing studies consists of the on-the-
fly algorithms [8, 31, 43]. The time complexity of each exact on-the-fly algorithm is larger
than 𝑂 (𝑁 2), where 𝑁 is the number of vertices on the terrain surface. This complexity is
not tolerable for sizable datasets and could not scale up. Each of the existing approximate
algorithms [22, 23] takes𝑂 ((𝑁 +𝑁 ′) log(𝑁 +𝑁 ′)) time, where 𝑁 ′ is the number of additional
points added for the distance computation. The time complexity is still too large to apply
for many real-world applications. According to the experiment of [41, 42], the running time
of the algorithm is more than 300 seconds for a small dataset with only 300K vertices which
is very slow and prevents its usage in many real-time applications. The second category of
the existing studies contains the index-based methods [4, 41, 42] which accelerate the query
processing with a pre-computed indexing structure. To the best of our knowledge, there is
no index-based method for computing the exact distances and thus, all algorithms in this
category are approximate algorithms. The state-of-the-art algorithm in this category [42]
focuses on the POI-to-POI query where the query must be performed among a small set
of points-of-interests known apriori. Besides, the set of POIs is assumed to be typically
significantly smaller than the number of vertices on the terrain surface. In the general cases
where there is no assumption on the locations of the query points and the query could
be performed between two arbitrary points, all existing index-based algorithms [4, 41, 42]
introduce a large number of auxiliary points, namely Steiner points, whose amount is typically
orders of magnitude larger than the number of vertices on the terrain surface. Their indexing
structures are built upon these Steiner points in place of the original POIs or vertices.
Since the number of Steiner points introduced is orders of magnitude larger than that of
original vertices on the terrain surface, the existing index-based algorithms inevitably have
a prohibitively large building time and space consumption which renders them unscalable
to sizable terrain datasets. According to our experiments, their building time is more than 3
hours and their memory usage exceeds our memory budget (i.e., 256GB) even for a small
terrain with 10,243 vertices only.

Table 1. Comparison of Our Algorithm and Existing Algorithms

Algorithm Building Time Space Consumption Query Time Error Bound Support Weighted Terrain?
Fixed Scheme [26] - - Large Small Yes
Unfixed Scheme [4] - - Large Small Yes

K-Algo [22] - - Large Small No
SP-Oracle [15] Large Large Small Small Yes
SE-Oracle [42] Large Large Small Small No

EAR-Oracle (Proposed) Small Small Small Small Yes

Motivated by this, in this paper, we propose an indexing structure, namely Efficient
Arbitrary Point-to-Arbitrary Point Distance Oracle (EAR-Oracle), for the arbitrary point-to-
arbitrary point distance query processing on the terrain surface. Note that our problem
is more general than the traditional POI-to-POI query, where each query point must be
pre-defined. EAR-Oracle integrates the online search and our proposed novel indexing
structure called highway network. The highway network is a sparse graph which indexes the
pairwise distances between the highway nodes (which are carefully selected “hub” points
on the terrain surface) and bridges the distant regions. It is worth mentioning that it is non-
trivial to design a lightweight highway network which provides accurate distances since it
is challenging to select the highway nodes and build the highway edges effectively. With the
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help of this network, the distance query between two points in a local area could be answered
by a local online search and the distance between two points in the distant areas is processed
by using the highway network. Our theoretical analysis and empirical study demonstrate
that the highway network-based approach is lightweight (which incurs very small indexing
overhead and query cost). As such, it could scale up and it also provides highly accurate
results. Our contributions are three-folds. Firstly, we propose a novel highway network-based
approach for the arbitrary point-to-arbitrary point distance query on terrain surfaces. To the
best of our knowledge, it is the first index-based algorithm which could answer this kind
of query efficiently with accuracy guarantee. Secondly, we provide thorough theoretical
analysis on the complexities of its building time, space consumption, query time and also
the error bound. Thirdly, we conducted extensive empirical study and our experimental
results show that our algorithm outperforms the existing algorithms significantly by orders
of magnitude in terms of building time, space consumption and query time.
The remainder of the paper is organized as follows. Section 2 presents the problem

definition. Section 3 reviews the related studies and compares themwith this paper. Section 4
demonstrates our proposed indexing structure, Efficient Arbitrary Point-to-Arbitrary Point
Oracle. Section 5 reports the experimental results. Finally, Section 6 concludes this paper.

2 Problem Definition
Consider a terrain surface 𝑇 . Let 𝑉 denote the set consisting of all vertices of 𝑇 and let 𝐸
denote the set of all edges of 𝑇 . The size of the terrain, denoted by 𝑁 , is defined to be the
cardinality of 𝑉 (i.e., 𝑁 = |𝑉 |). Consider a vertex 𝑣 in 𝑉 . We denote the three coordinate
values of 𝑣 as 𝑥𝑣 , 𝑦𝑣 and 𝑧𝑣 , respectively. Let 𝐹 denote the set of all faces of𝑇 . Each face 𝑓 in 𝐹

is associated with a weight, denoted by𝑤 (𝑓 ), which is a positive real number. The weights
capture the different travel costs (e.g., time and energy consumption) for a distance unit
on different faces (e.g., it takes more time to travel through a sandy area or wetland than a
normal ground even though the travel distances are the same) and all terrain properties
regarding the travel cost such as slopes, terrain types (e.g., wetland, sand and rock) and
obstacles could be encoded as weights [3, 15, 26]. It is worth mentioning that in the general
case where the weight of each face could be any positive real number, we call such a terrain
surface a weighted terrain surface and in the case where the weight of each face is equal to 1,
the terrain surface degenerates to an unweighted terrain surface.
Consider two arbitrary surface points 𝑠, 𝑡 and let 𝜋𝑔 (𝑠, 𝑡) denote a path between them on

the terrain surface. Formally, 𝜋𝑔 (𝑠, 𝑡) consists of a sequence 𝑋 of line segments and each
segment lies on a unique face of the terrain surface. Given a line segment 𝑥 ∈ 𝑋 , we denote
the unique face that 𝑥 lies on by 𝑓𝑥 and we denote the length of 𝑥 by 𝑙 (𝑥). The length of
𝜋𝑔 (𝑠, 𝑡), denoted by 𝑙 (𝜋𝑔 (𝑠, 𝑡)), is defined to be

∑
𝑥∈𝑋 (𝑤 (𝑓𝑥 ) · 𝑙 (𝑥)) which is the sum over the

product of the length of each line segment in 𝑋 and the weight of the face it lies on. The
geodesic shortest path between 𝑠 and 𝑡 , denoted by Π𝑔 (𝑠, 𝑡), is defined to be the path between 𝑠

and 𝑡 on the terrain surface with the smallest length (i.e., Π𝑔 (𝑠, 𝑡) = argmin𝜋𝑔 (𝑠,𝑡 ) {𝑙 (𝜋𝑔 (𝑠, 𝑡))}).
The geodesic distance between 𝑠 and 𝑡 , denoted by 𝑑𝑔 (𝑠, 𝑡), is defined to be the length of Π𝑔 (𝑠, 𝑡).
Note that 𝑑𝑔 (·, ·) is a metric and the triangle inequality could be applied.

Problem 1 (Distance Oracle). We would like to design an indexing structure, namely distance
oracle, for the distance query processing on terrain surfaces which provides approximate distance and
has a small building time, a small space consumption, a small query time and an accuracy guarantee.

To the best of our knowledge, there is no existing work which could answer the distance
queries between arbitrary points efficiently with accuracy guarantee on the terrain surface.

Proc. ACMManag. Data, Vol. 1, No. 1, Article 14. Publication date: May 2023.



EAR-Oracle: On Efficient Indexing for DistanceQueries between Arbitrary Points on Terrain Surface 14:5

3 Related Work
In this section, we review the existing studies about the query processing on the terrain
surface including the distance queries, 𝑘 nearest neighbor queries, reverse 𝑘 nearest neighbor
queries, etc. Since this paper focuses on the distance query, Section 3.1 and Section 3.2 present
the existing studies on the distance query, where Section 3.1 surveys on-the-fly algorithms
(which compute the distance online without any preprocessing) and Section 3.2 summarizes
the existing work on index-based algorithms (which accelerate the distance query processing
with a pre-computed indexing structure). Section 3.3 introduces some other related studies.
Section 3.4 finally compares the existing studies with this paper.

3.1 On-the-fly Algorithms
There are three existing on-the-fly algorithms of finding the exact geodesic shortest distance
between two arbitrary points on terrain surfaces [8, 31, 43]. Their time complexities are
𝑂 (𝑁 2 log𝑁 ), 𝑂 (𝑁 2) and 𝑂 (𝑁 2 log𝑁 ), respectively, which are prohibitively large and prevent
their usage in many real-world applications.

Motivated by this, a lot of research effort was put into the development of the approximate
distance computation which could have a smaller time complexity [22, 23, 26]. The major
idea of all existing approximate algorithms is introducing many additional auxiliary points,
called Steiner points, into the terrain surface and then connecting auxiliary points with
many auxiliary edges. Finally, they obtain a graph by introducing the auxiliary points and
edges. They find the approximate geodesic distance through the distance computation in
the graph. The running time is𝑂 ((𝑁 +𝑁 ′) log(𝑁 +𝑁 ′)), where 𝑁 ′ is the number of auxiliary
points introduced. Their differences lie on their methods of the auxiliary points selection
and auxiliary edges construction. The first attempt in this category, namely Fixed Scheme [26],
is to introduce𝑚 auxiliary points uniformly in each edge of the terrain surface and establish
an auxiliary edge between each pair of auxiliary points on the same face. However, its error
bound has a terrain-related term. Although its empirical error is fairly small when a proper
value of𝑚 is provided, it still takes a quite long time for distance query processing. The
second one, namely K-Algo [22], adopts a similar method but has a different strategy of
introducing auxiliary points on each edge. As such, it provides 𝜖-approximate distance,
where 𝜖 is a user-defined error parameter. The error is achieved through placing auxiliary
points by a terrain-related geometry property. However, this property may place a large
amount of auxiliary points and thus, more time is required for query processing in K-Algo. In
addition, K-Algo could only be applied to unweighted terrain surfaces and does not support
weighted terrain surfaces. The third one, namely Unfixed Scheme [4], introduces auxiliary
points in each bisection of each face by using a geometry-based scheme and introduces
an auxiliary edge between each pair of auxiliary points in the same vicinity. The same
as the second one, it also provides 𝜖-approximate distance. However, for the faces with
sharp angles, the Unfixed Scheme will also place quantities of auxiliary points which causes
slow query response. Compared with the exact methods, the approximate ones have a
highly boosted running time but the running time is still too large to be used in real-time
applications.

3.2 Index-Based Algorithms
To further boost the distance query processing, the index-based methods were proposed [4,
21, 42]. [21] proposed a Single-Source All-Destination (SSAD in short) indexing structure,
which indexes all distances between a fixed source point and any other point on the terrain
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surface. It has a 𝑂 (𝑁 2 log𝑁 ) building time, 𝑂 (𝑁 ) space consumption and a 𝑂 (1) query time.
But, it is limited to a fixed source point which must be given before the building of the
index and could not be changed in the query phase. Then, [15] proposed an indexing
structure, namely Steiner Point-Based Oracle (SP-Oracle in short), which is an index-based
version of Unfixed Scheme. Note that, in this paper, the additional auxiliary points added
are also called Steiner points and the graph obtained from the auxiliary points and edges
is called Steiner graph. SP-Oracle builds an indexing structure for the exact distance query
processing on the Steiner graph. It provides 𝜖-approximate distance and the complexities of
its building time, space consumption and query time are 𝑂 ( 𝑁 log 1

𝜖

𝑠𝑖𝑛2 (\ )𝜖2.5 log
3 ( 𝑁 log 1

𝜖

𝑠𝑖𝑛 (\ )𝜖1.5 ) log
2 1
𝜖
),

𝑂 ( 𝑁
sin(\ )𝜖1.5 log

2 ( 𝑁
𝜖
) log2 1

𝜖
) and𝑂 ( 1

sin(\ )𝜖 log
1
𝜖
+log log𝑁 ), respectively,where\ is theminimum

inner angle among all faces on the terrain surface. The state-of-the-art algorithm, namely
SE-Oracle [42], focuses on POI-to-POI distance query where the distance query must be
performed among several pre-defined POIs known apriori. It proposed an oracle for the
POI-to-POI query based on a technique called Well-Separated Pair Decomposition. But, for
the arbitrary point-to-arbitrary point query, it must introduce the Steiner points in the
same way as SP-Oracle. In this case, SE-Oracle indexes the Steiner points in place of POIs
and builds their oracle on the Steiner points. As such, it inevitably has a prohibitively large
building time and space consumption. According to our experiments, it consumesmore than
256GB of memory and takes more than 3 hours to build in a dataset with only 10,243 vertices.
Besides, it only applies to an unweighted terrain and could not be able to apply to a weighted
terrain. It also provides 𝜖-approximate distance. The complexities of its building time, space
consumption and query time are 𝑂 ( 𝑁 log2 𝑁

𝜖2𝛽
+ 𝑁ℎ log 1

𝜖

𝑠𝑖𝑛 (\ )
√
𝜖
log 𝑁 log 1

𝜖

𝑠𝑖𝑛 (\ )
√
𝜖
+ 𝑁ℎ log 1

𝜖

𝑠𝑖𝑛 (\ )
√
𝜖𝜖2𝛽

), 𝑂 ( 𝑁ℎ log 1
𝜖

𝑠𝑖𝑛 (\ )
√
𝜖𝜖2𝛽

)
and 𝑂 ( ℎ

𝑠𝑖𝑛 (\ )𝜖 ), respectively. Here ℎ and 𝛽 are two terrain related parameters in [42] and in
practice, ℎ < 30 and 𝛽 ∈ [1.5, 2]. In conclusion, all existing index-based methods suffer from
their unscalable building time and space consumption.

3.3 Other Related Studies
We review some other related studies [12, 13, 22, 23, 34, 44, 45] on the terrain surface in this
section. Specifically, [12, 13] studied the 𝑘NN query processing and it proposed to use a
simplified low-resolution terrain surface constructed from the original data for pruning
some irrelevant regions so that the 𝑘NN queries could be accelerated. [34] proposed a
Voronoi diagram-based method for 𝑘NN queries and [44] studied the monitoring of the
𝑘NN in a dynamic setting and [45] studied reverse 𝑘 nearest neighbors queries. [23] studied
the problem of finding the shortest geodesic path satisfying a slope constraint. Another
related study is the contraction hierarchy (CH) [16, 17] which is for shortest distance and
path query processing on road networks. But, we observe that it is not suitable for terrain
surfaces since (1) CH requires a network as a prior input data but the terrain surface does
not have. (2) An adaptation of CH to our problem is to index our base graph with CH. But,
CH assumes that the graphs are significantly sparse and all vertices have very different
centralities. The typical data that CH indexes is the road networks which are sparse (i.e.,
each vertex typically has only 2-4 neighbors) and has an intrinsic hierarchy (e.g., highway
and local road). However, each vertex in our base graph has𝑂 ( 1

sin(\ ) ·𝜖1.5 ) neighbors and thus,
the graph is much denser and each vertex in the base graph has similar or even equivalent
degree centrality and there is no hierarchy. Our base graph does not follow the requirements
of CH which are necessary for the efficiency of using CH. If we apply CH to our base graph,
the total estimated size of the memory will be larger than 𝑂 ( 𝑁

sin3 (\ ) ·𝜖4.5 ) (which is too large).
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Thus, CH will incur a prohibitively large space consumption on terrain data and is not
suitable for geodesic distance query processing. Besides, the state-of-the-art index-based
algorithm for distance query on the base graph is SP-Oracle [15] which is shown to be very
inefficient in [42]. It is still an open question how to efficiently index the base graph for the
distance query.

Highway Nodes

Steiner Points

(a) Highway Nodes and Steiner Points

Highway Edges

Distance Map

(b) Highway Edges and Distance Map

Fig. 2. Framework of EAR-Oracle

3.4 Comparison
We compare our oracle with the existing studies in terms of building time, space consump-
tion, query time, error bound and whether they support weighted terrains or not for the
arbitrary point-to-arbitrary point distance query on the terrain surface. The results are
shown in Table 1. For better clarity, we omit the detailed complexities and only present a
high-level comparison for each measure considered. We refer the readers to our technical
report [19] for a detailed comparison with their theoretical complexities.
We highlight some comparisons in Table 1 as follows. (1) For the building time and

space consumption, SP-Oracle and SE-Oracle are not scalable since they build their indexing
structure upon all Steiner points introduced which are orders of magnitude more than
the vertices on the terrain surface. But, our oracle has a small building time and space
consumption. (2) For the query time, the Fixed Scheme, Unfixed Scheme and K-Algo have a
very large query time (i.e., larger than 𝑂 (𝑁 )) which is obviously much larger than those of
the other three oracles (which are small constants). (3) For the error bound, we observe
that each algorithm has a very small error bound. (4) Fixed Scheme, Unfixed Scheme, SP-oracle
and our oracle support weighted terrains but the other two do not support them.

4 Our Proposed Algorithm: EAR-Oracle
In this section, we detail our proposed indexing structure, namely Efficient Arbitray Point-to-
Arbitrary Point Geodesic Distance Oracle (EAR-Oracle in short) and demonstrate our highway
network-based approach which bridges distant regions and accelerates the query processing.
We designed non-trivial algorithms for the highway node selection and highway edges estab-
lishment to guarantee the efficiency and the accuracy of this network. Section 4.1 overviews
the algorithm framework. Section 4.2 and Section 4.3 present the two components in our
oracle, namely highway nodes and highway edges of our highway network-based algorithm.
Section 4.4 demonstrates our distance query processing algorithm. Section 4.5 presents the
implementation details involved. Finally, in Section 4.6, we present the theoretical analysis
of our oracle.
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4.1 Overview: A Highway Network-based Approach
In a nutshell, our oracle is a highway network-based indexing structure, in which a highway
network is proposed to bridge the distant local regions and boost the query processing.
Figure 2 shows the framework of our technique. As Figure 2(a) shows, our algorithm
partitions the terrain surface into disjoint regions (i.e., boxes) and carefully selects several
“hub” points (marked by the shaded points), namely highway nodes, on the boundary of each
region and we introduce several auxiliary points, namely Steiner points, in each region. Each
highway node has a component called distance map which stores the distances between the
highway node and all Steiner points introduced in the same region (as shown in Figure 2(b)).
It is worth mentioning that although the Steiner points are introduced, they are only visible
to the highway nodes in the local box and the indexing cost of them will be lightweight. The
placement of the Steiner points and the distance map will be detailed later. All highway
nodes form a highway node set which is a subset of the terrain vertex set 𝑉 . Figure 2(b) also
shows the whole highway network which is a sparse graph consisting of the highway nodes
(defined by the boundaries of the boxes) and the highway edges, each of which connects two
highway nodes.
In the query phase, we consider two types of queries. The first one is called inner-box

query where the distance query is performed between two points in the same box. The other
is called inter-box query where the distance query is performed between two points in two
different boxes.
For the first type, the inner-box query, we adopt an online local search between the two

query points in the local region defined by the box (which will be presented in detail later).
Since the two query points are quite close to each other, the online local search is efficient.

For the second type, the inter-box query, we utilized the highway network and the distance
map to accelerate the query processing. As such, in the query phase, the search starting
from the source point 𝑠 could be able to ‘jump’ to a distant region by using the highway
network and the query processing could be largely accelerated. Specifically, we adopt the
highway network and the distance map to construct a graph called query graph (which also
contains 𝑠 and 𝑡 as two of its vertices) and perform Dijkstra’s algorithm on this query graph
to obtain the distance.

As could be understood from the above description, our oracle contains two components,
namely highway nodes and highway edges, which will be present in Section 4.2 and Section 4.3,
respectively.

4.2 Highway Nodes
To extract the highway nodes, we first impose a grid on the 2D 𝑥-𝑦 plane to partition the
terrain surface evenly into Z 2 boxes (or cells) and each box corresponds to a local rectangle
region on the original terrain surface. In this grid, there are Z rows and Z columns.
Then, for each box, we select its corresponding highway nodes as follows. We find the

faces which have overlap with the boundaries of the box and select all vertices of the faces
as the highway nodes of this box. The highway node setV consists of the highway nodes of
all boxes.

Each highway node has a distance map. The distance map of highway node 𝑣 , denoted by
𝑀 (𝑣), stores the approximate distance 𝑑𝑔 (𝑣, 𝜚 ) for each Steiner point 𝜚 (i.e., each auxiliary
point introduced) in the same box containing 𝑣 . The introduction of Steiner points is detailed
in Implementation Detail 1 in Section 4.5. The approximate distance 𝑑𝑔 (𝑐, 𝑝) is the distance
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between 𝑐 and 𝑝 in a graph called base graph, denoted by 𝐺𝐵 , to be shown later in Implemen-
tation Detail 1 in Section 4.5. The distance 𝑑𝑔 (𝑐, 𝑝) is always larger than or equal to 𝑑𝑔 (𝑐, 𝑝).
Note that the reason why we use the approximate distance here instead of the exact distance
is that there is no existing algorithm for finding the exact geodesic distance on weighted
terrain surfaces. According to existing studies [6, 10, 26], 𝑑𝑔 (𝑐, 𝑝) is very close to 𝑑𝑔 (𝑐, 𝑝).
With this distance map, we could quickly find the approximate distance between 𝑣 and each
arbitrary point in the same box as 𝑣 . Given a highway node 𝑣 and the box containing 𝑣 , we
construct the distance map of 𝑣 by using the A-SSAD-Box mentioned in the Implementation
Detail 2 in Section 4.5.

4.3 Highway Edges
Given a set V containing all highway nodes, we build a sparse graph, namely highway
network, by introducing highway edges which is a connected graph and the distance on
the highway network between any two highway nodes is very close to that on the terrain
surface. Before presenting the details of highway edges, we first illustrate two important
concepts, namely surface disk and shrunk surface disk. Given an arbitrary point 𝑐 on the terrain
surface and a non-negative real value 𝑟 , a surface disk, denoted by 𝐷 (𝑐, 𝑟 ), is the set of
all points whose geodesic distances to 𝑐 is at most 𝑟 (i.e., 𝐷 (𝑐, 𝑟 ) = {𝑝 |𝑑𝑔 (𝑐, 𝑝) ≤ 𝑟 }). In
Figure 3, there are two points 𝑐1 and 𝑐2 and there is one disk 𝐷 (𝑐1, 𝑟1) which centers at 𝑐1
and has radius 𝑟1 and another disk 𝐷 (𝑐2, 𝑟2) which centers at 𝑐2 and has radius 𝑟2. For the
weighted terrain surfaces, it is intractable to compute the exact value of 𝑑𝑔 (𝑐, 𝑝). Thus, we
use an approximate single-source all-destination algorithm to find the approximate distance
𝑑𝑔 (𝑐, 𝑝) between the center 𝑐 and another point 𝑝. Recall that 𝑑𝑔 (𝑐, 𝑝) is the distance on the
base graph which is always larger than or equal to 𝑑𝑔 (𝑐, 𝑝). Based on the distance 𝑑𝑔 (𝑐, 𝑝),
we could define the shrunk surface disk. Given an arbitrary point 𝑐 on the terrain surface
and a non-negative real value 𝑟 , a shrunk surface disk, denoted by 𝑆𝐷 (𝑐, 𝑟 ), is the set of
all points whose approximate distance to 𝑐 is at most 𝑟 (i.e., 𝑆𝐷 (𝑐, 𝑟 ) = {𝑝 |𝑑𝑔 (𝑐, 𝑝) ≤ 𝑟 }).
Figure 3 shows two shrunk surface disks 𝑆𝐷 (𝑐1, 𝑟1) and 𝑆𝐷 (𝑐2, 𝑟2). They are respectively
contained by the surface disks 𝐷 (𝑐1, 𝑟1) and 𝐷 (𝑐2, 𝑟2) which respectively have the same
center and radius with them. The approximate single-source all-destination algorithm to
be described later in Section 4.5 will also allow us to find all highway nodes in the shrunk
surface disk 𝑆𝐷 (𝑐, 𝑟 ). Given two shrunk disks 𝑆𝐷 (𝑐1, 𝑟1) and 𝑆𝐷 (𝑐2, 𝑟2), we call them well-
separated if 𝑑𝑔 (𝑐1, 𝑐2) ≥ ( 2

𝜖
+ 2)max(𝑟1, 𝑟2), where 𝜖 is the error control parameter defined

by the user. For any point 𝑝1 ∈ 𝑆𝐷 (𝑐1, 𝑟1) and 𝑝2 ∈ 𝑆𝐷 (𝑐2, 𝑟2), the approximate distance of
these two points 𝑑𝑔 (𝑝1, 𝑝2) could be approximated by the approximate distance of the two
shrunk surface disk centers𝑑𝑔 (𝑐1, 𝑐2)with an 𝜖 bounded error guarantee according to existing
studies [5, 36, 41, 42].

Based on the concept of shrunk surface disk, we present a key concept called well-separated
disk pair decomposition (WSDPD) next. Given a set V of highway nodes on the terrain
surface, we call a set O a well-separated disk pair decomposition (WSDPD) ofV if O satisfies
the following properties: (1) O consists of several disk pairs, each of which is a pair of
shrunk surface disks on the terrain surface in the format of (𝑆𝐷 (𝑐1, 𝑟1), 𝑆𝐷 (𝑐2, 𝑟2)). (2) For
each pair (𝑆𝐷 (𝑐1, 𝑟1), 𝑆𝐷 (𝑐2, 𝑟2)) of shrunk surface disks contained in O, the two disks are
well-separated and the distance 𝑑𝑔 (𝑐1, 𝑐2) is stored in this pair. (3) For any pair (𝑣1, 𝑣2) of
highway nodes, each of which is fromV, there is exactly one pair (𝑆𝐷 (𝑐1, 𝑟1), 𝑆𝐷 (𝑐2, 𝑟2)) in
O such that (i) 𝑣1 is in 𝑆𝐷 (𝑐1, 𝑟1) and (ii) 𝑣2 is in 𝑆𝐷 (𝑐2, 𝑟2).
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Fig. 4. WSDPD and Corresponding Highway Network

Recall that the vertices of the highway network consist of all highway nodes. Given a
WSDPD O of V, we build the highway edges as follows. For each pair (𝑆𝐷 (𝑐1, 𝑟1), 𝑆𝐷 (𝑐2, 𝑟2))
in O, we establish an edge between 𝑐1 and 𝑐2 and the weight of the edge is assigned to be
the associated distance 𝑑𝑔 (𝑐1, 𝑐2). We will show in Section 4.6 that the highway network
is a connected and sparse graph and the distance between any two highway nodes on
the highway network is very close to their distance on the base graph with a very small
error bound. Consider the example in Figure 4. There are totally 9 highway nodes, namely
𝑣1, 𝑣2, ..., 𝑣9. Figure 4(a) shows all shrunk surface disks involved in theWSDPD of all highway
nodes. For each disk pair in the WSDPD, we establish a highway edge and the final highway
network has all highway nodes as its vertices and has all highway edges established as its
own edges. The highway network in the example is shown in Figure 4(b).

The only issue left is how to build the WSDPD for the highway node set V. We adopt an
existing method in SE-Oracle [42] to obtain this WSDPD. In our case, it treats all highway
nodes as the POIs when we apply the building method of SE-Oracle and we adopt the
shrunk surface disk in place of the surface disk in the original method and we replace
the SSAD algorithm in the original method with our A-SSAD-Disk (to be introduced in
Implementation Detail 2 later). Then, we extract the second component in SE-Oracle which
is a pair set containing several pairs of shrunk surface disks. Finally, we put all pairs of disks
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in the pair set into our WSDPD. Our theoretical analysis in Section 4.6 shows that the size
of the WSDPD is linear to the number of highway nodes. It is worth mentioning that the
techniques in [42] (involved in the highway edge construction) and [4] (involved in our
base graph construction) are only utilized as off-the-shelf tools to handle the sub-tasks in
our overall innovative idea which has its own challenges and innovations.

Box Boundaries Highway Edges
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s1

t1

Q s ,t( )1 1

(a) Shortest DistanceQueries

Distance Map
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Fig. 5. Query Processing for the Inner-Box and Inter-BoxQueries

4.4 DistanceQuery Processing
For the inner-box query where the source point 𝑠 and the destination point 𝑡 are located in
the same box, we apply the A-SSAD-Query method mentioned in the Implementation Detail
2 in Section 4.5 to obtain the distance 𝑑𝑔 (𝑠, 𝑡) as the output. For the inter-box query where
the source point 𝑠 and the destination point 𝑡 are located in different boxes, we perform
the query processing as follows. First, we find the face 𝑓𝑠 containing 𝑠 and build a directed
graph𝐺𝑠 as follows. We insert 𝑠 as a new vertex into𝐺𝐵 and establish an edge from 𝑠 to each
Steiner point 𝜚 on 𝑓𝑠 into𝐺𝐵 and the weight of the edge is assigned to be 𝑑𝑒 (𝑠, 𝜚 ) ·𝑤 (𝑓𝑠 ), where
𝑑𝑒 (𝑠, 𝜚 ) denotes the Euclidean distance between 𝑠 and 𝜚 . We introduce the Steiner points in
each face with the method in Implementation Detail 1 in Section 4.5. Let ^ = 2(𝑚 + 1) be a
constant. To ensure the theoretical bound for two close query points locating in different
boxes, we introduce a sub-graph 𝐺^

𝑠 of 𝐺𝐵 which is induced by all vertices on 𝐺𝐵 within ^

hops from 𝑠. The proof will be presented later in Section 4.6. Next, we obtain a directed
graph 𝐺𝑠 which is assigned to be 𝐺^

𝑠 . Finally, for each highway node 𝑣 in the box containing
𝑠 and each Steiner points 𝜚 on 𝑓𝑠 , we (1) establish an edge 𝑒 from 𝜚 on 𝑓𝑠 to 𝑣 , (2) assign the
weight of the edge to be the distance from 𝜚 to 𝑣 in the distance map of 𝑣 , and (3) insert
the vertex 𝑣 and the edge 𝑒 into 𝐺𝑠 . Similarly, we could obtain a directed graph 𝐺𝑡 for the
destination point 𝑡 but all edges in the reverse direction such that the approximate shortest
paths from 𝑠 to 𝑡 could be found in the union graph. Then, we merge the highway network
G,𝐺𝑠 and𝐺𝑡 together and obtain a graph𝐺𝑄 . Finally, we perform a Dijkstra’s algorithm with
𝑠 as the source and 𝑡 as the destination and return the 𝑠-𝑡 distance on 𝐺𝑄 .

Consider the example as shown in Figure 5. Figure 5(a) shows two shortest distance
queries. The first query 𝑄 (𝑠1, 𝑡1) is an inner-box query. Figure 5(b) shows the path that
A-SSAD-Query finds in the base graph 𝐺𝐵 which contains a sequence of Steiner points and
the length of the path will be the distance returned. The second query𝑄 (𝑠2, 𝑡2) is an inter-box
query and the shortest path of them passes through the highway network. Figure 5(c) shows
the shortest path from 𝑠2 to 𝑡2 in the graph𝐺𝑄 (which is merged from𝐺𝑠 ,𝐺𝑡 and the highway
network G) and the length of the path will be the distance returned. This path could be
efficiently found by performing a shortest path query on 𝐺𝑄 since the size of 𝐺𝑄 is very
small compared with the base graph 𝐺𝐵 .
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4.5 Implementation Details
This section presents the implementation details of the EAR-Oracle as follows.

Implementation Detail 1: The introduction of Steiner points and the construction of base graph.
The base graph 𝐺𝐵 is constructed as follows. We first introduce the Steiner points on each
face 𝑓 through a bisector-fixed scheme. For each angle bisector of the given face 𝑓 (which is a
triangle), we uniformly introduce𝑚 points on the bisector. After placing𝑚 Steiner points on
each bisector, for each pair of adjacent faces 𝑓 and 𝑓 ′, we introduce a Steiner edge between
each Steiner point 𝜚 on 𝑓 and each Steiner point 𝜚 ′ on 𝑓 ′ if the bisectors that they lie on
satisfy a certain property. The weight of each Steiner edge is calculated by using the so-called
Snell’s Law method in [4]. For the sake of space, we refer the readers to [4] for the detailed
operations of building the Steiner edges. It is worth mentioning that although we build a
base graph with Steiner points introduced, we do not build any indexing structure upon the
base graph. This is the reason why our oracle is scalable in terms of building time and space.
Implementation Detail 2: The approximate single-source all destination algorithm (A-SSAD).

The algorithm first introduces a new vertex which is the source point 𝑐 into the base graph
𝐺𝐵 . Then, it introduces a Steiner edge from 𝑐 to each Steiner point 𝜚 on 𝑓 . The weight of the
edge is assigned to be 𝑑𝑒 (𝑐, 𝜚 ) ·𝑤 (𝑓 ), where 𝑓 is the face containing 𝑐 and 𝑑𝑒 (𝑐, 𝜚 ) denotes
the Euclidean distance between 𝑐 and 𝜚 . Then, this algorithm simply visits all vertices on𝐺𝐵

by using a Dijkstra’s algorithm with 𝑐 as the source vertex. The A-SSAD algorithm has three
variants, namely A-SSAD-Disk, A-SSAD-Box and A-SSAD-Query. A-SSAD-Disk starts from a
given source point 𝑐 and terminates when a given disk 𝑆𝐷 (𝑐, 𝑟 ) is fully visited and returns
the list containing all highway nodes within the disk. A-SSAD-Box starts from a given source
point 𝑐 and terminates when all Steiner points in a given box are fully visited and returns
the distance 𝑑𝑔 (𝑐, 𝜚 ) from 𝑐 to each Steiner point 𝜚 in the box. A-SSAD-Query starts from
a given source point 𝑠 and terminates when the given destination point 𝑡 is visited. In the
A-SSAD-Query, when the face containing 𝑡 is visited, besides all Steiner points and Steiner
edges introduced in the original A-SSAD algorithm, it introduces an additional surface point
𝑡 and establishes a Steiner edge connecting 𝑡 and each Steiner point in the face. It finally
returns the distance 𝑑𝑔 (𝑠, 𝑡) in the graph 𝐺𝐵 by using Dijkstra’s algorithm.

4.6 Theoretical Analysis
Due to the complex geometric property of terrain surfaces, it is challenging to analyze
the theoretical bounds for EAR-Oracle and its performance varies on different datasets. To
conduct insightful theoretical analysis , we introduce several parameters to the analysis.
Theses parameters all have clear physical meanings and could give a guidance for the setting
of EAR-Oracle on different datasets. For the sake of space, please refer to our technical re-
port [19] for the detailed study on the parameters. Section 4.6.1 introduces these parameters
and their notations. Section 4.6.2 and Section 4.6.3 present the analysis of the building time
and space consumption, and the analysis of query time and accuracy, respectively.

4.6.1 Notations.
Let 𝑚 denote the number of Steiner points placed on each bisector and 𝑁 denote the

number of vertices on the terrain surface. The error control parameter is denoted by 𝜖.
Recall that the number of boxes is denoted by Z 2 (i.e., Z is the square root of the number
of boxes). 𝛼 is the maximum ratio of faces inside a box (which is defined to be the total
number of faces inside a box divided by the total number of faces in the terrain). Let X
denote the set containing all distinct 𝑥 coordinate values of all vertices in 𝑉 (i.e., X =
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Table 2. Notations

𝑚 Number of Steiner points introduced on each bisector.
𝜖 User-defined error control parameter.
Z Square root of the number of boxes.
𝛼 Maximum ratio of faces inside a box.
𝑑+
𝑀

Maximum side length of the projected terrain surface.
𝑑−
𝑀

Side length of the minimum square.
_ Maximum number of highway nodes covered by a minimum square.
V The vertex set containing all highway nodes.
𝐺𝐵 The base graph in EAR-Oracle.

{𝑥𝑣 |𝑣 ∈ 𝑉 }). Let Y denote the set containing all distinct 𝑦 coordinate values of all vertices
in 𝑉 (i.e., Y = {𝑦𝑣 |𝑣 ∈ 𝑉 }). Let 𝑑+

𝑀
denote the maximum side length of the terrain surface

projected in 𝑥-𝑦 plane (i.e., 𝑑+
𝑀

= max{max𝑥1,𝑥2∈X |𝑥1−𝑥2 |,max𝑦1,𝑦2∈Y |𝑦1−𝑦2 |}). Let 𝑑−
𝑀
denote

min{min𝑥1,𝑥2∈X |𝑥1−𝑥2 |,min𝑦1,𝑦2∈Y |𝑦1−𝑦2 |}. A squarewith side length𝑑−
𝑀
is called aminimum

square and it is regarded as the unit square of the projected terrain surface. Figure 6 shows
an example of 𝑑+

𝑀
and 𝑑−

𝑀
. 𝐴, 𝐵 and 𝐶 are three terrain vertices and they are projected onto

𝑥-axis and 𝑦-axis, respectively. Since 𝑦𝐵 and 𝑦𝐶 have the same 𝑦-coordinate values, they will
be considered as a single value. 𝑑−

𝑀
is 𝑦𝐴 − 𝑦𝐵 (𝑦𝑐 ) and 𝑑+

𝑀
is 𝑥𝐶 − 𝑥𝐵 in this example. We use

𝛾 to denote the ratio of 𝑑+
𝑀
to 𝑑−

𝑀
. Therefore, a line segment crosses the terrain surface will

contain 𝑂 (𝛾) minimum squares with length 𝑑−
𝑀
. The maximum number of highway nodes

covered by a minimum square is denoted by _. The highway node set is denoted by V and
the base graph in EAR-Oracle is denoted by 𝐺𝐵 . Table 2 highlight some important notations
for reference.
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4.6.2 Building Time and Space Consumption

Lemma 1. There are 𝑂 (𝑚𝑁 ) Steiner points on the base graph 𝐺𝐵 and 𝐺𝐵 could be constructed in
𝑂 (𝑚2𝑁 ) time.

Proof Sketch. There are 𝑂 (𝑁 ) faces on the terrain surface and each face has exactly three
bisectors. For each bisector,𝑚 Steiner points will be introduced and thus, the total number of
Steiner points is𝑂 (𝑚𝑁 ). To obtain the base graph𝐺𝐵 , 𝑂 (𝑚) Steiner edges will be established
for each Steiner point. Thus, the construction time of the Steiner graph is 𝑂 (𝑚2𝑁 ). For the
sake of space, please refer to our technique report [19] for detailed proof.

Lemma 2. The highway node set V contains 𝑂 (_𝛾Z ) highway nodes and each box has 𝑂 ( _𝛾
Z
)

corresponding highway nodes.
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Proof. We call a line segment a boundary line if (1) the line segment is axis-parallel, (2)
it overlaps with the boundary of at least one box and (3) the two end points lies on the
boundary of the projected terrain surface. By the geometric property, a boundary line with
the length 𝑑+

𝑀
has overlap with at most 𝑂 (𝛾) minimum squares.

By the definition of _ (see Section 4.6.1 for its definition), each minimum square covers
at most _ highway nodes. Thus, a boundary line has 𝑂 (_𝛾) corresponding highway nodes.
Since we have exactly Z boxes in a single row (reps. column), the number of boundary lines
is 2 · (Z + 1). Thus, the total number of highway nodes is 𝑂 (_𝛾2 · (Z + 1)) = 𝑂 (_𝛾Z ).
For each box, it has four sides. Consider the side with largest side length. The length of

this side is 𝑑+
𝑀

Z
and it passes through at most 𝑑+

𝑀

𝑑−
𝑀
Z
minimum squares. Since each minimum

square contains at most _ highway nodes, the number of corresponding highway nodes
for a single side is at most _𝛾

Z
. Thus, each generated box has 𝑂 ( _𝛾

Z
) corresponding highway

nodes. □

Lemma 3. The building time and space consumption of the distance map are𝑂 (_𝛾Z𝑚𝑁 log(𝑚𝑁 ))
and 𝑂 (𝑚_𝛾𝑁

Z
), respectively.

Proof. The distance map contains distances between each highway node and the Steiner
points in its corresponding box. For each highway node, we invoke the A-SSAD-Box al-
gorithm to compute the distance map. Let V𝑏𝑜𝑥 be the corresponding highway node set
of a box. The building time and space consumption of the distance map are 𝑂 ( |V| · 𝑇𝐴)
and 𝑂 ( |V𝑏𝑜𝑥 | · 𝑛𝑆 ), where 𝑇𝐴 denotes the running time of A-SSAD-Box algorithm and 𝑛𝑆
denotes the number of Steiner points. By Lemma 2, we obtain that |V| is 𝑂 (_𝛾Z ) and |V𝑏𝑜𝑥 |
is 𝑂 ( _𝛾

Z
). Then, we analyze 𝑇𝐴 and 𝑛𝑆 as follows. Since A-SSAD-Box is a Dijkstra’s algorithm

on the sub-graph of our base graph, we obtain that𝑇𝐴 is𝑂 (𝑚𝑁 log(𝑚𝑁 )) and 𝑛𝑠 is𝑂 (𝑚𝑁 ) by
Lemma 1. Thus, we obtain that the building time and space consumption of distance map
are 𝑂 (_𝛾Z𝑚𝑁 log(𝑚𝑁 )) and 𝑂 (𝑚_𝛾𝑁

Z
), respectively. □

The complexities of building time and space consumption of EAR-Oracle in Theorem 1
and Theorem 2, respectively.

Theorem 1. Give a terrain surface 𝑇 . Let ℎ be a terrain-related constant and 𝛽 be the intrinsic
dimension of 𝑇 . The building time of applying EAR-Oralce on 𝑇 is 𝑂 (_𝛾Z𝑚𝑁 log(𝑚𝑁 ) + 𝑁 log(𝑁 )

𝜖2𝛽
+

𝑁ℎ log𝑁 + 𝑁ℎ

𝜖2𝛽
).

Proof. The building time ofEAR-Oracle consists of three parts: (1) Base graph (2)Highway
nodes (including highway nodes extraction and distance map construction) (3) Highway
edges.

For the first part, by Lemma 1, the base graph could be constructed in 𝑂 (𝑚2𝑁 ) time .
For the second part, to extract all highway nodes, we adopt a grid-imposing algorithm

which runs in 𝑂 (log(Z )𝑁 ) time. For the sake of space, we refer the readers to our technical
report [19] for details. By Lemma 3, we obtain the distance map could be constructed in
𝑂 (_𝛾𝑚𝑁 log(𝑚𝑁 )) time.

For the last part, highway edges construction, we combine (a) Theorem 3 in [42] (which
shows the building time and space consumption of SE-Oracle), (b) the fact that the POIs that
SE-Oracles indexes in our case are the highway nodes, (c) the technique that we substitute
the original surface disk (resp. SSAD algorithm) in the original SE-Oracle with our shrunk
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surface disk (resp. A-SSAD-Disk) and finally, we obtain that the time complexity of our
highway network generation is 𝑂 ( 𝑁 log(𝑁 )

𝜖2𝛽
+ 𝑁ℎ log(𝑁 ) + 𝑁ℎ

𝜖2𝛽
).

By combining the above results, we obtain that the build time of applying EAR-Oracle
on 𝑇 is: 𝑂 ((𝑚2 + log(Z ))𝑁 + _𝛾Z𝑚𝑁 log(𝑚𝑁 ) + 𝑁 log(𝑁 )

𝜖2𝛽
+ 𝑁ℎ log(𝑁 ) + 𝑁ℎ

𝜖2𝛽
). For simplicity we

omitted the first term in the big O notation since𝑚, log(Z ) are relatively small compared
with other terms. □

Theorem 2. Give a terrain surface 𝑇 . Let ℎ be a terrain-related constant and 𝛽 be the intrinsic
dimension of 𝑇 . The space consumption of applying EAR-Oralce on 𝑇 is 𝑂 (𝑚_𝛾𝑁

Z
+ 𝑁ℎ

𝜖2𝛽
).

Proof. The space consumption of EAR-Oracle contains two components: (1) Base graph.
(2) Highway nodes (including the distance map) and (3) Highway edges.

For the first part, by Lemma 1, we obtain that the space consumption of the base graph is
𝑂 (𝑚2𝑁 ).

For the second part, by Lemma 3, we obtain the space consumption of the distance map
is 𝑂 (𝑚_𝛾𝑁

Z
).

For the last part, highway edges, we combining (a) Theorem 3 in [42] (which shows the
building time and space consumption of SE-Oracle), (b) the fact that the POIs that SE-Oracle
indexes in our case are the highway nodes and finally, we obtain that the space complexity
of the highway network is 𝑂 ( 𝑁ℎ

𝜖2𝛽
).

By combining the space consumption of the above components, we obtain that the space
complexity of EAR-Oracle is𝑂 (𝑚2𝑁 + 𝑚_𝛾𝑁

Z
+ 𝑁ℎ

𝜖2𝛽
) = 𝑂 (𝑚_𝛾𝑁

Z
+ 𝑁ℎ

𝜖2𝛽
) since𝑚 is a small constant.

□

According to the existing study [42],ℎ and 𝛽 are small constants andℎ < 30 and 𝛽 ∈ [1.5, 2]
in their experimental study.

4.6.3 Query Time and Accuracy

Lemma 4. The highway network G in EAR-Oracle is a connected graph. Let 𝑑G (𝑢, 𝑣) denote the
shortest distance between any two vertices 𝑢 and 𝑣 in G. For any pair of highway nodes 𝑣1 and 𝑣2,
𝑑G (𝑣1, 𝑣2) ≤ (1 + 𝜖)𝑑𝑔 (𝑣1, 𝑣2), where 𝜖 is a user-defined error bound.

Proof. We recall the Lemma 1.6 in [36] as follows:

Lemma 5. Given a set𝑉 of points and a function 𝑑 (·, ·) for measuring the pairwise distances of the
points in 𝑉 . Let P denote the node pair set of the SE-Oracle constructed on 𝑉 by using 𝑑 (·, ·) as the
distance metric with the error parameter equal to 𝜖. The graph G (with 𝑉 as its vertices and its edges
𝐸 = {(𝑐𝑥 , 𝑐𝑦) | (𝑥,𝑦) ∈ P}, where 𝑐𝑥 and 𝑐𝑦 denote the centers of the nodes 𝑥 and 𝑦) is connected and
𝑑G (𝑣1, 𝑣2) ≤ (1 + 𝜖)𝑑 (𝑣1, 𝑣2) for any 𝑣1, 𝑣2 ∈ 𝑉 .

By applying Lemma 5 to our highway network G (in our case, 𝑉 is the highway node set
V and the function 𝑑 (·, ·) is the approximate distance metric 𝑑𝑔 (·, ·)) on the base graph𝐺𝐵 , G
is a connected graph and 𝑑G (𝑣1, 𝑣2) ≤ (1 + 𝜖)𝑑𝑔 (𝑣1, 𝑣2) for any two vertices 𝑣1 and 𝑣2 in G. □

Lemma 6. Given a terrain surface𝑇 and two arbitrary surface points 𝑠, 𝑡 on𝑇 . Let 𝑘 be the number
of faces passed by the geodesic shortest path Π𝑔 (𝑠, 𝑡) and 𝐿𝑚𝑎𝑥 be the maximum edge length of the
terrain surface. The approximate distance returned by the base graph 𝑑𝑔 (𝑠, 𝑡) ≤ 𝑑𝑔 (𝑠, 𝑡) + 𝑘

𝑚+1𝐿𝑚𝑎𝑥 .

Proof Sketch. The maximum length of a bisector is 𝐿𝑚𝑎𝑥 . Since each bisector is evenly
partitioned by𝑚 Steiner points, the length of each partition is at most 1

𝑚+1𝐿𝑚𝑎𝑥 . From the
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triangle inequality, we observe that the distance error of each face is an additive error and it
equals to the length of one bisector partition. Π𝑔 (𝑠, 𝑡) passes 𝑘 faces and thus, its distance
error is 𝑘

𝑚+1𝐿𝑚𝑎𝑥 . For the sake of space, please refer to our technique report [19] for a detailed
proof.

Consider a path from 𝑠 to 𝑡 in the query graph 𝐺𝑄 (for inter-box query processing in
Section 4.4) and we order the vertices on the path in the ascending order of their distance
to 𝑠. We define the first (resp. last) vertex on the path which is also in G to be the escape
point (i.e., the point escape from 𝑠), denoted by 𝑣𝑒𝑠 (resp. the entrance point (i.e., the point
entrance into 𝑡), denoted by 𝑣𝑒𝑛).
With the lemmas above, we are ready to present the overall distance error bound of

EAR-Oracle.

Theorem 3. Given a terrain surface𝑇 and two arbitrary surface points 𝑠, 𝑡 on𝑇 , the approximate
distance returned by EAR-Oracle 𝑑 (𝑠, 𝑡) ≤ (1 + 𝜖) (𝑑𝑔 (𝑠, 𝑡) + 2𝛿), where 𝛿 is a small additive error
compared with 𝑑𝑔 (𝑠, 𝑡).

Proof. The distance query could be divided into two categories. We prove the error bound
for each of them as follows:
(1) For inner-box queries, the approximate distance will be returned by performing

A-SSAD-Query algorithm on base graph 𝐺𝐵 . According to [26], we obtain that 𝑑 (𝑠, 𝑡) ≤
𝑑𝑔 (𝑠, 𝑡) + 𝛿 .

(2) For inter-box queries, the distance will be calculated by querying the query graph 𝐺𝑄 .
Let 𝑣1, 𝑣2 be the highway nodes corresponding to the escape and entrance points, respectively.
Recall that ^ = 2(𝑚 + 1) is a𝑚 related constant. According to the construction of query graph
𝐺𝑄 , 𝐺𝑠 (resp. 𝐺𝑡) contains the Steiner points which is at most ^ hops away from 𝑠 (resp. 𝑡).
Let 𝑘 be the number of faces passed by the geodesic path from 𝑠 to 𝑡 .

If 𝑘 ≤ 2^, 𝑡 will be covered by the union of 𝐺𝑠 and 𝐺𝑡 , so the approximate distance query
is equivalent to query the base graph. Thus, we obtain that 𝑑 (𝑠, 𝑡) ≤ 𝑑𝑔 (𝑠, 𝑡) + 𝛿 .

For the case of𝑘 > 2^,𝑑 (𝑠, 𝑡) could be divided into three subpaths: 𝑠 to 𝑣1 (subpath in𝐺𝑠), 𝑣1
to 𝑣2 (subpath in highway network G) and 𝑣2 to 𝑡 (subpath in 𝐺𝑡). By Lemma 4, 𝑑G (𝑣1, 𝑣2) ≤
(1 + 𝜖)𝑑𝑔 (𝑣1, 𝑣2) and thus, 𝑑 (𝑠, 𝑡) ≤ 𝑑𝑔 (𝑠, 𝑣1) + (1 + 𝜖)𝑑𝑔 (𝑣1, 𝑣2) + 𝑑𝑔 (𝑣2, 𝑡) ≤ (1 + 𝜖) (𝑑𝑔 (𝑠, 𝑣1) +
𝑑𝑔 (𝑣1, 𝑣2) + 𝑑𝑔 (𝑣2, 𝑡)). These three subpaths form a surface path 𝜋𝑔 (𝑠, 𝑡) = {𝑠, ..., 𝑣1, ..., 𝑣2, ..., 𝑡}
on base graph 𝐺𝐵 . Let 𝑑 ′𝑔 (𝑠, 𝑡) be the length of 𝜋𝑔 (𝑠, 𝑡). Let 𝐿𝑚𝑎𝑥 be the largest edge length
among all edges of the terrain surface, we obtain that 𝑑 ′𝑔 (𝑠, 𝑡) ≤ 𝑑𝑔 (𝑠, 𝑡) +𝛿 +4𝐿𝑚𝑎𝑥 by geometry
property (for the sake of space, we refer the readers to our technique report [19] for details).
Thus, we have that 𝑑 (𝑠, 𝑡) ≤ (1+𝜖)𝑑 ′𝑔 (𝑠, 𝑡) ≤ (1+𝜖) (𝑑𝑔 (𝑠, 𝑡) +𝛿 +4𝐿𝑚𝑎𝑥 ). According to Lemma 6
and the definition of ^, we further obtain that 𝛿 = 𝑘

(𝑚+1) 𝐿𝑚𝑎𝑥 > 1
(𝑚+1) · 4(𝑚 + 1)𝐿𝑚𝑎𝑥 = 4𝐿𝑚𝑎𝑥

and thus, 𝑑 (𝑠, 𝑡) ≤ (1 + 𝜖) (𝑑𝑔 (𝑠, 𝑡) + 2𝛿).
By combining (1) and (2), we obtain that the distance 𝑑 (𝑠, 𝑡) returned by EAR-Oracle is at

most (1 + 𝜖) (𝑑𝑔 (𝑠, 𝑡) + 2𝛿). □

According to existing studies [6, 10, 26], 𝛿 is a very small value compared with 𝑑𝑔 (𝑠, 𝑡).
It should be mentioned that although our theoretical results on the accuracy is inspired
from that in [42], we deal with a more general problem and our results are extension and
generalization of that in [42]. The result in [42] only holds for distance queries between two
pre-defined POIs on unweighted terrain. In contrast, we derived more general results on
distance queries between two arbitrary points on weighted terrains which involves the two
challenges: (a) extending the accuracy guarantee from pre-defined POIs to arbitrary points
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is not trivial and (b) the exact distance between two arbitrary points on weighted terrain
cannot be efficiently derived as unweighted terrain, so we adapted Shrunk Surface Disks to
address it. Besides, we utilized [4] to process an inner-box query solely and its analysis is a
very minor part of our theoretical analysis.

Theorem 4. Given two arbitrary points 𝑠 and 𝑡 on a terrain surface 𝑇 , the time of querying
EAR-Oracle is 𝑂 (_𝛾Z log(_𝛾Z )).

Proof. We prove the query time for inner-box and inter-box queries as follows:
(1) The inner-box queries are processed by the A-SSAD-Query algorithm. It performs

a Dijkstra’s algorithm inside a box. A-SSAD-Query starts from 𝑠 and terminates until 𝑡 is
reached. Since 𝑠 and 𝑡 in the same box, according to the definition of 𝛼 (see Section 4.6.1),
the number of Steiner points within a box is 𝑂 (𝛼𝑚𝑁 ). Thus, the time complexity of each
inner-box query is 𝑂 (𝛼𝑚𝑁 log(𝛼𝑚𝑁 )).
(2) For inter-box queries, with the help of the distance map, the distance between each

pair of Steiner point and highway node in the same box could be retrieved in constant time.
There are 3𝑚 Steiner points on each face and by Lemma 2, each box boundaries pass through
𝑂 ( _𝛾

Z
) highway nodes. Thus, the connection between𝐺𝑠 , 𝐺𝑡 and highway network G could

be established in𝑂 (𝑚_𝛾

Z
) time. In addition, we need to add all Steiner points which is at most

^ hops away from 𝑠 and 𝑡 . Since each face has at most three neighbors, the number of faces
within ^ hops to 𝑠 or 𝑡 is 𝑂 (3 · 2^ − 2). Thus, the number of Steiner points in 𝐺𝑠 (resp. 𝐺𝑡) is
𝑂 ((3 · 2^ − 2)3𝑚) = 𝑂 (2^𝑚). By the construction of𝐺𝑄 in Section 4.4, we obtain the size of𝐺𝑄

is |𝐺𝑄 | = |𝐺𝑠 | + |G| + |𝐺𝑡 | = 2^𝑚+1+ |V|+2^𝑚+1 = |V| +2^+1𝑚+2. Thus, the processing time of
an inter-box query is𝑂 ( |𝐺𝑄 | log |𝐺𝑄 |) = 𝑂 (( |V| +2^+1𝑚+2) log( |V| +2^+1𝑚+2)). By Lemma 2,
we obtain that |V| = 𝑂 (_𝛾Z ) and the overall query time (including 𝐺𝑄 construction time) is
𝑂 (𝑚_𝛾

Z
+ (_𝛾Z + 2^+1𝑚 + 2) log(_𝛾Z + 2^+1𝑚 + 2)). Since𝑚 and ^ are small constants, we omit

the terms of𝑚 and ^ in the big O notation for simplicity and we obtain that the inter-box
query time is 𝑂 (_𝛾Z log(_𝛾Z )).

By combining (1) and (2), we obtain that the query processing time of EAR-Oracle is
max{𝑂 (𝛼𝑚𝑁 log(𝛼𝑚𝑁 )),𝑂 (_𝛾Z log(_𝛾Z ))}. The value of 𝛼 is related to the skewness of the
terrain surface and is a small real value. Since inner-box queries has spatial locality and
they are only a minority of all arbitrary point-to-arbitrary point queries (i.e., 1

Z 2 ), the inter-
box query time dominates the inner-box query time. Thus, we obtain the query time of
EAR-Oracle is 𝑂 (_𝛾Z log(_𝛾Z )).
Table 3 shows the average query time of inner-box and inter-box queries of EAR-Oracle

under the default setting. We randomly generate 1000 queries for both query types. For
small datasets, they are both very efficient since the number of vertices is limited. However,
for large datasets, inter-box queries require much more query time and dominate inner-box
queries. This fact supports our conclusion and thus, we obtained the query time complexity
above. □

Finally, we summarize our theoretical results as follows.

Theorem 5. The time complexity, space consumption, query time of EAR-Oracle are
𝑂 (_𝛾Z𝑚𝑁 log(𝑚𝑁 ) + 𝑁 log(𝑁 )

𝜖2𝛽
+𝑁ℎ log(𝑁 ) + 𝑁ℎ

𝜖2𝛽
),𝑂 (𝑚_𝛾𝑁

Z
+ 𝑁ℎ

𝜖2𝛽
),𝑂 (_𝛾Z log(_𝛾Z )) and the multi-

plicative error bound and the additive error bound of EAR-Oracle are 𝜖 and 2𝛿 , respectively.

Proof. By Theorem 1, Theorem 2, Theorem 3 and Theorem 4, we obtain the theorem. □
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Table 3. Dataset Statistics, Inner/Inter-BoxQuery Time, Highway Node Statistics

Dataset |𝐹 | Region Covered Inner-Box (ms) Inter-Box (ms) Z |V | Ratio (%w.r.t. N)
Horst Mountain (HM) [37] 1,488 15 km2 0.11 0.99 16 352 44.4%
BigMountain (BM) [37] 2,772 29 km2 0.60 1.45 16 455 31.6%

HeadLightMountain (HM) [37] 4,771 49 km2 1.82 2.07 16 587 23.8%
RobinsonMountain (RM) [37] 7,200 71 km2 2.66 3.70 16 769 20.8%
GunnisonForest (GF) [37] 199,998 10,038 km2 11.88 286.35 256 19,928 19.8%

LaramieMountain (LM) [37] 199,996 12,400 km2 10.98 245.33 256 19,322 19.2%
BearHead (BH) [22, 41, 42] 292,914 140 km2 23.18 219.32 256 24,302 16.5%
EaglePeak (EP) [22, 41, 42] 325,713 150 km2 29.21 326.12 256 23,687 14.4%

5 Experiment
This section presents the experiments of this work. Section 5.1 presents the setting of our
experiment including the datasets, algorithms and measures, etc. Section 5.2 presents the
experimental results.

5.1 Experimental Setting
We conducted our experiments on a Linuxmachine with 3.60GHz Intel Xeon Gold 5122 CPU
and 256 GB memory. All algorithms were implemented in C++. Some geometric operators
(i.e., surface mesh processing, plane rotation, and etc.) were implemented by using the
Computational Geometry Algorithms Library (CGAL v5.3) [38]. The geodesic shortest
distance (exact shortest distance on unweighted terrain surfaces) was calculated by the
triangulated surface mesh shortest path package [24].
Datasets. Following the existing studies, we adopted several real datasets from existing

studies [22, 41, 42]. Besides, we collected some more real datasets from the United States
Geological Survey (USGS) system [37]. These datasets are digital elevation models and
were processed with meshlab [9]. They correspond to real terrain surfaces with different
sizes and different regions. The statistics of each dataset could be found in Table 3. Note
that these datasets only give the information of vertices, edges and faces and do not contain
the weight information of each face. For the experiment on the weighted terrain surface, we
adopted the method in [39] to generate the weight for each face.

Algorithms. We consider both on-the-fly algorithms and index-based algorithms. For the
on-the-fly algorithms, we consider Fixed Scheme [26], Unfixed Scheme [4] and K-Algo [22]
which are the state-of-the-art approximate on-the-fly algorithms with an accuracy guarantee.
For the index-based algorithms, we consider SE-oracle [42]which is the state-of-the-art index-
based algorithm and it dominates any other index-based algorithm in terms of building
time, space consumption, query time and accuracy according to [42].

Factors andMeasures.We considered four factors in this paper, namely the data size (the
number of faces of the terrain surface), 𝜖 (the error parameter given by the user), Z (the
square root of the number of boxes on the terrain surface) and𝑚 (the number of Steiner
points placed on each bisector). For the sake of space, the details of the parameter setting
are discussed in our technical report [19]. Here, we show the default values of all factors:
we set 𝜖 = 0.2 and𝑚 = 5 as the default values for 𝜖 and𝑚. The default value of Z in each
dataset and the amount, ratio of the highway nodes for all datasets are shown in Table 3.
We tested the values of 𝑑+

𝑀
, 𝑑−

𝑀
and 𝛾 on BM dataset. In BM dataset, 𝑑+

𝑀
= 9216.0, 𝑑−

𝑀
= 0.5

and 𝛾 = 18432.0. Please note that they are very loose bounds for theoretical analysis. Four
measures are considered in this paper, namely building time (i.e., the construction time of
the indexing structure), space consumption (i.e., the memory consumption of the indexing
structure), query time (the running time of answering a distance query) and the relative error
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(the empirical error of the distance returned by the algorithms). Note that each query time
was reported as the average among 100 queries tested.

QueryGeneration. In this paper, we studied the arbitrary point-to-arbitrary point distance
query. For each distance query, we randomly selected two arbitrary points, one of which as
the source and the other as the destination.We first randomly generate two points 𝑝1 (𝑥1, 𝑦1, 0),
𝑝2 (𝑥2, 𝑦2, 0) bounded by the projection of the terrain surface on the 2D 𝑥-𝑦 plane. Then, we
find the corresponding surface point 𝑠 and 𝑡 with the same 𝑥 and 𝑦 coordinate values with
𝑝1 and 𝑝2, respectively.

5.2 Experimental Results
In this section, we report our experimental results. Section 5.2.1 and Section 5.2.2 present the
results on the unweighted and weighted terrain surfaces, respectively. Finally, Section 5.2.3
presents the benefit of using EAR-Oracle. Please note that we do not show the result of an
algorithm if it ran out of our memory budget (i.e., 256GB).
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Fig. 7. Experimental Results on Unweighted Terrain Datasets

5.2.1 Results on Unweighted Terrain Figure 7 shows the experimental results on unweighted
terrain datasets under the default parameter setting. As the figure shows, SE-Oracle could not
scale up to large datasets. We observed the following results: (1) EAR-Oracle outperforms SE-
Oracle by more than 1 order of magnitude in terms of building time and space consumption
and it could also scale up to large datasets but SE-Oracle could not handle. (2) EAR-Oracle
has the smallest query time for each tested dataset and significantly outperforms all on-
the-fly algorithms. (3) Each tested algorithm has a very small relative error which is much
smaller than the default theoretical error bound which is 0.2. EAR-Oracle only indexes the
highway nodes rather than Steiner points and thus, its building time and memory usage
are significantly less than SE-Oracle. The indexing structure of EAR-Oracle is lightweight
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and thus, its query time is much smaller than on-the-fly algorithms which perform distance
queries on large Steiner graphs containing all Steiner points.
Scalability Test.We tested the selected algorithms on five different terrain datasets with
various number of faces (i.e., 0.2M, 0.4M, 0.6M, 0.8M, 1.0M) under the default setting. They
correspond to 5 sub-regions of a high-resolution EaglePeak (EP) dataset from the existing
study [42] (which has about 2.8 millions of faces). Figure 8 shows the results. We have the
following observations: (1) SE-Oracle ran out of memory space for a small dataset with
only 0.2M faces while EAR-Oracle could scale up to a large dataset with 1 million faces.
The building time, memory consumption and query time of EAR-Oracle increase when the
number of faces increases. (2) The query time of EAR-Oracle is significantly smaller than all
on-the-fly algorithms andwhen the number of faces increases, the query times of EAR-Oracle
and on-the-fly algorithms increase. (3) The relative error of each tested algorithm is very
small compared with the default theoretical error bound.
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Fig. 8. Scalability Test on EP Dataset

Effect of 𝜖. We tested the selected algorithms with five different values of 𝜖 from
{0.05, 0.1, 0.15, 0.2, 0.25} on the BigMountain dataset. The results are shown in Figure 10.
According to these results, we observed that: (1) The building time and space consumption
of EAR-Oracle are significantly smaller than those of SE-Oracle. (2) When the value of 𝜖
increases, the building time and the space consumption of SE-Oracle decrease and those
of EAR-Oracle decrease slightly also. (3) EAR-Oracle has the smallest query time among
all tested algorithms. The query times of Unfixed Scheme and EAR-Oracle decrease when 𝜖

increases. (4) The relative error of each tested algorithm is smaller than the corresponding
parameter setting of 𝜖 (i.e., less than 0.05, the minimum value of tested 𝜖). The value of 𝜖
influences the number of placed Steiner points (for Unfixed Scheme and K-Algo), the size
and building time of WSDPD (for SE-Oracle and EAR-Oracle) and the size of the highway
network (for EAR-Oracle). When 𝜖 increases, the number of placed Steiner points, the size
and processing time of WSDPD and the size of highway network |G| will decrease.
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Fig. 9. Experimental Results on Weighted Terrain Datasets
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Fig. 10. Effect of 𝜖 on BigMountain Dataset

Effect of Z . We tested selected algorithms with different values of Z from {4, 8, 16, 32, 64} (i.e.,
the correspondence quadtree depths are {2, 3, 4, 5, 6}) on the GunnisonForest (simplified)
dataset. Figure 11 shows all results obtained. We have the following observations: (1) When
Z increases, the building time of EAR-Oracle increases but the space consumption decreases
first and then slightly increases. (2) The query time of EAR-Oracle increases when Z increases.
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The query time of other tested algorithms remains since Z only affects EAR-Oracle. (3) All
tested algorithms have a very small relative error compared with the default value of 𝜖.
When Z increases, the size of distance map rapidly decreases but the size of highway network
andWSDPD increases. For query time, more highway nodes imply a larger query graph size
and a longer query time. When |V| is close to |𝑉 |, the query time of EAR-Oracle becomes
𝑂 (_𝛾 |𝑉 | log(_𝛾 |𝑉 |)) which is comparable to the complexity of Fixed Scheme.
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Fig. 11. Effect of Z on GunnisonForest (simplified) Dataset

Effect of𝑚. We tested the selected algorithms with different values of𝑚 from {3, 4, 5, 6, 7} on
the BigMountain dataset. The experiment results are shown in Figure 12. We observed that:
(1) The building time and the space consumption of EAR-Oracle significantly outperform
SE-Oracle. Besides, the two measures increase when𝑚 grows up. (2) EAR-Oracle has the
smallest query time among all tested algorithms. The query times of Fixed Scheme and SE-
Oracle increase when𝑚 grows up while the query time of other tested algorithms remains.
(3) All tested algorithms have a very small relative error which is much smaller than the
default error bound. These results are consistent with our theoretical analysis since the
query graph is lightweight and only contains Steiner points within ^ hops away from query
source and destination.
Breakdown of Query TimeWe also studied the breakdown of the query time of EAR-Oracle.
The query time of EAR-Oracle consists of two parts: (1) Query graph construction time and
(2) Query graph processing time. Figure 13(a) shows the results of breakdown of query
time under the default parameter setting. From the results, we observed that: (1) The query
graph construction time is only a small part of the entire query time and it is very small
even for a dataset with 1 million faces. (2) The query graph processing time is the major
part of the query time and it dominates the query graph construction time. The query graph
construction benefits from the distance map and thus, it is very efficient.
Effect of Query Distance We studied the effect of query distance on GF dataset. We gener-
ated 10 groups of distance queries, namely Q0,Q1, ...,Q9. Each group consists of 100 distance
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Fig. 12. Effect of𝑚 on BigMountain Dataset

queries and for group 𝑄𝑖 where 𝑖 ∈ [0, 8], the maximum shortest distance in 𝑄𝑖 is smaller
than the minimum shortest distance in 𝑄𝑖+1. The experimental results are shown in Fig-
ure 13(b). Note that SE-Oracle ran out of memory on GF dataset. We observe that the query
time increases when the distance increases and EAR-Oracle outperforms the other tested
algorithms. Due to limited space, we refer the readers to [19] for the query generation
method and the experimental result on a smaller dataset.

5.2.2 Results on Weighted Terrain We also tested the selected algorithms on weighted terrain
surface under the default setting. For SE-Oracle, we adapted it by applying the Shrunk
Surface Disk technique introduced in Section 4.3 such that it could be used for weighted
terrain surfaces. We selected the results from Fixed Scheme as the pivot for relative error
calculation since there is no algorithm could find exact shortest distances on weighted
terrain surfaces and Fixed Scheme is the only algorithm which can be applied for all tested
datasets except EAR-Oracle. The results are shown in Figure 9. From the results, we observe
that: (1) EAR-Oracle has consistent performance on both weighted and unweighted terrain
surfaces. (2) The query time of EAR-Oracle is orders of magnitude less than those of the
on-the-fly algorithms. (3) The building time and space consumption of EAR-Oracle are
orders of magnitude less than SE-Oracle. (4) All tested algorithms have very small practical
relative errors (i.e., less than 0.03).

5.2.3 Discussion on Benefits of Using EAR-Oracle This section discusses the advantages of
using EAR-Oracle over other algorithms. In this discussion, we keep feeding queries to each
algorithm. For each on-the-fly algorithm, its total time cost is calculated as the total query
processing time. For each index-based algorithm, its total time cost is calculated as the sum
of its building time and the total query processing time. For each index-based algorithm,
we also considered the comparison with the fastest on-the-fly algorithm Fixed Scheme and
reported its warm-up query number which is the minimum number of queries such that the
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index-based algorithm achieves smaller total time cost than Fixed Scheme. Based on our
results on RobinsonMountain dataset, the warm-up query number of EAR-Oracle is 2,187
which is significantly smaller than that of SE-Oracle (which is 147,382). This implies that
the cost of building EAR-Oracle could be amortized by a moderate number of queries and it
is worthwhile to build EAR-Oracle. We also obtained similar observations on other datasets
and they are omitted here for the sake of limited space.

6 Conclusion
In this paper, we proposed a highway network-based indexing structure for answering
the arbitrary point-to-arbitrary point distance query on the terrain surface. It achieved
state-of-the-art performances in terms of the building time, space consumption, query time
and distance error. Remarkably, it could scale up to million-scale terrain surfaces where all
existing indexing-based algorithms could not due to their prohibitively large building time
and space consumption. It significantly outperforms all on-the-fly algorithms in terms of
query time.
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