
RGVisNet: A Hybrid Retrieval-Generation Neural Framework
Towards Automatic Data Visualization Generation

Yuanfeng Song
The Hong Kong University of Science and Technology &

WeBank Co., Ltd
Hong Kong, China
songyf@cse.ust.hk

Xuefang Zhao
AI Group, WeBank Co., Ltd

Shenzhen, China
summerzhao@webank.com

Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

Hong Kong, China
raywong@cse.ust.hk

Di Jiang
AI Group, WeBank Co., Ltd

Shenzhen, China
dijiang@webank.com

ABSTRACT

Recent years have witnessed the burgeoning of data visualization
(DV) systems in both the research and the industrial communi-
ties since they provide vivid and powerful tools to convey the
insights behind the massive data. A necessary step to visualize
data is through creating suitable specifications in some declarative
visualization languages (DVLs, e.g., Vega-Lite, ECharts). Due to
the steep learning curve of mastering DVLs, automatically gener-
ating DVs via natural language questions, or text-to-vis, has been
proposed and received great attention. However, existing neural
network-based text-to-vis models, such as Seq2Vis or ncNet, usu-
ally generate DVs from scratch, limiting their performance due to
the complex nature of this problem.

Inspired by how developers reuse previously validated source
code snippets from code search engines or a large-scale codebase
when they conduct software development, we provide a novel hy-
brid retrieval-generation framework named RGVisNet for text-to-
vis. It retrieves the most relevant DV query candidate as a prototype
from the DV query codebase, and then revises the prototype to
generate the desired DV query. Specifically, the DV query retrieval
model is a neural ranking model which employs a schema-aware
encoder for the NL question, and a GNN-based DV query encoder to
capture the structure information of a DV query. At the same time,
the DV query revision model shares the same structure and param-
eters of the encoders, and employs a DV grammar-aware decoder
to reuse the retrieved prototype. Experimental evaluation on the
public NVBench dataset validates that RGVisNet can significantly
outperform existing generative text-to-vis models such as ncNet,
by up to 74.28% relative improvement in terms of overall accuracy.
To the best of our knowledge, RGVisNet is the first framework
that seamlessly integrates the retrieval- with the generative-based
approach for the text-to-vis task.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539330

CCS CONCEPTS

• Human-centered computing → Visualization systems and

tools;

KEYWORDS

text-to-vis, hybrid retrieval-generation approach

ACM Reference Format:

Yuanfeng Song, Xuefang Zhao, Raymond Chi-Wing Wong, Di Jiang. 2022.
RGVisNet: A Hybrid Retrieval-Generation Neural Framework Towards
Automatic Data Visualization Generation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), Au-
gust 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3534678.3539330

1 INTRODUCTION

Living in the era of Big Data, almost all businesses in every domain
have become data-driven, whether designing new products, making
real-time decisions, or conducting social marketing activities. The
value of data visualizations (DVs) is evident in these scenarios since
they provide practical and powerful ways of summarizing insights
and rules behind the massive data to support the final decisions.
Thus, DV has attracted significant attention in the database [17, 25,
32] and the data mining communities [25, 28]. For example, [25]
in KDD 2021 studied the problem of automatically recommending
potential DVs given a massive dataset.

A necessary step to conduct DVs is through composing visu-
alization specifications in some declarative visualization languages
(DVLs), which specify what data are required and how the data
would be visualized. In the community, there are already a sub-
stantial amount of DVLs such as Vega-Lite [27], ggplot2 [34], ZQL
[30], ECharts [14], and VizQL [11], each of which enjoys a quite
diversified grammar and syntax. Mastering DVs via composing
suitable visualization specifications requires the users to have good
knowledge of the domain data as well as expertise in these DVLs, a
great challenge especially for beginners and non-technical users.

In response to the demand for lowering barriers to create DVs, a
task named Text-to-Vis has been proposed to automatically translate
natural language (NL) questions into DVs [17–19]. Since text-to-vis
shows insights into unlocking the power of the relational database
and visualization system to the users who have a limited technical

https://doi.org/10.1145/3534678.3539330
https://doi.org/10.1145/3534678.3539330

KDD ’22, August 14–18, 2022, Washington, DC, USA. Yuanfeng Song et al.

Visualize bar
Select (destination Flight)
Count (destination Flight)
Grouping (destination Flight)

Show the number of
flights in each
destination city
with a bar chart

{ "data": {“url”: “data/flight.json”},
"mark": "bar",
"encoding": {

"x": { "field": "destination "},
"y": {“aggregate": “count"}}

} Vega-Lite

DV Query

Visualization Specification

NL Question

Text-to-Vis

Execution

Visualization Chart

Figure 1: An example of the text-to-vis task, which first auto-

matically translates the given NL question into its DV query,

then gets the visualization specification (in Vega-Lite), and

finally renders the corresponding DV Chart.

background, it has become an essential task that researchers have
extensively explored in recent years [7, 8, 18, 19, 24].

Indeed, automatically synthesizing DVs from the NL questions
is quite challenging, since a suitable model should have the ability
to understand the semantics expressed in the NL questions, and at
the same time, compose the corresponding DVs according to their
complex and strict grammar. Some studies have been attempted to
deal with this problem. To name a few, NL4DV [24] supports to gen-
erate data visualization using NL questions, mainly based on NLP
semantic parses. DeepEye [18] employs a rule-based methodology
for creating DV charts. Seq2Vis [19] adopts a sequence-to-sequence
neural network with an attention mechanism that could achieve
end-to-end conversion of NL questions toDV queries, which follows
a SQL-like grammar that defines the visualization details (e.g., chart
type) and the data operations (e.g., aggregation, binning, filtering,
sorting). These DV queries abstract and capture all the possible
DVLs and can easily be converted into the corresponding visual-
ization specifications in any DVLs to render the final DV chart.
From an example in Figure 1, we can see that text-to-vis enables
the user to query the DV system by simply asking an NL question
“Show the number of flights in each destination city with a bar chart”,
rather than directly composing a specification in some DVLs. The
NL question is automatically translated into the corresponding DV
query and then the specification in a DVL (i.e., Vega-Lite), and
finally the rendered bar chart is shown to the user as the DV chart.

Despite all these efforts, existing text-to-vis studies still suffer
a fundamental issue: they employ a pure generative approach, i.e.,
synthesizing the DV from scratch. None of them consider reusing
the previously validated DVs that may fulfill similar functionality
from a codebase. As such, we argue that the accuracies of these
models can further be improved by involving related DVs as pro-
totypes to avoid the complexity of DV generation from scratch.
Actually, developers rarely implement code functionalities from
scratch in daily practice. Instead, they usually reuse previous source
code snippets by searching code search engines (e.g., Google Code
Search1, Github2) or a large-scale codebase, and then revise the code

1https://developers.google.com/code-search
2https://github.com

A NL Question:
Bin the year attribute into the Year interval and count them for a bar
chart, give me a bar chart for the number of year of each year.
Schema:
Year(No, Grape, State, Name, Year, Price, …)
The Expected Ground-truth DV Query:
Visualize BAR SELECT Year , COUNT(Year) FROM WINE BIN Year BY WEEKDAY

Step 1: DV Query Retrieval
Prototype
Retrieved DV Query:
Visualize BAR SELECT yearid , COUNT(yearid) FROM hall_of_fame BIN yearid BY
WEEKDAY
Schema:
hall_of_fame(player_id, yearid, votes, category, …)
Meaning:
Count yearid of each week within a year.

Step 2: DV Query Revision
Visualize_SELECT _ COUNT_FROM _ WHERE _BIN_BY
=> Generated DV Query:
Visualize BAR SELECT Year , COUNT(Year) FROM WINE BIN Year BY
WEEKDAY

Figure 2: An illustrating example showing the pipeline of

our hybrid Retrieval-Generation framework for text-to-vis.

snippets into their desired functionality. In a parallel research field,
dialogue system, the reuse of previous utterances to enhance the
response generation task is also quite common, formally known as
the retrieval-based natural language generation (NLG) [12]. While
the generativeNLG tends to produce highly coherent new responses,
the retrieval-based approach is well-recognized preferring to pro-
duce more accurate, controllable, and diverse results [36]. An inte-
gration of both the retrieval- and the generation-based approach is
proved to combine the merits of both methods in dialogue system
[31, 36].

Inspired by the above-mentioned observations, we claim that
it is worthwhile exploring the effectiveness of the retrieval-based
approach on text-to-vis. We follow the common practice of Seq2Vis
[19] and ncNet [20], which first translates NL questions into DV
queries, and then convert these queries into specifications in any
DVLs to get the final DV charts. Although it is somewhat promising,
this approach is quite challenging in the text-to-vis scenario due
to the following two reasons: (i) achieving accurate DV retrieval
is quite hard since it is quite different from existing code search
works for general-purpose programming languages (GPLs) such as
Python or Java [9]; The structures between DV queries play a far
more critical role in deciding the relevance than its semantics, while
in code search for GPLs we usually only care about the semantics
between the NL query and the code snippets. (ii) even when the
model can retrieve accurate DV query candidates, these candidates
still need significant revision and can not be directly used as DV
query results. These two aspects make the hybrid approach in
text-to-vis quite different from the common practice in other tasks,
such as dialogue systems [31], where the retrieved utterances can
directly be used as responses or only need little revision [31, 36].

To address the aforementioned challenges, in this work, we pro-
pose a hybrid retrieval-generation framework named RGVisNet,
which aims to combine retrieval- and generation-based approaches
to achieve more accurate text-to-vis conversion. As shown in Fig-
ure 4, RGVisNet works in a two-step pipeline analogy to the afore-
mentioned developers’ programming practices, that is: (i) retrieve
the most relevant DV query concerning the given NL question
from a codebase, and (ii) take the retrieved DV query as a prototype
and revise it according to the specific requirement (schema and NL

https://developers.google.com/code-search
https://github.com

RGVisNet: A Hybrid Retrieval-Generation Neural Framework KDD ’22, August 14–18, 2022, Washington, DC, USA.

question) to generate the desired DV query. Specifically, for the first
step, RGVisNet uses a novel structure-aware DV query retrieval
architecture, which can employ a GNN-based structure to capture
structural information as well as the semantic similarity simulta-
neously. For the second step, RGVisNet proposes a novel neural
DV query revision architecture that adopts a DV grammar-aware de-
coder structure to generate the desired DV query. To further boost
the performance, the two networks share a common schema-aware
encoder for the NL question and the DV query.

To sum up, the main contributions of this work are threefold:

• To the best of our knowledge, we are the first to seamlessly
integrate a retrieval- with a generation-based approach in
automatic DV generation. We hope this work will inspire
more research on combining the merits of both retrieval and
the generation-based approach for other tasks.

• We propose a RGVisNet framework, which adopts an ex-
act two-step pipeline analogy to developers’ practice when
conducting software development. The framework contains
two novel networks - the DV query retrieval model and the
DV query revision model, the former of which retrieves the
most relevant candidates, while the latter of which revises
the candidates to the desired DV query. Furthermore, the
two networks share the designed NL question encoder and
the DV query encoder.

• Extensive experimental evaluations show that the RGVis-
Net framework can significantly outperform existing pure
generative text-to-vis models, such as Seq2Vis and ncNet,
by up to a 74.28% improvement in terms of overall accuracy,
proving the necessity to incorporate the previously validated
similar DV query as a prototype.

The rest of this paper is organized as follows: we first introduce
some concepts and the problem definition in Section 2. Then we
discuss the details of our proposed RGVisNet framework, including
the DV query retrieval network as well as the DV query Revision
network in Section 3. The performance analysis is then presented
in Section 4, followed by the related work in Section 5. Finally, we
conclude the work in Section 6.

2 CONCEPTS AND PROBLEM DEFINITION

In this section, we first introduce some preliminary concepts that
could improve the understanding of the following work and then
give the formal definition of the text-to-vis problem.
Natural Language Question.AnNL question is a human-understandable
utterance describing the desired DV, and it is more user-friendly
for users with limited DV background and programming skills to
manipulate the data, especially when the desired DV is complex
and esoteric.
Visualization Specification. Composing visualization specifications
is an essential step to visualize the data as graphical charts. A visu-
alization specification usually follows the grammar of a common
declarative visualization language (DVL), specifying the details of
the visualization construction (e.g., chart type, color, size, mapping
function, properties for marks such as canvas size, legend, etc).
Typical DVLs in the market include Vega-Lite [27], ggplot2 [34],

DV Query Retrieval Network

NL Question
Show me the frequency of winning those years
with a bar chart

DV Query Revision Network

DV Query
CodeBase

Relevant DV Query
Visualize Line SELECT year ,
COUNT(year) FROM home_game BIN
year BY YEAR

Desired DV query:
Visualize BAR SELECT year , COUNT(year)
FROM postseason BIN year BY YEAR

Vis Configuration in VSL

RGVisNet
Framework

Figure 3: The working pipeline of the RGVisNet framework

ZQL [30], ECharts [14], and VizQL [11], each of which has its gram-
mar. In Figure 1, a specification in Vega-Lite is given (i.e., the JSON
object), defining attributes such as data path, mark, and encoding.
Data Visualization Query. The concept of the DV query is proposed
by [17, 18], which aims to abstract all possible DVLs. Like a SQL
query, a DV query is usually executed on a database to obtain
the desired data. Furthermore, the DV query specifies additional
visualization details to visualize these data. The corresponding DV
query to the above-mentioned question is listed in Figure 1, in which
the user defines the visualization chart to be a “bar” type with a SQL-
like data manipulation operation “Select · Count · Grouping ·". A DV
query can easily be transformed into a visualization specification in
any of these DVLs, and then the corresponding visualization engine
will render the DV Chart. In Figure 1, the DV query is transformed
into a specification in Vega-Lite as an example. However, it is trivial
to transform the query into other DVLs such as ECharts.
Text-to-Vis. After defining the previous concepts, the definition of
the text-to-vis problem is relatively straightforward, and it aims to
translate the NL question into DVs (in terms of DV query). Math-
ematically, given an NL query 𝑥 = {𝑞, 𝑠}, where 𝑞 (𝑞 = {𝑞𝑖 } |𝑞 |𝑖=1) is
an NL question describing the user’s visualization need and 𝑠 is
the corresponding database schema, the text-to-vis task aims to
synthesize the corresponding DV query 𝑦. Specifically, the schema
𝑠 includes the collection of tables 𝑇𝑥 = {𝑡𝑖 }𝑛𝑡𝑖=1, and the collection
of columns 𝐶𝑥 = {𝑐𝑖, 𝑗 }𝐿𝑖𝑗=1 for each table 𝑡𝑖 ∈ 𝑇𝑥 , where 𝑛𝑡 is the
number of tables in the schema and 𝐿𝑖 is the number of columns
in table 𝑡𝑖 . Then, the complete training dataset can be represented
as D = {𝑥 (𝑜) , 𝑦 (𝑜) }𝑁

𝑜=1, where 𝑁 is the dataset size. What is more,
it should be noticed that the user’s NL query and the schema are
not restricted to one domain. The desired text-to-vis models should
be able to generalize to unseen data sets in different domains (i.e.,
cross-domain inference).
3 THE RGVISNET FRAMEWORK

In this section, we are ready to describe the details of the proposed
hybrid retrieval-generation framework - RGVisNet.

3.1 Framework Overview

As shown in Figure 3, RGVisNet takes the NL question and schema
as input, retrieves the relevant DV query from the codebase that
may fulfill the functionality, and adaptively generates the desired
DV query.Mathematically, by employing a hybrid retrieval-generation
approach, the RGVisNet framework decouples the text-to-vis task
into two independent subtasks, which can be denoted as

KDD ’22, August 14–18, 2022, Washington, DC, USA. Yuanfeng Song et al.

Version3

Shared NL Query
Encoder

NL Schema

Pretained-based Embedding

0 0 0

0 1 0

0 0 0

0 0

0 0 0

𝜶𝒊,𝒋

LSTM Encoder

+Weighted
Average

…

Prototype(+) Prototype(-)

PROTOTYPE-TO-AST

GNN Encoder

… …

𝑅(𝑥, 𝑟$) 𝑅(𝑥, 𝑟%)

𝑳𝒐𝒔𝒔 =𝐦𝐚𝐱{𝟎,𝟏−𝑹 𝒙,𝒓$ +𝑹 𝒙,𝒓% }

(a) Retrieval Model
NL Schema

Visualize BAR SELECT Rank , count(*) FROM
Faculty GROUP BY rank.
Visualize SCATTER SELECT order_id , count(*)
FROM Invoices GROUP BY order_id.

…

CodeBaseShow me the frequency of winning those years with a bar chart activity_1

Retrieved
Prototype

Visualize…
Retrieval

Model
NL Embedding Prototype Embedding

Transformer-based Encoder

(b) Revision Model

Shared NL Query
Encoder

Shared DV Query
Encoder

+

𝐻& LSTM LSTM LSTM LSTM
Root Vis Select Agg

…

LSTM LSTM LSTM

COUNT

Column Table

Table Pointer Netℎ'%(
ApplyRule

SelectItem
ℎ'

Table Columns

Schema Linking

postseasonyear
Agg

𝐻) 𝐻*

𝐻&

:𝑆+

(𝑄, 𝑆+, 𝑆,)

Column Pointer Net

:𝑆,

Figure 4: The Network Structure of the DV Query Retrieval and Revision Model in RGVisNet Framework

𝑝 (𝑦 |𝑥) ∝ 𝑝 (𝑟 |𝑥 ;B)︸ ︷︷ ︸
DV Query Retrieval

· 𝑝 (𝑦 |𝑥, 𝑟)︸ ︷︷ ︸
DV Query Revision

,

(1)

where B is the codebase consisting of DV queries, 𝑟 represents the
prototype retrieved from the codebase with respect to the NL query
𝑥 , and 𝑟 also contains its own NL question and the corresponding
schema, denoted as 𝑟 = {𝑥 ′, 𝑦′} = {𝑞′, 𝑠 ′, 𝑦′}. In this framework,
𝑝 (𝑟 |𝑥 ;B) represents an DV Query Retrieval Model, aiming to rec-
ommend the most relevant DV query candidate from the codebase.
𝑝 (𝑦 |𝑥, 𝑟) is an DV Query Revision Model, which generates the target
DV query with the help of the recommended prototype. We will
go through the details of the framework from these two aspects in
the following sections.

3.2 DV Query Retrieval Model

As shown in Figure 4(a), our proposed DV query retrieval model
mainly consists of a Schema-aware NL Query Encoder, a GNN-based
DV Query Encoder and a Similarity Module.

3.2.1 Schema-aware NL Query Encoder. We first embed the NL
question 𝑞 with its DB schema 𝑠 into embeddings, by serializing 𝑞
and each table (including its table name and columns) in 𝑠 . Each
token 𝑞𝑖 in the question 𝑞 is first initialized to its embedding by a
pre-trained GloVe vector. Different from the question, each item
in schema 𝑠 may consist of multiple words. Thus, for schema 𝑠 ,
once we get an item from the collection of tables or columns, we
first convert each word in the item into an embedding vector and
then the average of these word embeddings is employed as the item
embedding. Therefore, we could get the initialized embedding 𝑸 ={
𝒒𝑖
} |𝑞 |
𝑖=1 ∈ R |𝑞 |×𝑑𝑒 for the question and 𝑺 = {𝒔𝑖 } |𝑠 |𝑖=1 ∈ R |𝑠 |×𝑑𝑒 for

the schema, where 𝑑𝑒 is the dimension of GloVe vector. Concretely,
𝑺 can be further divided into table embedding 𝑺𝑡 ∈ R𝑛𝑡×𝑑𝑒 and
columns embedding 𝑺𝑐 ∈ R𝑛𝑐×𝑑𝑒 , which represent the embedding
of the distinct table and column item respectively, and 𝑛𝑐 =

∑𝑛𝑡
𝑖=1 𝐿𝑖

indicates the total number of column items.
It is well-recognized that the NL questionmay containmentioned

keywords that appeared in its database schema, and explicitly iden-
tifying these references of columns, tables, and conditional value,
also known as schema linking, would lead to more accurate syn-
thesized SQL in the parallel text-to-SQL task [13, 38]. Based on the
same motivation, we also explicitly consider the schema linking
issue when generating the representations for the NL queries.

Specifically, luong-style attention is used to get the schema-
aware representation 𝑯𝑥 ∈ R |𝑞 |×𝑑𝑚 for the NL query, where 𝑑𝑚 is
the hidden size of the used model. Firstly, we denote the correlation
probability 𝛼𝑖, 𝑗 of the token 𝑞𝑖 with the schema element 𝑠 𝑗 as

𝑒𝑖, 𝑗 = 𝒒𝑇𝑖 𝑾𝑎𝒔 𝑗 , (2)

𝛼𝑖, 𝑗 =
𝑒𝑥𝑝 (𝑒𝑖, 𝑗)∑ |𝑠 |
𝑘=1𝑒𝑥𝑝 (𝑒𝑖,𝑘)

, (3)

where 1 ≤ 𝑖 ≤ |𝑞 |, 1 ≤ 𝑗 ≤ |𝑠 | and𝑾𝑎 ∈ R𝑑𝑒×𝑑𝑒 is a learnable ma-
trix. Then, 𝑯𝑥 is learned through a bi-directional LSTM (BiLSTM)
as

𝑯𝑥 = BiLSTM(𝑔(𝑸, 𝑺;Θ)), (4)
and a sentence-level embedding 𝒉𝑥 ∈ R𝑑𝑚 for NL question is
extracted by average pooling strategy, where Θ = {𝑒𝑖, 𝑗 } and 𝑔(·)
function is a weighted average of word embeddings [13] as follows

𝑔(𝑸, 𝑺;Θ) = {q𝑖 +
|𝑠 |∑︁
𝑗=1

𝛼𝑖, 𝑗 · 𝒔 𝑗 } |𝑞 |𝑖=1 . (5)

3.2.2 GNN-based DVQuery Encoder. We also need to embed the
DV query candidates from the codebase into embeddings. Note that
a DV query already contains both its semantic and structural infor-
mation, and thus, it suffices only to encode the query and exclude
its corresponding schema. However, to preserve the structural as
well as the semantic information, we first represent each query in
the form of an abstract syntax tree (AST) [37]. In our implementa-
tion, we choose the extended grammar of SemQL [10, 19], as shown
in Figure 5, to convert the DV queries into ASTs. Specifically, the
tree is constructed recursively until reaching a leaf node, and each
node contains its following grammar node and its attribute as child
nodes. To use the DV query as a prototype for the following revi-
sion model, we only preserve its sketch information and ignore the
intrusive specialized information, that is, the leaf nodes, including
C (column) and T (table), are pruned from the built AST tree.

Then we generate each query’s embedding using a graph neural
network (GNN) structure [29]. Specifically, given a DV query (in
the form of a AST) as a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 denote
the nodes and edges, the representations 𝒉𝑣 ∈ R𝑑𝑚 of each node
𝑣 ∈ 𝑉 is constructed recursively by aggregating its neighborsN(𝑣).
The 𝑙-th layer of the GNN is calculated by

𝒂 (𝑙)𝑣 = 𝑓
(𝑙)
𝑎𝑔𝑔

({
𝒉(𝑙−1)𝑢 : 𝑢 ∈ N (𝑣)

})
, (6)

𝒉(𝑙)𝑣 = 𝑓
(𝑙)
𝑐𝑚𝑑

(
𝒉(𝑙−1)𝑣 , 𝒂 (𝑙)𝑣

)
, (7)

RGVisNet: A Hybrid Retrieval-Generation Neural Framework KDD ’22, August 14–18, 2022, Washington, DC, USA.

where 𝑓𝑎𝑔𝑔 (·) and 𝑓𝑐𝑚𝑑 (·) are the aggregate and combine operation.
We initialize the representation of each node using a recurrent
neural network. Given a DV query candidate 𝑟 , we finally obtain
its node level embedding 𝑯𝑟 =

{
𝒉(𝐿)𝑣 : 𝑣 ∈ 𝑉

}
∈ R |𝑉 |×𝑑𝑚 and

extract a graph level embedding 𝒉𝑟 ∈ R𝑑𝑚 by aggregating the
representations of all nodes in the final layer

𝒉𝑟 = 𝑓𝑜𝑢𝑡 (𝑯𝑟) , (8)

where 𝐿 is the total number of layers in the GNN, and 𝑓𝑜𝑢𝑡 is a
graph-level pooling function.

3.2.3 Similarity and Model Training. After getting the embeddings
𝒉𝑥 and 𝒉𝑟 of the NL query 𝑥 and the DV query candidate 𝑟 , we use
the cosine similarity to measure their relevance score 𝑅, defined as

𝑅(𝑥, 𝑟) = cos(𝒉𝑥 ,𝒉𝑟) =
𝒉𝑇𝑥 · 𝒉𝑟

∥𝒉𝑥 ∥ · ∥𝒉𝑟 ∥
. (9)

To train the whole retrieval network, we further employ a widely-
used pairwise hinge loss function, which is defined as

L1 (𝑥, 𝑟+, 𝑟−) = max{0, 1 − 𝑅(𝑥, 𝑟+) + 𝑅(𝑥, 𝑟−)}, (10)
where the DV query candidate 𝑟+ is more relevant than 𝑟− with
respect to the given NL query 𝑥 .

3.3 DV Query Revision Model

As shown in Figure 4(b), the DV query revision model consists
of four main components: a Schema-aware NL Query Encoder, a
GNN-based DV Query Encoder, a Transformer-based Encoder and a
Grammar-aware Decoder. Even though the input of the GNN-based
DV query encoder is the most relevant DV queries from the re-
trieval model, the network still shares the same structure as the one
proposed in the DV query retrieval model in our implementation.
Hence, we directly employ the same structure of the DV query
retrieval model and share their parameters. We mainly discuss the
third and fourth components of the network in this section.

3.3.1 Transformer-based Encoder. To capture the relationship be-
tween the NL query and the DV prototype, a Transformer-based
encoder is further employed, aiming to reinforce the correlated ele-
ments in both sequences and obtain fused embeddings as the inputs
for the decoder. Our encoder is inspired by the famous Transformer
structure [33], and it consists of a stack of Transformer blocks, each
of which is composed of a multi-head attention mechanism, a fully
connected feed-forward network, and a layer normalization. The
module concatenates the NL embedding 𝑯𝑥 and the DV embedding
𝑯𝑟 as inputs, and outputs fused embedding 𝑯 𝑓 ∈ R(|𝑞 |+ |𝑉 |)×𝑑𝑚 ,
shown as follows

𝑯 𝑓 = Transformer(𝑯𝑥 ⊕ 𝑯𝑟), (11)
where ⊕ denotes the concatenation operation, and Transformer(·)
represents stacked Transformer-based encoder modules.

3.3.2 Vis Grammar-aware Decoder. Since DV query is a program-
ming language with a concrete and strict grammar, it has been
proved by a parallel task, text-to-SQL [10], that encoding the gram-
mar information as prior knowledge is quite effective in guiding
the code generation process. As such, we extend the basic SemSQL
grammar to support the DV query, which is represented in Figure 5.

Then, we customize a popular grammar-aware neural structure
in the related text-to-SQL task [10] as our decoder, which adopts an

(asc | desc)

grouping |

(| | |)

Root Visualize Q

Visualize

R Select Filter OrderGroup Superlative

Select A A

Filter

Q

A

C column

T

Group

Order

Superlative A

A

opc

bar | pie | line | scatter | stacked bar| grouping line | grouping line
intersect | union | except |R R R R

and | or | |
| like | not like | in | not in

(most | least)

A

(max | min | count | sum | avg | none) C T

table

= | < | <= | > | >= | != | between

Filter Filter Filter Filter opc A opc A R

A A A R A R

: Conditional statements/elements

: Operator

Bin

Bin

(minute | hour | day | weekday | month | quarter | year | N | UDF) A

Figure 5: The Grammar for Converting a DV Query into an

AST

LSTM-based structure to compose SemQL by selecting a sequence of
actions. Mathematically, we could formalize the generation process
of a SemQL DV query 𝑦 as

𝑝 (𝑦 |𝑥, 𝑟) =
𝑇∏
𝑖=1

𝑝 (𝑎𝑖 |𝑥, 𝑟, 𝑎<𝑖), (12)

where 𝑎𝑖 represents an action applied at step 𝑖 , 𝑎<𝑖 denotes all the
previous actions of step 𝑖 , and 𝑇 denotes the total number of the
actions to get 𝑦. We further categorize the actions in Eq. (12) into
two types (i) ApplyRule: utilizing a production rule to the current
tree till finishing the DV query sketch. (ii) SelectItem: selecting an
item from columns or tables to complete the SemQL DV query.

ApplyRule.We construct a context-free grammar tree with a
method similar to [10], and in each step, we select the most prob-
able branch given the previous route with an LSTM model. More
specifically, at each step 𝑖 , we update the LSTM state given previous
state 𝒉𝑖−1 ∈ R𝑑𝑚 , previous action embedding 𝒂𝑖−1 ∈ R𝑑𝑎 , previous
action type embedding 𝒏𝑖−1 ∈ R𝑑𝑡 and previous context represen-
tation of LSTM 𝒗𝑖−1, where 𝑑𝑎 and 𝑑𝑡 are the dimensionalities of
the action embedding and the action type embedding, respectively.
Then we calculate an attention context over the encoder time steps
and score the production rule based on the softmax distribution as
Eq. (16).

𝒉𝑖 = LSTM([𝒂𝑖−1 ⊕ 𝒏𝑖−1 ⊕ 𝒗𝑖−1],𝒉𝑖−1), (13)

𝒗𝑖 = Softmax(𝒉𝑇𝑖 𝑾ℎ𝑯
𝑇
𝑓
)𝑯 𝑓 , (14)

𝒖𝑖 = tanh(𝑾𝑢 [𝒉𝑖 ⊕ 𝒗𝑖] + 𝒃𝑢), (15)
𝑝 (𝑦𝑖 = 𝑎𝑖 |𝑥, 𝑠, 𝑎<𝑖) = Softmax(tanh(𝑾𝑝𝒖𝑖 + 𝒃𝑝)), (16)

where 𝑾ℎ ∈ R𝑑𝑚×𝑑𝑚 , 𝑾𝑢 ∈ R𝑑𝑚×2𝑑𝑚 and 𝑾𝑝 ∈ R𝑛𝑎×𝑑𝑚 (𝑛𝑎 is
the number of actions correlated to the given grammar) are the
learnable weights, 𝒃𝑢 ∈ R𝑑𝑚 and 𝒃𝑝 ∈ R𝑛𝑎 are learnable biases,
and the initial state 𝒉0 is obtained by a average-pooling operation
of the output 𝑯 𝑓 from the encoder.

SelectItem. To fill in the specific items contained in a DV query,
an LSTM-based module is also employed. The main objective of
this module is to decide which item (column or table) is involved
in the text in the condition of the given schema. To find the item
mentioned in the NL question, an NL-aware representation for the
schema is also obtained. Let us take the column selection part as

KDD ’22, August 14–18, 2022, Washington, DC, USA. Yuanfeng Song et al.

Table 1: Performance Comparison.

Validation Set Test Set

Method Vis Acc. Axis Acc. Data Acc. Acc. Vis Acc. Axis Acc. Data Acc. Acc.

Seq2Vis 97.10% 4.81% 24.39% 4.62% 97.85% 2.18% 11.39% 1.95%
Transformer 98.01% 4.81% 20.67% 4.62% 97.18% 3.26% 10.55% 2.76%
ncNet 99.09% 55.46% 63.37% 46.06% 98.82% 36.15% 50.89% 25.78%
RGVisNet 98.10% 69.72% 62.28% 57.03% 98.02% 63.51% 48.99% 44.93%

an example. Given the initial embeddings of a NL question and
columns, denoted as 𝑸 and 𝑺𝑐 in Section 3.2.1, we first perform
attention mechanism over the question embedding for the columns,
and then a joint representation �̃�𝑐𝑘 =

{
�̃�𝑐𝑘

}𝑛𝑐
𝑐𝑘=1 ∈ R𝑛𝑐×𝑑𝑒 is calcu-

lated as follows

𝛽𝑘,𝑗 =
𝒔𝑇𝑐𝑘 𝒒 𝑗𝒔𝑐𝑘 𝒒 𝑗 , (17)

�̃�𝑐𝑘 = 𝒔𝑐𝑘 +∑ |𝑸 |
𝑗=1 𝛽𝑘,𝑗𝒒 𝑗 , (18)

where 𝒔𝑐𝑘 is the embedding of column 𝑐𝑘 and 𝒒 𝑗 is the embedding
for 𝑗-th token in the NL question calculated in Section 3.2.1.

Finally, due to the variability in the schema of every prediction
case, a column pointer net is also used to infer the probability of
selecting a column item. The calculation of the selection probability
for column 𝑐𝑘 at step 𝑖 is as

𝛾𝑘,𝑖 = (�̃�𝑐𝑘)𝑇𝑾𝑐𝒖𝑖 , (19)

𝑝 (𝑦𝑖 = SelectColumn(𝑐𝑘) |𝑥, 𝑠, 𝑎<𝑖) =
𝑒𝑥𝑝 (𝛾𝑘,𝑖)∑𝑛𝑐
𝑗=1𝑒𝑥𝑝 (𝛾 𝑗,𝑖)

, (20)

where SelectColumn(·) is the action implemented, and𝑾𝑐 ∈ R𝑑𝑒×𝑑𝑚
is a learnable weights. After the column item is confirmed, denoted
as 𝑐𝑘 , the procedure of SelectTable(·) works in a similar style except
that the table candidates (𝑇 (𝑐𝑘)) are restricted to the ones where
the selected column corresponds to, that is, 𝑇 (𝑐𝑘) = {𝑡𝑖 |𝑐𝑘 ∈ 𝐶𝑥 =

{𝑐𝑖, 𝑗 }𝐿𝑖𝑗=1}. Then, we have

𝑝 (𝑦𝑖 = SelectTable(𝑡𝑘) |𝑥, 𝑠, 𝑎<𝑖) =
𝑒𝑥𝑝 (𝛾𝑘,𝑖)∑

𝑡𝑘 ∈𝑇 (𝑐𝑘) 𝑒𝑥𝑝 (𝛾 𝑗,𝑖)
, (21)

3.3.3 Model Training. We train the revision model by maximizing
the log-likelihood of the ground truth action sequences, defined as

L2 = max
∑︁

(𝑥,𝑠,𝑦) ∈D

∑︁

𝑎𝑖 ∈ApplyRule
log 𝑝 (𝑦𝑖 = 𝑎𝑖 |𝑥, 𝑠, 𝑎<𝑖)

+
∑︁

𝑎𝑖 ∈SelectColumn
log𝑝 (𝑦𝑖 = 𝑎𝑖 |𝑥, 𝑠, 𝑎<𝑖))

+
∑︁

𝑎𝑖 ∈SelectTable
log 𝑝 (𝑦𝑖 = 𝑎𝑖 |𝑥, 𝑠, 𝑎<𝑖))

 .
(22)

We choose the teacher-forcing strategy to train the model with
Adam optimizer. At the same time, the parsing is done in an auto-
regressive fashion until all the items have been filled as the termi-
nation condition.

4 EXPERIMENTS

This section provides a detailed performance evaluation of our
proposed framework in terms of quantitative metrics. We first in-
troduce the experimental setup, evaluation measurements, and
baselines and then demonstrate the effectiveness of the proposed
framework by comparing them with several strong baselines.

4.1 Experimental setup

4.1.1 Datasets. The public text-to-vis dataset NVBench [19] is used
in our evaluation, which is composed of 7219 (NL question - DV
query) pairs and is originally proposed for evaluating models con-
ducting text-to-vis conversion. Since NVBench is modified based
on a text-to-SQL dataset, the DV queries are from diverse domains,
which also makes this dataset suitable for cross-domain evaluations.
The detailed statistics of the NVBench is summarized in Table 4.

4.1.2 Baselines. Three carefully implemented baselines together
with our proposed RGVisNet framework have been implemented
in our experiment to compare the performance, namely, Seq2Vis
[19], Transformer [33], and ncNet [20]. To ensure fairness and
reproducibility, all the methods were trained on the same training
set and evaluated on the same validation and testing set. We tune
their parameters to achieve their best performance.

4.1.3 Evaluation Metrics. Five popular metrics [19], namely Top-N
(N=1,3,5), Vis Accuracy, Data Accuracy, Axis Accuracy, and Overall
Accuracy, are used in our experiment to evaluate the performance.

4.2 Experimental Results

4.2.1 Comparison of Accuracy. We list the performance of our
proposedmodel together with the baselines on the NVBench dataset
in Table 1, and several observations can be reported from the results.

The basic end-to-end approach, Seq2Vis, performs not very well
and is not quite competitive as a baseline, with the main reasons
from two aspects: (i) it cannot understand the semantics contained
in the NL question and its database schema, (ii) it is limited in
generating the DV queries since DV query is a programming lan-
guage with strict and complex grammar. Other models such as
Transformer and ncNet improve the basic Seq2Vis from these two
aspects. For example, the ncNet also employs a GNN-based encoder
to incorporate the schema information, which performs much bet-
ter since it has been using GNN to capture the relationship in the
database schema, resulting in 23.83% absolute query accuracy im-
provement. This also proves the necessity of involving schema as an
essential information source. The ncNet also improves the Seq2Vis
by optimizing the generation process by incorporating DV gram-
mar. Among all these methods, our proposed method RGVisNet
first retrieves a relevant DV query candidate from the codebase, and

RGVisNet: A Hybrid Retrieval-Generation Neural Framework KDD ’22, August 14–18, 2022, Washington, DC, USA.

Table 2: Ablation Study Results.

Validation Set Test Set

Method Top@1 Top@3 Top@5 Vis Acc. Axis Acc. Data Acc. Acc. Top@1 Top@3 Top@5 Vis Acc. Axis Acc. Data Acc. Acc.

RGVisNet 51.31% 67.63% 72.44% 98.10% 69.72% 62.28% 57.03% 42.47% 58.30% 63.31% 98.02% 63.51% 48.99% 44.93%

w/o GNN 42.07% 60.02% 67.63% 97.91% 70.17% 58.93% 53.67% 37.16% 55.11% 61.76% 97.31% 54.03% 46.51% 35.62%

w/o retrieval - - - 98.46% 65.46% 56.48% 49.95% - - - 98.45% 44.62% 38.94% 26.28%
w. keyword retrieval 10.79% 15.32% 17.68% 97.19% 70.63% 56.39% 51.68% 16.77% 25.64% 31.49% 95.43% 61.16% 44.62% 38.61%
w/o grammar 51.31% 67.63% 72.44% 99.18% 4.99% 26.20% 4.71% 42.47% 58.30% 63.31% 98.45% 4.23% 12.74% 3.36%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5
Top-N

Vis Acc.
Axis Acc.
Data Ac c.
Acc.

(a) No. of Retrieval Prototypes

25%

35%

45%

55%

65%

75%

85%

95%

1 2 3 4
No. of GCN Layers

Top-1 Top-3
Top-5 Vis Acc .
Axi s Acc. Data Acc.
Acc.

(b) No. of GNN layers

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4
No. of Trans. Layers

Vis Acc. Axis Acc.

Data Ac c. Acc.

(c) No. of Transformer Layers

Figure 6: Hyper-parameters Study Result on the Testing Set.

uses it as a prototype to generate the desired DV query. Thus, it can
significantly outperform all compared methods, including ncNet,
proving the efficacy and the validity of involving a retrieval-based
approach in the text-to-vis scenario.

4.2.2 Ablation Studies. In this section, we conduct ablation studies
to show the effectiveness and contribution of each designed compo-
nent in RGVisNet, especially the retrieval-based mechanism (i.e.,
the DV query search component). In particular, we first evaluate the
RGVisNet with all the designed components as the baseline. Then
we remove or replace some components of RGVisNet to check its
performance. To evaluate the effectiveness of the DV query search
component, we replace it with two combinations: (i) no DV query
sampler (w/o retrieval), (ii) a basic keyword-based retrieval model
(w. basic retrieval). We also remove some components and test the
performance for each sub-model (i.e., the retrieval model and the
revision model). Specifically, for the retrieval mode, we remove the
GNN-based encoder and name itw/o GNN. Lastly, for the advanced
decoder, we replace it with a basic LSTM-based one and name this
baseline w/o grammar. The results are shown in Table 2.

We take the overall accuracy of the test set as the primary indica-
tor, and the other metrics reflect similar conclusions. First, integrat-
ing the retrieval-based approach into our generation framework
brings about 70.97% relative performance improvement (44.93% v.s
26.28%). These sets of ablation studies and significant improvements
validate the necessity of involving the retrieval-based approach in
the generation-based one for the DV generation task, which is
never explored by existing literature. Then for each sub-model,
compared with a basic keyword matching retrieval model, our
designed DV query search model brings about 16.37% relative im-
provement, showing the effectiveness of using advanced NN-based
models in understanding the semantics behind the DV query and
the NL question. Other components show similar observations. For
example, the GNN-based structure brings about 26.14% relative im-
provement, and the specially-designed DV decoder brings a 41.57%
improvement.

4.2.3 Parameter Study. To study the influence of parameter vari-
ations on the performance of RGVisNet, we conduct another set
of experiments. The main factor influencing the performance of
RGVisNet is the number of layers in GNN, the number of layers
in the Transformer, and the number of prototypes given to the
revision model. We adjust one parameter and fix the rest each time.
The experiment results are listed in Figure 6.

Again, we take the final accuracy on the test set as the primary
indicator. The first set of results is about how the performance
varies with respect to the number of retrieved prototypes, as shown
in Figure 3(a). The performance reaches a low bound at number
3 and then increases when the number of prototypes overpasses
or underpasses this optimal value. However, from the results in
Figure 3(b), we can see that increasing the GCN layers does not
always result in a better performance. This is consistent with pre-
vious studies on GNN [5], and it is because the model’s learning
capacity increases when we add the number of layers, but too many
layers do not help due to the smoothing problem [15]. For another
parameter - the number of Transformer layers, we could also get
similar observations from Figure 3(d). After the number exceeds
the value 1, the performance drops as the number increases.

4.2.4 Case Study. We also provide an example to concretely show
the DV queries and their corresponding charts generated by the
baselines and the RGVisNet framework in Table 3. Given the NL
question, the Seq2Vis baseline misses a large part of the meaning
contained in the question and only captures the visualization type
(i.e., Bar chart). The Transformer performs better than the Seq2Vis
model by capturing more essential keywords such as “from high to
low (i.e., DESC)”. Among all these models, the RGVisNet framework
first accurately retrieves back the prototype “VISUALIZE bar SELECT
year, COUNT(year) FROM exhibition ORDER BY COUNT(year) DESC
BIN year BY WEEKDAY”, and then generates the correct desired
DV query. Furthermore, it accurately understands the meaning
of “x axis date y axis the number of dates” in the NL question and

KDD ’22, August 14–18, 2022, Washington, DC, USA. Yuanfeng Song et al.

Table 3: The DV queries and the corresponding DV charts generated by different models on a NL question from the testing set.

NL
Question

Bar chart x axis date y axis the number of date, could you display by the total
number from high to low ?

Target DV
Query

VISUALIZE bar SELECT date, COUNT(date) FROM weather ORDER BY
COUNT(date) DESC BIN date BY WEEKDAY

Seq2Vis VISUALIZE bar SELECT date, level_date FROM station ORDER BY
COUNT(date) DESC BIN date BY YEAR

Transformer VISUALIZE bar SELECT date, COUNT(date) FROM station ORDER BY
COUNT(date) DESC BIN date BY WEEKDAY

ncNet VISUALIZE bar SELECT date, COUNT(date) FROM weather GROUP
BY date ORDER BY COUNT(date) DESC

RGVisNet Retrieved DV Query:VISUALIZE bar SELECT year, COUNT(year) FROM
exhibition ORDER BY COUNT(year) DESC BIN year BY WEEKDAY
Generated DV Query: VISUALIZE bar SELECT date, COUNT(date) FROM
weather ORDER BY COUNT(date) DESC BIN date BY WEEKDAY

(a) Seq2Vis(×) (b) Transformer(×)

(c) ncNet(×) (d) RGVisNet(✓)

generates a corresponding DV query “VISUALIZE bar SELECT date,
COUNT(date)...”.

5 RELATEDWORK

Our work is closely related to the research field of source code
retrieval, text-to-vis, and the retrieval- and generation-based ap-
proaches in NLP, as is briefly surveyed in the following.
Source Code Search. The source code search problem correlates
with our work since the performance of our framework is greatly
affected by the code search step. In the software engineering field,
source code search has quite a long history with countless stud-
ies even in these years [4, 9, 21, 41]. These studies usually focus
on general-purpose programming languages (GPLs) such as Java
or Python, and they usually incorporate advanced information re-
trieval (IR) and natural language processing (NLP) techniques in this
field. To name a few, the Extended Boolean model is used in Code-
How [21] to conduct code retrieval for API recommendations. RACS
[16] models the API calling relationships in the source code with
call relationship (MCR) graphs. PageRank algorithms are used by
Portfolio [22] on the Function Call Graph (FCG) in the source code
to learn accurate code representations. However, these methods
usually suffer the problem of limited ability to capture the hidden
semantics. The most common practice in this field now usually
employs advanced DNN-based architectures to learn the represen-
tations for both code and NL queries. For example, the CodeEE
model is proposed in [9], which mainly uses the recurrent neural
networks (RNNs) to convert code snippets and NL descriptions into
vectors to calculate their similarities. FastText [2] is used in NCS
[26] to get the embeddings for the query and code snippets. Cam-
bronero et al. [3] explore the performance of various DNN-based
models on this problem under different parameters. Convolutional
neural networks (CNNs) with layer-wise attention are leveraged in
COSEA [35] to improve the code search performance.

The DV query search problem can be considered as a particu-
lar case of the code search problem for GPLs. However, there are
significant distinctions between code search works for DV queries
and GPLs. These distinctions can be summarized into two aspects:
(i) For DV query search, the user’s query consists of NL questions
describing the information needed and the database schema where
the desired DV query would be executed. However, the latter does

not exist in code search for GPLs. (ii) the structure of the DV query
plays a far more critical role in deciding its relevance concerning the
given NL question, while for GPLs we usually only care about the
semantics. Thus, in our framework, we use the model specifically
designed for the DV query search problem in our framework.
Text-to-Vis. Text-to-vis has engaged great attention from the data-
base and visualization communities since it allows non-experts to
interact with the visualization system with NL queries. Existing
approaches treat this task as a machine translation problem and
employ learning-based methods to handle it. To name a few, Cui
et al. proposes text-to-viz which employs rule-based methods to
transform text commands into infographics [7]. Draco-Learn [23]
designs a collection of constraints to model the visualization design
knowledge and then proposes an approach to optimize weights for
these constraints. Data2Vis [8] also treats the DV generation task
as a machine translation problem and aims to map the data series to
visualization specifications in a declarative language. DataEye [17]
handles the DV problem in three steps: visualization recognition,
visualization ranking, and visualization selection. NL4DV [24] pro-
vides a python toolkit that supports various high-level operations
to help users to create NL-based DV systems. To further promote
the development of the text-to-vis field, Luo et al. further designed
a method to generate the text-to-vis dataset NVBench based on a
popular text-to-SQL benchmark. A Seq2Vis model is then devel-
oped on this dataset to prove the practicability of text-driven DV
query generation on this benchmark [19].
Retrieval- and Generation-based Approaches. The retrieval-
and generation-based approaches are two paradigms widely used
in NLP applications such as dialogue systems, document summa-
rization, and code generation. Let us take the dialogue system for
illustration. The former approach usually selects the most relevant
samples from a repository as the response, while the latter approach
employs machine learning models to generate the response [12].
For the retrieval-based approach, the candidates in the repository
usually accumulate from human dialogues, and thus, the retrieved
responses are more diverse and informative than the generated re-
sponses. However, the size of the repository largely affects the final
performance of this approach. In contrast, the generation-based
approach could generate new responses given the query, but it
also suffers from the problem like the dumb response (i.e., “I don’t

RGVisNet: A Hybrid Retrieval-Generation Neural Framework KDD ’22, August 14–18, 2022, Washington, DC, USA.

know”) [6].
Recently, the combination of retrieval-based and generation-

based approaches has also been explored mainly in the NLP com-
munity to combine the merits of both methods. For example, Liu et
al. [31] ensemble retrieval-based and generation-based approaches
for the conversation system. Together with the query, the retrieved
candidates are used to generate the response. Specifically, the re-
trieved candidates and the generated ones are fed into a re-ranking
module to select the final reply. Yang et al. [36] propose a neu-
ral model to combine retrieval-based with the generation-based
approaches for conversation systems.

Unfortunately, prior studies mainly focus on fields such as dia-
logue systems, and none of them have been dedicated to integrating
retrieval- and generation-based approaches for text-to-vis. Com-
pared with response generation in the dialogue system or other
fields, DV query generation is more challenging since it is a pro-
gramming language with strict and complex grammar. As such, the
retrieved DV query can only be used as a prototype to guide the DV
generation, and it needs much revision to achieve the final stage.

6 CONCLUSION

In this paper, we propose a novel hybrid retrieval-generation text-
to-vis framework, RGVisNet, and prove its superiority compared
with its baselines. RGVisNet is the first work in the literature that
seamlessly integrates retrieval- and generation-based approaches
together, aiming at achieving the merits of both retrieval and gen-
eration methods to generate DVs automatically. We hope it will
show some insights into new methods for this text-to-vis task. Fol-
lowing this line of research, we would like to explore the hybrid
retrieval-generation framework with the pre-training mechanism
to bridge the gap between DV queries and NL questions.

Acknowledgement. The research of Yuanfeng Song and Raymond
Chi-Wing Wong is supported by PRP/026/21FX.

REFERENCES

[1] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In ICLR.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. TACL (2017).

[3] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In ESEC/FSE.

[4] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API
subgraph via text phrases. In SIGSOFT.

[5] Tianwen Chen and Raymond Chi-Wing Wong. 2020. Handling information loss
of graph neural networks for session-based recommendation. In SIGKDD.

[6] Shaobo Cui, Rongzhong Lian, Di Jiang, Yuanfeng Song, Siqi Bao, and Yong Jiang.
2019. DAL: Dual Adversarial Learning for Dialogue Generation. In NeuralGen
Workshop in NAACL.

[7] Weiwei Cui, Xiaoyu Zhang, Yun Wang, He Huang, Bei Chen, Lei Fang, Haidong
Zhang, Jian-Guan Lou, and Dongmei Zhang. 2019. Text-to-viz: Automatic gen-
eration of infographics from proportion-related natural language statements.
TVCG (2019).

[8] Victor Dibia and Çağatay Demiralp. 2019. Data2vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33–46.

[9] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of ICSE. IEEE, 933–944.

[10] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In ACL.

[11] Pat Hanrahan. 2006. Vizql: a language for query, analysis and visualization. In
SIGMOD.

[12] Kristiina Jokinen and Michael McTear. 2009. Spoken dialogue systems. Synthesis
Lectures on Human Language Technologies 2, 1 (2009), 1–151.

[13] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and
Tat-Seng Chua. 2020. Re-examining the Role of Schema Linking in Text-to-SQL.
In Proceedings of EMNLP. 6943–6954.

[14] Deqing Li, Honghui Mei, Yi Shen, Shuang Su, Wenli Zhang, Junting Wang, Ming
Zu, and Wei Chen. 2018. ECharts: a declarative framework for rapid construction
of web-based visualization. Visual Informatics 2, 2 (2018), 136–146.

[15] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:
Can gcns go as deep as cnns?. In ICCV.

[16] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei.
2016. Relationship-aware code search for JavaScript frameworks. In SIGSOFT.

[17] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. Deepeye: Towards
automatic data visualization. In ICDE.

[18] Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and Xinran Wang. 2018. Deepeye:
Creating good data visualizations by keyword search. In SIGMOD.

[19] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks
from NL2SQL Benchmarks. In SIGMOD.

[20] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin.
2021. Natural Language to Visualization by Neural Machine Translation. TVCG
(2021).

[21] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. Codehow: Effective code search based on api understanding
and extended boolean model (e). In ASE.

[22] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In ICSE.

[23] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in draco. TVCG (2018).

[24] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2020. NL4DV: A toolkit for
generating analytic specifications for data visualization from natural language
queries. TVCG (2020).

[25] XinQian, RyanARossi, FanDu, Sungchul Kim, Eunyee Koh, SanaMalik, Tak Yeon
Lee, and Joel Chan. 2021. Learning to Recommend Visualizations from Data. In
SIGKDD.

[26] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish
Chandra. 2018. Retrieval on source code: a neural code search. In MAPL.

[27] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2016. Vega-lite: A grammar of interactive graphics. TVCG (2016).

[28] Rafael Savvides, Andreas Henelius, Emilia Oikarinen, and Kai Puolamäki. 2019.
Significance of patterns in data visualisations. In SIGKDD.

[29] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. TNN (2008).

[30] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless Data Exploration with zenvisage: An Expressive
and Interactive Visual Analytics System. VLDB (2016).

[31] Yiping Song, Cheng-Te Li, Jian-Yun Nie, Ming Zhang, Dongyan Zhao, and Rui Yan.
2018. An ensemble of retrieval-based and generation-based human-computer
conversation systems. In IJCAI.

[32] Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and Aditya
Parameswaran. 2017. Towards visualization recommendation systems. ACM
SIGMOD Record 45, 4 (2017), 34–39.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

[34] Randle Aaron M Villanueva and Zhuo Job Chen. 2019. ggplot2: elegant graphics
for data analysis.

[35] Hao Wang, Jia Zhang, Yingce Xia, Jiang Bian, Chao Zhang, and Tie-Yan Liu. 2020.
COSEA: Convolutional Code Search with Layer-wise Attention. ArXiv (2020).

[36] Liu Yang, Junjie Hu, Minghui Qiu, Chen Qu, Jianfeng Gao, W Bruce Croft, Xi-
aodong Liu, Yelong Shen, and Jingjing Liu. 2019. A hybrid retrieval-generation
neural conversation model. In CIKM.

[37] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In ACL.

[38] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018. TypeSQL:
Knowledge-Based Type-Aware Neural Text-to-SQL Generation. In NAACL.

[39] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and
Text-to-SQL Task. In EMNLP.

[40] Albert Zeyer, Parnia Bahar, Kazuki Irie, Ralf Schlüter, and Hermann Ney. 2019.
A comparison of Transformer and LSTM encoder decoder models for ASR. In
ASRU.

[41] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In ICSE.

[42] Xiangyu Zhao, LongbiaoWang, RuifangHe, Ting Yang, Jinxin Chang, and Ruifang
Wang. 2020. Multiple knowledge syncretic transformer for natural dialogue
generation. In The Web Conference.

KDD ’22, August 14–18, 2022, Washington, DC, USA. Yuanfeng Song et al.

APPENDIX

A EXPERIMENTAL SETUP

A.1 Datasets

The public text-to-vis dataset NVBench [19] is used in our evalua-
tion, which is composed of 7219 (NL question - DV query) pairs
and is originally proposed for evaluating models conducting text-
to-vis conversion. Since NVBench is modified based on Spider [39]
dataset, the DV queries are from diverse domains, which also makes
this dataset suitable for cross-domain evaluations. We randomly
split the 141 databases in NVBench into 98 train, 29 test, and 14
validation sets to ensure all questions from the same database are in
the same split. The detailed statistics of the NVBench is summarized
in Table 4.

The partitioned datasets are used in both the retrieval and the
revision models. We first extract prototypes for all DV query in the
training set and use these prototype to construct the codebase. Then
in the training phase, five different prototypes are randomly selected
as the negative samples for constructing the retrieval model, and
top-𝑘 prototypes recalled by the retrieval model are incorporated
into each revision instance. As for the testing phase, only the top-1
prototype retrieved is incorporated to infer the targeted DV query
for each NL query.

A.2 Baselines

Three popular baselines together with our proposed RGVisNet
framework have been implemented in our experiment to analyze
the performance.

• Seq2Vis: Seq2Vis is proposed in [19], and it converts the text-
to-vis problem into a machine translation problem. Then
they directly use the sequence-to-sequence model [1] with
an attention mechanism to tackle this problem.

• Transformer: Transformer [33] has been proved promising
in many NLP tasks such as machine translation, dialogue
system [42], and ASR [40]. We also employ the Transformer
model as a baseline for performance comparison.

• ncNet: ncNet [20] is the previous state-of-the-art text-to-vis
model that based on Transformer. However, they also in-
clude several novel visualization-aware optimizations, such
as using attention-forcing to optimize the learning process
and visualization-aware rendering to produce better visual-
ization results.

• RGVisNet: RGVisNet is our proposed hybrid retrieval-generation
framework for text-to-vis.

To ensure fairness and reproducibility, all the methods were
trained on the same training set and evaluated on the same testing
set. We tune their parameters to achieve their best performance.

A.3 Evaluation Metrics

• Top-N Accuracy: This metric corresponds to the number of
relevant results among the top 𝑁 retrieved results, where 𝑁
is set to 1, 3, and 5. It is mainly used to analyze the quality
of the DV query retrieval model.

• Overall Accuracy: Thismetric directlymeasures thematches
between the predicted DV query and the ground truth DV

Table 4: The Statistics of the NVBench Dataset

Statistic size

Train Size 11715
Test Size 2976
Valid Size 616
Number of Instances 7219
Average Length of the DV Query 20
Average Length of the NL Question 24
Vocabulary Size of the Description 1286

query. The accuracy is calculated as 𝐴𝑐𝑐 = 𝑁𝑑𝑣/𝑁 , where
𝑁𝑑𝑣 is the number of the matched DV queries and 𝑁 is the
size of the evaluated set. Compared with other metrics, this
one reflects the comprehensive performance of the models.

• Vis Accuracy: Since each DV query contains three kinds
of components: vis type, x/y/z-axis, and data transforma-
tions. This measurement reflects the matches of the vis
types components between the generated DV query and
the ground truth query. The accuracy is formally defined
as 𝑉𝑖𝑠 𝐴𝑐𝑐 = 𝑁𝑣𝑖𝑠/𝑁, where 𝑁𝑣𝑖𝑠 is the number of vis type
components matching the ground truth result.

• Data Accuracy: Similarly, thismeasurement reflects thematches
of the data transformation components between the gener-
ated DV query and the ground truth query. The accuracy
is formally defined as 𝐷𝑎𝑡𝑎 𝐴𝑐𝑐 = 𝑁𝑑𝑎𝑡𝑎/𝑁 , where 𝑁𝑑𝑎𝑡𝑎 is
the number of data transformation components matching
the ground truth result.

• Axis Accuracy: This measurement calculates the matches
of the x/y/z-axis components between the generated DV
query and the ground truth query. The accuracy is formally
defined as 𝐴𝑥𝑖𝑠 𝐴𝑐𝑐 = 𝑁𝑎𝑥𝑖𝑠/𝑁 , where 𝑁𝑎𝑥𝑖𝑠 is the number
of x/y/z-axis components that match the ground truth result.

A.4 Implementation Details.

Our models are trained by Adam optimizer, with the mini-batch
size set to 64 and the learning rate to 1e-4. The hyper-parameters
are set following the previous studies, where the dropout is set to
0.3 to avoid overfitting and the hidden size of encoder and decoder
are both set to 512. The NL encoder has one LSTM layer, and the
number of GCN layers of the DV encoder is set to 1. As for the fused
Transformer-based encoder, one block is stacked, and the number
of heads is 4. The word embedding dimension of the pre-trained
Glove is 300, and unseen words are initialized by ‘<unk>’. The
dimensionalities of the action embedding and the type embedding
in the grammar-aware decoder are set to 128. The inference in
the revision model is conducted by beam search with a beam size
equals to 5. The experiments were conducted on a server with a
314 GB memory, 72 Intel Core Processor (Xeon), Tesla K80 GPU,
and CentOS. All the methods are implemented with Python 3.6.

	Abstract
	1 Introduction
	2 Concepts and Problem Definition
	3 The RGVisNet framework
	3.1 Framework Overview
	3.2 DV Query Retrieval Model
	3.3 DV Query Revision Model

	4 Experiments
	4.1 Experimental setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References
	A Experimental Setup
	A.1 Datasets
	A.2 Baselines
	A.3 Evaluation Metrics
	A.4 Implementation Details.

