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Abstract. Fairness is increasingly becoming an important issue in ma-
chine learning. Representation learning is a popular approach recently
that aims at mitigating discrimination by generating representation on
the historical data so that further predictive analysis conducted on the
representation is fair. Inspired by this approach, we propose a novel struc-
ture, called GIFair, for generating a representation that can simultane-
ously reconcile utility with both group and individual fairness, compared
with most relevant studies that only focus on group fairness. Due to the
conflict of the two fairness targets, we need to trade group fairness off
against individual fairness in addition to considering the utility of classi-
fiers. To achieve an optimized trade-off performance, we include a focal
loss function so that all the targets can receive more balanced atten-
tion. Experiments conducted on three real datasets show that GIFair can
achieve a better utility-fairness trade-off compared with existing models.

Keywords: Fairness · Adversarial Learning · Learning Representation.

1 Introduction

Fairness is increasingly becoming an important issue in machine learning. Many
studies have shown that using unfair historical datasets that are biased against
some groups of people to train accurate machine learning models for decision-
making can lead to discrimination of those groups. We refer to groups that
are often discriminated against as protected groups (e.g., women and African-
Americans), and the corresponding attributes that define them as protected at-
tributes (e.g., gender and race). For instance, when evaluating loan applications,
a bank officer may use applicant information such as age, gender, and credit
history to determine creditworthiness, leading to a lower likelihood of approval
for applications from women [1]. Motivated by this, we want to propose a fair
classification model to help alleviate discrimination in decision-making systems.

To assess the fairness of various classification models, many fairness notions
have been proposed and most of them can be divided into group fairness [2, 3]
and individual fairness [4, 5]. Group fairness requires treating different groups
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defined by protected attributes equally. Individual fairness requires similar indi-
viduals should be treated similarly by classifiers. Based on these fairness notions,
many approaches [6–9] have been proposed to solve the fair classification prob-
lem. Among them, representation learning [8, 9] is a common approach, which
transforms the original datasets into new representations that obfuscate the in-
formation about the protected attributes in the representations. Then, different
groups have similar representations and will be treated similarly by any clas-
sifier, which satisfies group fairness. However, most existing studies only focus
on group fairness, which may harm individual fairness and create discrimina-
tion. For example, in hiring decision, some unqualified people in the protected
group (e.g., females) are interviewed deliberately [7], which is, in fact, biased
against the individuals in the unprotected group. Individual fairness can allevi-
ate such discrimination by ensuring that individuals who are similar in terms of
attributes/background (e.g., similar academic experience) are treated similarly.

Only a handful of studies on fair classification [7,10] consider both individual
and group fairness in their designs. In LFR [7], a loss function is defined that com-
bines accuracy, group fairness and individual fairness. However, the three terms
are trained at the same time, but not well reconciled at the same time. Besides,
the loss function in LFR enforces fairness indirectly, so the fairness performance
of learned representation is not guaranteed. DualFair [10] explores an alterna-
tive formation of individual fairness called counterfactual fairness [5] which grant
similar treatment for counterfactual samples, where a counterfactual sample of
an individual x is defined to be a “synthetic” individual who is similar to x except
for the protected attribute. However, counterfactual fairness cannot guarantee
general and stronger individual-level fairness for any two similar individuals.

We mainly focus on reconciling accuracy and two types of fairness (i.e., group
fairness and individual fairness). Due to the conflict between group and individ-
ual fairness [11], we aim to achieve a better trade-off between them. To solve
this problem, we propose an approach called GIFair (for group and individual
fair representations), which transforms the original dataset into a fair repre-
sentation. To reconcile group and individual fairness in the learned representa-
tion, we use two adversaries, one for group fairness and the other for individual
fairness, instead of using only one adversary in the related studies. For group
(fairness) adversary, we apply an effective formation of target function, which
better guarantees group fairness. For individual (fairness) adversary, we form its
target function with a metric called yNN based on k-nearest neighbors, which ad-
dresses the explicit individual fairness of treating any similar individuals equally.
We propose a well-designed training algorithm to reconcile all concepts in our
structure. Compared to the existing adversarial learning studies that only con-
sider accuracy and group fairness, we handle a more complicated problem with
a better performance, e.g., we achieve a 3% improvement in accuracy and 40%
improvement in group fairness on dataset COMPAS compared with baselines.

To further optimize GIFair, we propose a focal loss function so that the three
targets receive more balanced attention. GIFair with focal loss function obtains
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even better trade-off performance (e.g., 30% improvement of group fairness un-
der the same level of individual fairness) compared with the original GIFair.

We conduct extensive experiments on three real datasets to study the trade-
off among accuracy, group fairness and individual fairness. The results show
that compared with many baseline algorithms, GIFair can achieve better per-
formance, e.g, GIFair can achieve up to 2% improvement in accuracy under the
same individual fairness performance on dataset Adult.

The contributions of our work are as follows. (1) We design a novel structure
of adversarial representation learning with two adversaries for group fairness and
individual fairness, respectively. (2) We design a training algorithm that can well
reconcile the two adversaries in our structure. Ablation analysis is conducted to
show its superiority. (3) We propose a focal loss function to ensure balanced at-
tention of two types of fairness and accuracy. (4) The experiments conducted on
3 real datasets show that GIFair can reconcile good fairness with high accuracy.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents the preliminaries. Section 4 describes our solution to the
fair classification problem. Then, Section 5 reports experimental results and our
analysis. Finally, Section 6 concludes this paper.

2 Related Work

Most machine learning studies about fairness can be classified into pre-processing,
in-processing and post-processing. Pre-processing approaches directly modify data-
sets to remove discrimination [6]. In-processing approaches modify the classifier
to improve its fairness performance [7, 12]. Post-processing approaches directly
change the predicted outcomes of the learned predictors [2].
Learning Fair Representations. Recently, fair representation learning [7]
attracts great attention in fair machine learning, which is to learn a debiased
representation so that the downstream tasks could satisfy fairness requirements.
In this branch, iFair [12] considers a probabilistic mapping to the representation
space to address both accuracy and individual fairness (which uses a similar
fairness notion as in this paper) but fails to address group fairness as we do. Du-
alFair [10] applies a contrastive self-supervised learning approach to obtain the
representation satisfying both group fairness and counterfactual fairness. How-
ever, although LFR [7] and DualFair [10] set both group and individual fairness
as targets, as mentioned in Section 1, they are not effective enough to address
individual fairness. LFR [7] uses an indirect individual fairness formation that
minimizes the deviation between each data point and its representation, and
thus the individual fairness of the representation relies on the individual fairness
of the original dataset, which is not always ensured. DualFair [10] focuses on
counterfactual fairness but does not ensure individually fair results for any two
similar samples. In comparison, we form our individual fairness notion based on
an explicit target of treating any similar individuals equally.

Among those approaches, adversarial representation learning has been broadly
explored. ALFR [8] provides a framework of learning representations that min-
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imize the performance of the adversary which predicts the protected attribute
of the representation. LAFTR [13] follows this framework to explore adversarial
learning as a method of obtaining a representation to mitigate unfair prediction
outcomes. IPM [14] proposes the integral probability metric adopted in an ad-
versary such that a good theoretical guarantee on group fairness is obtained.
However, all these existing methods focuses on group fairness only, while our
method GIFair (following the idea of adversarial representation learning) recon-
ciles both group and individual fairness by a novel structure of two adversaries.

3 Preliminaries

In the fair classification problem, we are given a dataset D containing N data
points. The i-th data point in D, denoted by xi where i ∈ [1, N ], has a list X of
d features, i.e., xi ∈ Rd. Each xi is also associated with an outcome attribute Y
for classification and a protected attribute A representing the group membership
(e.g., gender). Following [7,8,13], we assume binary outcome attribute and binary
protected attribute (i.e., Y ∈ {0, 1} and A ∈ {0, 1}). We assume that values 1
and 0 represent the protected group (e.g., females) and the unprotected group
(e.g., males), respectively. We thus denote D1 and D0 to be the subsets of D
containing all data points in the protected and unprotected group, respectively.

The basic goal of the fair classification problem is to obtain a classifier η
that can predict an outcome η(xi) ∈ {0, 1} of data point xi for i ∈ [1, N ] in the
dataset D such that some fairness criteria are satisfied.

To achieve fairness, we follow common approaches to optimize some fairness
metrics. For group fairness, we use two popular metrics, the demographic parity
gap [3] and equalized odd distance [2]. Given a classifier η and dataset D, the de-
mographic parity gap of η for D, denoted by ∆DPD(η), is defined to be the abso-
lute difference between the positive rate of D0 and the positive rate of D1 Namely,

∆DPD(η) = | 1

|D1|
∑

xi∈D1

η(xi)−
1

|D0|
∑

xj∈D0

η(xj)| (1)

The equalized odd distance of η for D, denoted by ∆EOD(η), is defined to be
the sum of the absolute difference between the true positive rate (TPR) of D0

and the TPR of D1, and the absolute difference between the false positive rate
FPR of D0 and the FPR of D1. In this paper, we use ∆DPD(η) as our major
group fairness metric, but we also test ∆EOD(η) as an alternative metric. For
both ∆DPD(η) and ∆EOD(η), smaller values indicate better group fairness.

Individual fairness is another perspective of fairness, which requires that two
similar individuals (i.e., data points) should be treated similarly in terms of the
predicted outcome [4]. Consider a data point xi. Let N k

D(xi) denote the set of
k nearest neighbors of xi in D, where k is a positive integer. Note that N k

D(xi)
is computed based on the features X only (but not the protect attribute A).
This is because the similarity of two individuals should be independent to A.
To quantify the individual fairness, we adapt a commonly applied metric called
yNN [7], which measures the consistency of the prediction results among similar
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data points. Specifically, given a classifier η, a positive integer k and dataset D,
the yNN of η for D and k, denoted by ∆yNND,k(η), is defined to be

∆yNND,k(η) = 1−

∑
xi∈D

∑
xj∈Nk

D(xi)

|η(xi)− η(xj)|

k ·N
(2)

which captures the average difference between the predicted outcome of a data
point xi and that of a nearest neighbor xj of xi. This difference is 0 if xi and
xj have the same predicted outcome and 1 otherwise. According to Equation 2,
larger ∆yNND,k(η) indicates better individual fairness.

Moreover, we introduce the basic concept of generative adversarial network
(GAN) [15]. It has two components, namely a generator G and a discrimina-
tor C. G aims at deceiving C by constructing synthetic data G(z) that could
match the real data distribution Pdata. C aims at distinguishing whether the
data comes from Pdata or G(z). Both components improve their ability through
learning. That is, G is trained to generate G(z) that cannot be distinguished from
the real data, while C is trained to identify the outcome of G(z) more accurately.

4 Methodology

4.1 Problem Statement

In this work, we follow adversarial representation learning to tackle the fair
classification problem, which is to learn a representation Z by re-constructing
the features X in the original dataset D. The learning goal is that any classifier
trained on the representation Z is accurate to predict the outcome attribute Y
and is also fair in terms of both group fairness and individual fairness.

Due to the conflict of group and individual fairness [11], the two fairness
goals could not be satisfied simultaneously in most cases (an extended analysis
on their incompatibility is given in our supplementary material [16]). We thus
set our optimization goal of classifier η such that a balanced trade-off can be
obtained among accuracy, group fairness and individual fairness.

4.2 Model

First proposed by [8], plenty of existing studies follow a general framework of
adversarial representation learning for fair classification. This framework uses an
encoder as the generator to generate the representation Z from X which aims to
obfuscate the group membership and thus ensure group fairness. To achieve that,
an adversary as the discriminator is set up to identify the group of the generated
representation Z. By adversarial learning [15], while the adversary improves its
ability of group identification, the encoder is also well trained to generate group-
obfuscated representation Z. Finally, a (group) fair representation is obtained.
However, this framework so far only addresses group fairness. It remains unsolved
how to accommodate individual fairness into this framework.
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Fig. 1: Structure of GIFair

With this motivation, we propose our model called GIFair (Group Individual
Fair). As illustrated in Figure 1, GIFair consists of an encoder f , a classifier g
and two adversaries, namely group (fairness) adversary h1 and individual (fair-
ness) adversary h2. GIFair seeks to learn a representation Z by re-constructing
the original features X of each data point in D using the encoder f . Classifier
g, which predicts the outcome Y from representation Z, seeks to preserve the
prediction accuracy. In addition, GIFair aims at achieving group fairness by the
group adversary h1 and individual fairness by the individual adversary h2. Next,
we introduce the details of all components and how they interact with each other.
Encoder. An encoder f : Rd → Rd′

maps a data point xi into a d′-dimensional
vector, denoted by zi = f(xi). The representation Z of the original dataset is
formed by encoding all data points in D, namely, Z = f(X) = {f(xi)|xi ∈ D}.
Classifier. We use a classifier g: Rd′ → {0, 1} to predict the outcome g(zi) of
each zi in Z and form the outcome set g(Z) = g(f(X)). To preserve utility,
we minimize a suitable classification loss function (i.e., cross-entropy) between
g(f(X)) and Y , denoted by Lc(g(f(X)), Y ) (written as Lc for simplicity).
Group Adversary. To achieve group fairness of Z, the group adversary h1:
Rd′ → {0, 1} is included. Given a representation zi = f(xi) ∈ Z, h1 generates a
value h1(zi) ∈ {0, 1}, which is the predicted group of zi. Thus, we denote the set
of predicted groups of Z to be h1(Z) = h1(f(X)). The objective of h1 is to differ-
entiate representations in different groups. Note that this objective differs from
making any h1(zi) exactly equal to the protected attribute of xi. Instead, h1 is
only interested in giving different group labels to two representations in different
groups. It is thus interesting to observe that if any h1(zi) is wrongly predicted, h1

also has strong differentiation performance. Therefore, following [7], we form the
group (fairness) loss function on h1(f(X)) and A, denoted by Lg(h1(f(X)), A)
(written as Lg for simplicity), as follows.

Lg = Lg(h1(f(X)), A) = |

∑
xi∈D0

h1(f(xi))

|D0|
−

∑
xj∈D1

h1(f(xj))

|D1|
| (3)

Here, higher Lg indicates either predicting more items in D0 as 1 and more items
in D1 as 0 (mostly wrong), or predicting more items in D0 as 0 and more items in
D1 as 1 (mostly correct), both leading to better differentiation of representations
from different groups. Thus, h1 is trained to maximize Lg.
Individual Adversary. Individual fairness requires that individuals who are
similar on their features X should be indistinguishable in terms of the predicted
outcome of their representation Z (i.e., to be given the same predicted outcome
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Y ). To achieve individual fairness in Z, another adversary h2: Rd′ → {0, 1} is
included. Specifically, for each representation zi = f(xi) ∈ D, h2 predicts an
outcome h2(zi) ∈ {0, 1} (of attribute Y ) such that, for another representation
zj = f(xj), if xi and xj are similar (e.g., xj is a nearest neighbor of xi), the
predicted outcome of zj should be distinguishable with the predicted outcome of
zi, i.e., h2(zj) ̸= h2(zi). We formalize the individual (fairness) loss function on
h2(f(X)), denoted by Li(h2(f(X))) (written as Li for simplicity), as follows to
capture the above objective, where a conceptual notation h2(Z) = h2(f(X)) is
also used here to denote the process of generating all h2(zi) for zi ∈ Z.

Li = Li(h2(f(X)))=

∑
xi∈D

∑
xj∈Nk

D(xi)

|h2(f(xi))−h2(f(xj))|

k ·N
(4)

When Li is larger, h2(f(xi)) ̸= h2(f(xj)) holds for more pairs of similar data
points xi and xj in D. Thus, the goal of adversary h2 is to maximize Li so that
h2 is more capable of distinguishing similar data points.

To find the k nearest neighbors of a data point in D, a suitable similarity
metric is needed. In this work, we choose the Euclidean distance (a commonly
applied metric) on all features X as the similarity metric, but not the repre-
sentations f(X) for distance computation. This is to ensure that we find the
data points that are “really” similar to their original features. Note that another
similarity metric (that could be more suitable for a specific dataset) also works,
which only influences the result of finding the nearest neighbors.
Total Loss. The total loss function L(f, g, h1, h2) is formalized to be the weighted
sum of the classification loss function, group loss function and individual loss
function based on three coefficients α, β and δ, respectively.

L(f, g, h1, h2) = α · Lc + β · Lg + δ · Li (5)
The coefficients α, β and δ provide a trade-off among accuracy, group fair-

ness and individual fairness. We train our model with a min-max optimization:
minf,g maxh1,h2

EX,A,Y [L(f, g, h1, h2)] following adversarial learning [15].
Training Algorithm. We train our model in a number of epochs. In each epoch,
we first sample a mini-batch D′ from the dataset D. Next, we do the training
for this epoch in 3 steps. In Step 1 and Step 2, we freeze the parameters of f
and g, and then, we train the group adversary h1 and individual adversary h2,
respectively, such that their objective functions are maximized. Finally, in Step
3, f and g are trained such that the total loss function L(f, g, h1, h2) on D′

is minimized. In this way, the group fairness and individual fairness can both
be improved in the generated representation Z, and meanwhile the accuracy of
classifier g, which is encoded in the total loss function, is also improved.

Although it is not theoretical guaranteed that the adversarial learning will
always converge, several heuristics that we apply could encourage its convergence
practically including training sufficient epochs and using mini-batches [17, 18].
In our algorithm, we aim at optimizing the group fairness and the individual
fairness, and finally, our results in Section 5 show the balanced trade-off between
the two targets (e.g., 30% improvement of group fairness under the same level
of individual fairness). This verifies the practical convergence of our algorithm.
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4.3 Theoretical Properties of Loss Functions

We give the theoretical properties to show the effectiveness of using our loss
functions to ensure fairness. First, we show that the optimal value of Lg can
upper-bound the demographic parity gap of any classifier trained on represen-
tation Z. In the supplementary material [16], we provide the proofs.

Lemma 1. For a group adversary h1, the optimal value of Lg(h1(Z), A) (de-
noted by Lg(h

∗
1(Z), A)) is at least the demographic parity gap of any classifier η

on representation Z, i.e., Lg(h
∗
1(Z), A) ≥ ∆DPZ(η).

In Lemma 1, we connect Lg(h1(Z), A) with ∆DPZ(η) (i.e., the performance
of Z), and thus we can obtain the worst ∆DPZ(η) performance of any classifier
trained on Z given the optimal group adversary h∗

1. This shows the effectiveness
of using Lg(h1(f(X)), A) as the group loss function.

Analogously, we want to show the effectiveness of the individual loss function
Li(h2(Z)). We consider the yNN “variant” of a classifier η trained on represen-
tation Z, denoted by ∆yNN ′

Z,k(η), which is the same as the yNN metric except
that the k-NN of any sample zi(= f(xi)) for zi ∈ Z are defined based on the
original dataset D (namely, N k

Z(zi) = {f(xj)|xj ∈ N k
D(xi)}). This is to ensure

that the measurement is based on the “real” similarity relationships of the data
points. Lemma 2 shows that, for any classifier η trained on Z, ∆yNN ′

Z,k(η) is
lower-bounded by a value related to the optimal value of Li(h2(Z)).

Lemma 2. For an individual adversary h2 and any classifier η on represen-
tation Z, ∆yNN ′

Z,k(η) ≥ 1 − Li(h
∗
2(Z)), where Li(h

∗
2(Z)) denotes the optimal

value of Li(h2(Z)).

In Lemma 2, we can also obtain the worst ∆yNN ′
Z,k(η) performance given the

optimal individual adversary h∗
2, showing that our individual loss Li is effective.

4.4 Optimization with Focal Loss

To this end, we have formed our GIFair structure. However, we notice that the
ranges of the three losses in Equation 5 have large differences (e.g., the value of
Li is much smaller than the other two losses). Since our target is to minimize
the total loss, the loss with a smaller value receives less attention.

To solve this issue, we exploit the focal loss function [19] to alleviate the
imbalance among the three losses. Consider an item with two possible outcomes
1 and 0. Let p be the estimated probability with outcome 1. We define a variable
pt to be p if the true outcome of this item is 1 and to be 1 − p otherwise. The
formulation of Focal Loss function is FL(pt) = −(1− pt)

γ · log(pt), where γ ≥ 0
is a focusing parameter and (1−pt)

γ is regarded as a weight term. We notice that
if the value of pt is high, its weight (1− pt)

γ will be low. Thus, less (resp. more)
weight is given to an item with higher (resp. lower) pt value. Based on this idea,
we re-design our total loss function by adjusting the weights of the three terms:

L(f, g, h1, h2) = (1− Lc)
γ · Lc + (1− Lg)

γ · Lg + (1− Li)
γ · Li (6)
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Table 1: Statistics of Datasets
Dataset Train/Test Protected Attribute (A = 1/0) P (A = 1) P (Y = 0)

COMPAS 4,321/1,851 race (African-Americans/other races) 0.34 0.54
Adult 30,162/15,060 gender (females/males) 0.33 0.75

German 700/300 age (the aged/the young) 0.27 0.7

In this equation, if the value of one loss is small (resp. large), its weight is large
(resp. small). In this way, we can balance the values of the three losses with their
weights. Each loss could receive similar attention during training.

5 Experiments and Analysis

In this section, we conducted extensive experiments to evaluate the effectiveness
of GIFair. We used three common real datasets: COMPAS, Adult and German.
Table 1 lists the statistics. COMPAS [20] is used to predict whether a criminal
defendant will recidivate (Y = 1) or not (Y = 0). Adult [21] is used to predict
each person’s income (Y = 1 if income > 50K/y, and Y = 0 otherwise). Ger-
man [22] classifies each individual as good (Y = 0) or bad (Y = 1) credit risks.

We selected LAFTR [13], LFR [7], iFair [12] and DualFair [10] as baselines.
We also include UNFAIR, which is a normal classification algorithm that does
not consider fairness. If the original loss function (i.e., Equation 5) is used, our
algorithm is denoted as GIFair, while GIFair-focal denotes our algorithm on the
focal loss function (i.e., Equation 6).We implemented all algorithms in Python.

We focus on the classification accuracy, group fairness and individual fairness.
(1) For accuracy, we use accuracy (denoting ACC) which is defined to be 1 minus
the average difference between the outcome and the predicted outcome of all data
points, and F-1 score (denoting F1) which is defined to be the harmonic mean
of the precision and the recall of a classifier. (2) For group fairness, we adopt the
two metrics as introduced in Section 3, namely demographic parity gap (denoting
∆DP ) and equalized odds distance (denoting ∆EO). (3) For individual fairness,
we use yNN, denoted by ∆yNN (introduced in Equation 2).

We varied β and δ in GIFair from 0.1 to 20, while α is fixed to 1. For baselines,
we also changed their coefficients from 0.1 to 20. For GIFair-focal, we varied γ
from 0.05 to 5. By default, we set k to 10 when computing the k-nearest neighbors
for yNN according to [12]. For each coefficient setting and each model, we trained
it 5 times (using different random seeds) and obtained the mean performance on
the test datasets. The implementation details of algorithms are included into the
supplementary materials [16]. In the following, we show the experimental results.
Overall Comparison. Due to lack of space, we show the overall comparison
of our GIFair algorithm with all baselines for the best value achieved for each
measurement in [16]. GIFair outperforms all the baselines on most metrics.
Trade-off Studies. We studied the trade-off between any two terms from ac-
curacy, group fairness and individual fairness. We compared with the baselines
that also study the trade-off. To show which algorithm performs better under
multi-metrics, we plotted the Pareto front curves (widely used in existing trade-
off studies [12, 13], which only shows the dominating points of multi-metrics
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Fig. 2: Trade-off Curves on Dataset German

for better illustration). We also include baseline UNFAIR without weights for
trading-off (thus shown as a star mark). Since the group fairness metrics are
favored with smaller values, we plot 1 minus the group fairness metric, so that
for each figure, the right-top points (high values along each axis) are preferable.
We show the results on dataset German, while we obtain similar results for the
other two datasets, which are reported in our supplementary material [16].
Accuracy and Group Fairness. Figure 2(a) shows the trade-off between accuracy
and group fairness, with the default metric ACC and ∆DP , respectively. Com-
pared with baselines, both GIFair and GIFair-focal have superior trading-off
ability by reaching the most upper-right location. More closely, at the same level
of accuracy (ACC ≈ 0.76), the best ∆DP that baselines could achieve is at least
0.03 (i.e., 1 −∆DP < 0.97), while the ∆DP values of our GIFair and GIFair-
focal are around 0.02 and 0.01, improving the best baseline by 33% and 67%,
respectively. For the same level of group fairness achieved (e.g., ∆DP ≈ 0.02),
our GIFair and GIFair-focal obtain slightly better accuracy. The above indicates
our better reconciliation between group fairness and accuracy compared with
baselines, because we use an effective group fairness target, which ensures group
fairness more easily without sacrificing accuracy too much. GIFair-focal could
reach the highest ACC of around 0.765 but at a cost of sacrificing group fairness.
Accuracy and Individual Fairness. Figures 2(b) shows the trade-off between ac-
curacy and individual fairness. GIFair and GIFair-focal still obtain the best
trade-off. When ACC is fixed to around 0.76, the baseline with the best individ-
ual fairness has around 0.772 ∆yNN , while the ∆yNN of GIFair-focal reaches
0.792 with 2.6% improvement. Moreover, the baseline iFair could also obtain
high ∆yNN of around 0.79 but with its ACC below 0.74, while our GIFair-focal
keeps ACC above 0.76, which improves iFair by more than 3%. This similarly
indicates that our algorithms better reconcile individual fairness and accuracy
than iFair even though iFair has the same individual fairness target, because
using adversarial learning could achieve the reconciliation more effectively.
Group Fairness and Individual Fairness. Our algorithms also obtain superior
trade-off between the two types of fairness as shown in Figure 2(c). GIFair-
focal achieves the highest ∆yNN (0.794), since it uses the focal loss function to
effectively give larger weight to individual fairness while down-weigh group fair-
ness. GIFair could also obtain good individual fairness (e.g., ∆yNN = 0.786),
while its group fairness is only slightly downgraded (with ∆DP = 0.02).
Ablation Studies. We conducted ablation studies for the two adversaries in
GIFair with the following variants. (1) GIFair without group adversary h1 (i.e.,
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Fig. 3: Ablation Studies of GIFair on Dataset German

GIFair-w/o-h1), by skipping Step 1 of training h1. (2) GIFair without individual
adversary h2 (i.e., GIFair-w/o-h2), by skipping Step 2 of training h2. (3) GIFair
without h1 and h2 (i.e., GIFair-w/o-h1-h2), by skipping both Step 1 and Step 2.

Figure 3 (a) and (b) illustrate the ablation study results on dataset German.
Without group adversary h1, GIFair-w/o-h1 has much larger ∆DP (i.e., worse
group fairness) than the original GIFair. This verifies the effectiveness of improv-
ing group fairness using the group adversary. Similarly, GIFair has larger yNN
than GIFair-w/o-h2, indicating that the individual adversary h2 could effectively
improve individual fairness. Without both adversaries, GIFair-w/o-h1-h2 obtains
bad performance for both group and individual fairness.
Case Studies. We conducted case studies for the classification results regarding
group and individual fairness. When only individual fairness is optimized (i.e.,
setting β to 0) for dataset COMPAS, we observe a representative result where
47% of the African-American group will recidivate, while this proportion for the
other races is only 29%. When both group and individual fairness are optimized
(i.e., setting all parameters to 1), the recidivation proportions among African-
Americans and other races are predicted to be 40% and 38%, respectively, which
is much fairer. Moreover, there exist some pairs of similar defendants who only
have 1 day difference on the days between screening and arrest and have the
same value for all other attributes. When only group fairness is optimized (i.e.,
setting δ to 0), we found that the number of these pairs of similar defendants
that obtain different prediction results is 14. This number improves to only 1
when both group and individual fairness are optimized.

6 Conclusion

In this paper, we propose an adversarial learning structure, GIFair, with two
adversaries for group fairness and individual fairness, respectively. With a de-
signed training algorithm, GIFair can reconcile utility with group and individual
fairness during generating a representation on the original dataset. We also pro-
pose a focal loss function that can better balance all the goals in GIFair. In our
experiments on 3 real datasets, GIFair outperforms baselines with better fair-
ness and higher accuracy. For future work, we would like to achieve a holistic
optimization for utility and multiple fairness goals at the same time, and explore
the problem on intersectional or unknown group.
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