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Abstract—Vehicular traffic congestion is a recurring and
widespread societal phenomenon. Since drivers increasingly rely
on routing services, we consider how to enhance such services to
provide routes that mitigate congestion. Specifically, we propose
the Congestion-mitigating Spatiotemporal Routing (CSR) prob-
lem that considers the congestion caused by vehicles following the
routes provided. This problem is challenging because vehicles that
follow recommended routes appear on different road segments
at different times. We propose two solutions, Spatiotemporal
Oblivious Routing (SOR) and Spatiotemporal Routing with
History (SRH), which return routes based on the current and
anticipated future traffic statuses, respectively, while offering
theoretical guarantees. We also propose an update procedure
for handling traffic dynamics. Extensive evaluations on real data
provide insight into the properties of the solutions, indicating that
SRH can reduce the number of vehicles on the most congested
road segments by nearly 33% and can process a query in less
than 10 ms.

I. INTRODUCTION

The lives of people in cities are frequently affected by
road-network congestion. For instance, commuters are often
affected by the daily morning and afternoon rush hour that
may cause substantial delays. In extreme cases, drivers were
stuck on an expressway for days and moved just two miles
per day [1]. Apart from inconveniencing drivers, congestion
incurs financial and environmental costs at a societal level [2].
Therefore, congestion reduction is highly desirable.

The proliferation of smartphones and personal navigation
devices has spawned many routing services, including online
mapping apps (e.g., Google Maps and Baidu Maps), taxi-
calling platforms (e.g., Uber and Lyft), and food delivery
services (e.g., Uber Eats and Deliveroo). Drivers increasingly
rely on such services for finding the fastest routes to their
destinations. However, studies show that vehicles following
such fastest routes that take into account only the needs of a
single driver may aggravate congestion [3]–[5]. Since drivers
are relying increasingly on routing services, there is now an
opportunity to reduce congestion by enabling routing services
to mitigate congestion by sometimes returning slightly slower
routes with acceptable detours.

Providing routing that reduces congestion is non-trivial in
real traffic. First, services receive queries continuously and
must return results immediately. From a global perspective,
previously returned routes may have adverse effects on the
route to return for a current query. Put differently, we cannot

take into account future queries to make optimal routing deci-
sions for a query. Second, recommended routes may conflict
and increase congestion under certain circumstances. Thus,
when several vehicles utilize the same road segments at the
same time, they increase the congestion of that segment. We
therefore need to keep track of how computed routes contribute
to the congestion of road segments over time.

A line of research focuses on finding shortest or fastest
routes efficiently [6]–[9], but their deterministic route choices
for similar queries disregard congestion and may thus increase
congestion. Other studies consider alternative routes [10]–[16].
However, their choices of “good” routes are subjective and do
not aim to mitigate congestion. Recent transportation studies
propose a variety of heuristics (e.g., the entropy method [17])
to reduce congestion [17]–[21]. Nevertheless, these neither
offer theoretical guarantees nor scale large road networks and
frequent online routing queries. Recent studies also exit that
process routing queries in batches to minimize sums of travel
times [22], [23], but such batching is at odds with the need
for instant query results.

Motivated by the above challenges, we formulate the new
Congestion-mitigating Spatiotemporal Routing (CSR) prob-
lem. This involves keeping track of the time-varying con-
gestion degrees of road segments and attempting to reduce
the congestion degree of the most congested road segment,
which is a likely traffic bottleneck. To solve the problem, we
propose two algorithms that aim to enable instant responses
to online routing queries that mitigate congestion. First,
Spatiotemporal Oblivious Routing (SOR) recommends routes
by considering the existing traffic status and the time-varying
congestion degrees of road segments. Second, based on SOR,
Spatiotemporal Routing with History (SRH) utilizes historical
information to anticipate future congested road segments to
further mitigate congestion. Moreover, since the travel times
of road segments vary over time, we design procedures for the
two algorithms to handle traffic updates efficiently. To give
some intuition, we present the following toy example with the
fastest route as the baseline.

Example 1: In New York City, a service at some point
receives 20 queries from 20 cars with the same source and
destination pair, A and B, as shown in Figure 1a. The fastest
route traverses the bridge in red, which makes it the most
congested road segment with 20 cars. Algorithm SOR that
considers the existing traffic status returns the gray route that



(a) First type of queries (b) Second type of queries

Fig. 1: An example of routing queries
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Fig. 2: The road network of Example 1

traverses the neighboring bridge to 10 cars, meaning that the
most congested segment has 10 cars. Next, assume that we
also receive 20 queries in short succession, all from C to D,
as shown in Figure 1b. They can only use the route traversing
the red bridge since traversing the neighboring bridge takes
too long. With SOR, this will result in 30 cars on the most
congested segment. Algorithm SRH uses historical data and
is able to foresee this future congested segment. Thus, it can
return the gray route to the first 20 queries from A to B and
then use the red bridge for the last 20 queries.

We summarize our contributions as follows.

• We formulate the congestion reduction problem called the
Congestion-mitigating Spatiotemporal Routing problem
(CSR). We prove that it is NP-hard in an offline setting.

• We propose two algorithms, SOR and SRH, that leverage
the existing and future traffic statuses, respectively. They
enable a congestion degree on the most congested road
segment of at most O(lnn) and O(ln |C|) the optimal
value, where n is the number of vertices and C is a set
of candidate congested road segments, which is small and
contains on the order of 10k segments in practice.

• We report on experiments on real-world data that provide
insight into the performance of the propped algorithms,
showing that they can reduce the load of the most
congested road segment by 33% over a baseline and can
process queries in less than 10 ms.

II. PROBLEM STATEMENT

A. Problem Definitions

Definition 1 (Dynamic Road Network): A road network
G(V,E,W ) is a connected directed graph, where V and E
are the node and edge sets, respectively, with n = |V | and

m = |E|, and W : E → R+ is an updatable function that
assigns a travel time we to each edge e.

Similar to [9], [24], we consider a dynamic network setting
where edge weights can be updated. We initially assume static
weights and then extend the coverage to dynamic weights in
Section IV.

Definition 2 (Path): A path p is a finite sequence of
edges p = ⟨e1, e2, . . . , ek⟩ where the ending vertex of ei
is the starting vertex of ei+1, 1 ≤ i < k. Its travel time
γp =

∑k
i=1 wei . Let sp and dp be the starting vertex of e1

and the ending vertex of ek, respectively.
Definition 3 (Routing Query): Each routing query q =

(tq, sq, dq) is issued by a vehicle with its departure time
tq ∈ R≥0, its source sq , and its destination dq .

Definition 4 (Fastest Path): Given a routing query q =
(tq, sq, dq), the fastest path f∗(q) is defined to be the one
with the shortest travel time among all paths from sq to dq .

Example 2: In Figure 2, we abstract a road network from
Example 1. There are 6 nodes and 6 edges, with edge weights
shown next to them. For a query q = (0, A,B), the fastest
path f∗(q) = (e2, e3, e4) since its travel time is smaller than
that of path (e1).

Definition 5 (Detour Constraint): A routing query q =
(tq, sq, dq) is answered by a path p with travel time γp no
larger than (1+a) times that of the shortest travel time γf∗(q):

γp ≤ (1 + a)γf∗(q), (1)

where a ≥ 0 is a detour factor used to control the detour cost.
Let f(q) to denote any path satisfying the detour constraint.

Example 3: In Example 2, suppose that we first receive two
routing queries q1 = q2 = (0, A,B) and the detour factor
a = 0.1. We may return the path f(q) = (e1) with travel time
1.3 since (1 + a)γf∗(q) = (1 + 0.1) · 1.2 = 1.32.

When vehicles move along the recommended paths, they
appear on different edges at different times, which makes the
traffic status change over time. To examine the traffic status
efficiently, we only do so at so-called time steps.

Definition 6 (Time Step): The timeline is first partitioned
into equal-length intervals (e.g., one minute long). Then, the
traffic status is updated at the end of each interval, i.e., at the
times t = 0, 1, . . . (where t are integers, not real numbers),
called time steps, denoted by τ ∈ N. We ignore fluctuations
in the traffic status within the duration of a time step.

In reality, one minute per step is sufficient since this is
also the frequency that Baidu Maps uses to update its traffic
status [25]. Then, t = 0.1 is 6 seconds from t = 0. Let T
be the set of all time steps of interest. To capture the traffic
status, we define the notion of edge load across time steps.

Definition 7 (Edge Load): There is an edge load function
l : E × T → N such that the edge load l(e, τ) measures the
traffic status of the edge-step pair (e, τ) for each edge e ∈ E
and step τ ∈ T .

The solution we provide can be extended easily to support-
ing intervals with varying lengths. We only need to measure
each load l(e, τ) at the actual time corresponding to step τ .
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Fig. 3: The edge loads of two algorithms for the queries in Example 1

We finally formulate the congestion-mitigating routing prob-
lem as follows.

Definition 8 (Congestion-mitigating Spatiotemporal Routing
(CSR)): Given a network G and a detour factor a, we receive
online routing queries q = (tq, sq, dq) one by one and have to
process them right away. We want to build an oracle f that
given a query q returns a path f(q) that satisfies the detour
constraint (Equation 1) and minimizes the maximum edge load
incurred by the paths returned for all queries received so far:

min
f

max
e∈E,τ∈T

l(e, τ). (2)

B. Edge Load

We focus on a particular edge load type, called the volume-
to-capacity (v/c) ratio, which is used widely in the transporta-
tion area to quantify congestion [26]–[28]. We next define it
formally in the context of our problem.

Definition 9 (Location Indicator): Given a path p =
⟨e1, . . . , ek⟩ with departure time t, the location indicator
1p,t(ei, τ) is defined as 1 if and only if 1) ei is in p and
2) the vehicle following p and departing at t is on ei at step
τ , i.e., t + γ(e1,...,ei−1) ≤ τ < t + γ(e1,...,ei) for i > 1 and
t ≤ τ < t+ γ(e1) for i = 1.

When the departure time of a query is clear from the
context, we use 1p(e, τ). We simply say that the path p
traverses the edge-step pair (e, τ) if 1p(e, τ) = 1.

Example 4: Consider a path p = (e5, e3, e6) with departure
time t = 0.1 in Figure 2. The location indicators for edge-
step pairs (e3, 1) and (e6, 2) are 1. 1p(e3, 1) = 1 because
0.1+we5 = 0.3 ≤ 1 < 0.1+we5+we3 = 1.3, and 1p(e6, 2) =
1 because 0.1+we5+we3 = 1.3 ≤ 2 < 0.1+we5+we3+we6 =
2.3. For any step τ , 1p(e5, τ) = 0 because no step τ ∈ N can
be in the interval [t, t+we1) = [0.1, 0.3). Intuitively, e5 is so
short that the vehicle that traverses it does not show at any
step when we examine the traffic status.

Definition 10 (Edge Volume): Given a set P of paths with
corresponding departure times, we define the edge volume
v(e, τ) as the number of paths (or vehicles) traversing the
edge-step pair (e, τ), i.e., v(e, τ) =

∑
p∈P 1p(e, τ).

Definition 11 (Edge Capacity): The edge capacity c(e) is the
total number of vehicles that can traverse the edge e at a given
speed without delay. We assume that an oracle has access to
this function, which can be determined by the edge’s distance,
type, and number of lanes [29].
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Fig. 4: Graph G in the NP-hardness proof

Definition 12 (Edge Load): We define the edge load lP (e, τ)
incurred by P as the edge volume over the edge capacity, i.e.,
lP (e, τ) = v(e, τ)/c(e).

Example 5: We use queries similar to those in Example 1 to
illustrate the edge load and the CSR problem. Let c(e) = 1 for
all edges for ease of illustration. We use an oracle that returns
the fastest path f∗(q) as a baseline. Suppose that we first
receive queries q1 = q2 = (0, A,B). The fastest path for them
is (e2, e3, e4) with departure time t = 0. The loads that they
incur are shown as the grey blocks in Figure 3a, where each
block indicates that the corresponding location indicator is 1.
Next, we receive queries q3 = q4 = (0.1, C,D). We can only
return the path (e5, e3, e6) with departure time t = 0.1, shown
as the black blocks in Figure 3a. The maximum edge load for
the fastest path oracle is thus l(e3, 1) = 4. However, an optimal
oracle returns path (e1) for the first two queries, incurring
the edge loads shown by the white blocks in Figure 3b. The
optimal maximum edge load is thus 2.

C. Hardness

CSR is an online problem in the sense that when answering
a query, we know nothing about future queries, which makes
any algorithms suboptimal compared to one that has full
information. We can obtain the hypothetically optimal solution
by first collecting all the queries up to now without handling
them and solving the problem in hindsight. However, even if
we know all the queries beforehand, also known as the offline
version of this problem, the problem is NP-hard.

Theorem 1: Offline CSR is NP-hard.
Proof: We use the reduction from the subset sum prob-

lem [30], which is NP-complete, to the decision version
of CSR. The subset sum problem considers the numbers
b, a1, . . . , ak ∈ Z+ and asks whether there exist x1, . . . , xk ∈
{0, 1} such that b = x1a1 + · · ·+ xkak. The decision version
of CSR asks whether the maximum edge load (Equation 2)
could be at most some integer L > 0.

Given an instance of the subset sum problem, we construct
the graph G in Figure 4. There are exactly 2k paths from
source v1 to destination vk+1; each top edge represents xi = 0,



and each bottom one represents xi = 1. We receive a query
q1 = (0, v1, vk+2) and L queries (τ, vk+1, vk+2) for each step
τ ∈ N except for step τ = b + k. For query q1, we observe
that if we route a path with its travel time exactly equal to
b+k (i.e., a yes answer to the subset sum problem), there are
no L queries (τ, vk+1, vk+2) for τ = b+ k, which makes the
maximum load equal to L (i.e., a yes answer to CSR). Paths
with travel times other than b + k result in a maximum load
equal to L+ 1. Therefore, the subset sum problem has a yes
answer if and only if the corresponding decision version of
CSR has a yes answer.

Let Q be the set of queries received so far. Let ALG(Q) and
OPT (Q) be the objective values (Equation 2) of an algorithm
and the optimal solution on Q. We would like to design an
online algorithm ALG such that for any input queries received
so far: ALG(Q) ≤ c · OPT (Q). This is also called a c-
competitive algorithm, and c is called the competitive ratio.

III. ROUTING ALGORITHMS

A. Oblivious Online Routing

Given a routing query q, we need to return one path from
the set P(q) = {p|sp = sq, dp = dq, γp ≤ (1 + a)γf∗(q)}
that contains all paths that satisfy the detour constraint (Equa-
tion 1). To select p ∈ P(q) that increases congestion the least,
we first define a metric function to evaluate each path and
then select the one that minimizes the function. Specifically,
since different paths traverse different edges-step pairs (e, τ),
we assign a variable x(e, τ) for each edge-step pair (e, τ)
to indicate the current congestion degree for (e, τ). For each
path p ∈ P(q), we use the sum of variables x(e, τ) w.r.t.
those edge-step pairs that p traverses (i.e., 1p(e, τ) = 1) as
the metric value.

A heuristic idea may directly set x(e, τ) as the current edge
load l(e, τ) incurred by existing paths that we return to all the
queries so far. However, it cannot handle the case where the
edge loads caused by existing paths are unevenly distributed,
as exemplified next.

Example 6: Suppose that the current edge loads l(e1, 0) = 4,
l(e1, 1) = 4, l(e2, 0) = 1, and l(e3, 1) = 7 and that
c(e) = 1 for all edges for ease of illustration. Consider a query
q = (0, A,B). The path (e1) traverses (e1, 0) and (e1, 1) and
has metric value l(e1, 0) + l(e1, 1) = 8, and the other path
(e2, e3, e4) traverses (e2, 0) and (e3, 1) with the same metric
value l(e2, 0) + l(e3, 1) = 8, which indicates that we can
select either of the two paths. However, we actually prefer
the path (e1) because the maximum load after we select (e1)
is l(e3, 1) = 7 since l(e1, 0) = l(e1, 1) = 5, and l(e3, 1) is
still the largest value, whereas after we select (e2, e3, e4), the
maximum load l(e3, 1) = 7 + 1 = 8, which is larger.

Apart from the above weakness, directly using the edge load
builds no connection with the optimal solution. Instead, SOR
uses an exponential growth function αβv(e,τ) for x(e, τ) that
places v(e, τ) in the exponent. In Example 6, we select the
path (e1) because β4 + β4 < β7 + β (where the volumes
are used as the exponents) for any β > 0 and β ̸= 1 by the
inequality of arithmetic and geometric means. It also considers

Algorithm 1: Spatiotemporal Oblivious Routing
(SOR)

1 x(e, τ)← 1
2Umc(e) and v(e, τ)← 0 for each (e, τ)

λ← mine
1

c(e)

2 foreach new query q do
3 P(q)← {p|sp = sq, dp = dq, γp ≤ (1 + a)γf∗(q)}
4 p← argminp∈P(q)

∑
e,τ 1p(e, τ)x(e, τ)

5 while
∑

e,τ 1p(e, τ)x(e, τ) > λ or there exists one

x(e, τ) >
exp( 1

2 )

c(e) do
6 λ← 2λ

7 x(e, τ)←
(1+ 1

2λc(e)
)v(e,τ)

2Umc(e) for all e, τ
8 p← argminp∈P(q)

∑
e,τ 1p(e, τ)x(e, τ)

9 use the path p for this query q, i.e., f(q) = p
10 foreach e, τ such that 1f(q)(e, τ) = 1 do
11 v(e, τ)← v(e, τ) + 1
12 x(e, τ)← (1 + 1

2λc(e) )x(e, τ)

an estimate of the optimal solution in the function to assess
its performance. Specifically, we define

x(e, τ) =
(1 + 1

2λc(e) )
v(e,τ)

2Umc(e)
, (3)

where m = |E|, U = ⌈maxp γp⌉, and λ > 0 is an
estimate of the optimal solution, which is initially set to
mine

1
c(e) (corresponding to the minimum load for a path) and

increases under some conditions where the optimal maximum
load (denoted by OPT ) increases. We can view the variable
x(e, τ) as αβv(e,τ) where α = 1

2Umc(e) and β = 1 + 1
2λc(e) .

This overcomes the first weakness stated above. To make
each v(e, τ) (i.e., the exponent) not very large, our algorithm
ensures that x(e, τ) can reach at most a constant upper bound
at any time. If x(e, τ) exceeds the upper bound, this indicates
that the estimate λ of the optimum increases (proved later),
and we can make x(e, τ) smaller than the upper bound by
increasing λ.

Algorithm 1 summarizes the procedure. In Line 1, we
initialize each variable x(e, τ) to 1

2Umc(e) (since v(e, τ) is 0 in
Equation 3) and the initial estimate of the optimal solution λ
to mine

1
c(e) corresponding to the optimal value for a path. For

each new query q, we find the path set P(q) and the path with
the minimum sum of the variables in Lines 3–4. In Lines 9–
12, after returning path f(q) for the new query, we update the
variables regarding the edge-step pairs that path f(q) traverses
(i.e., 1f(q)(e, τ) = 1) by multiplying them with (1 + 1

2λc(e) )

in Line 12 (since their edge volumes v(e, τ) are increased by
1 in Line 11). In Lines 5–8, we mainly update the estimate of
the optimal solution λ. In Line 5, the two conditions indicate
that the estimate may be smaller than the optimal maximum
load OPT (proved later). Intuitively, the two conditions mean
that either the sum of variables or one single variable is very
large. We double the estimate of the optimal solution λ in



Line 6. Note that doubling λ makes all the variables x(e, τ)
smaller according to Equation 3. We also reset all the variables
in Line 7 and find the path under the new λ again in Line 8.

Note that the time-consuming part lies in Lines 3–4 of
finding paths. We implement it by using a DFS search with
pruning rules [31] with its time complexity O(m lnn).

Example 7: Back to Example 5, we set each variable
x(e, τ) = 1

2Umc(e) = 1
36 since there are 6 edges and

U = 3 (where the longest travel time of (e5, e3, e6) is
2.2 and U = ⌈2.2⌉ = 3) and λ = 1. For the first
query q1 = (0, A,B), the sum of variables for the path
(e1) is x(e1, 0) + x(e1, 1) = 1

18 , since only 1p(e1, 0) and
1p(e1, 1) are 1. Similarly, the sum for the path (e2, e3, e4) is
x(e2, 0) + x(e3, 1) = 1

18 . Algorithm 1 may arbitrarily select
the path (e1). The two variables x(e1, 0) and x(e1, 1) are all
updated as (1+ 1

2λc(e) )
1
36 = 1

24 . For the query q2 = (0, A,B),
Algorithm 1 will definitely select the path (e2, e3, e4), since
its sum of the variables x(e2, 0) + x(e3, 1) = 1

18 is smaller
than that of the path (e1), which is x(e1, 0) + x(e1, 1) =

1
12 .

Next, the two variables x(e2, 0) and x(e3, 1) are updated as
1
24 similar to the previous update. For the next two queries
q3 = q4 = (0.1, C,D), we can only use (e5, e3, e6). The
maximum edge load achieved by Algorithm 1 is 3, since
l(e3, 1) = 1(e2,e3,e4)(e3, 1) + 21(e5,e3,e6)(e3, 1) = 3 and the
edge loads of other edge-step pairs are smaller.

In practice, there could have been many existing external
vehicles on the roads that would follow their own routes
unknown to us. We may be only aware of the current number
of vehicles on each road segment. If we want to take the
current traffic status into account, we could reflect those
existing vehicles in each variable x(e, τ) for all edges and only
the current step. Specifically, suppose that there are currently
k external vehicles on edge e at step τ . Since the exponent
v(e, τ) in the variable x(e, τ) (Equation 3) should represent the
current edge volume or the number of vehicles, we additionally
multiply variable x(e, τ) by (1+ 1

2λc(e) )
k to make the exponent

consistent. Note that we have to update x(e, τ) in each step
according to the current traffic status since we do not have
their complete routes.

Since λ doubles whenever x(e, τ) >
exp( 1

2 )

c(e) in Line 5, we
actually ensure this way that each variable representing the
corresponding traffic status is always smaller than a constant.

Lemma 1: The edge load for each edge-step pair (e, τ)
incurred by all the paths is O(λ lnn), in terms of the final
estimate of the optimal solution λ.

Proof: We initialize each variable x(e, τ) as 1
2Umc(e) and

increase it to at most (1 + 1
2λc(e) )

exp( 1
2 )

c(e) ≤ 3 exp( 1
2 )

2c(e) (since

λc(e) ≥ 1). Using Equation 3 for x(e, τ), we have 3 exp( 1
2 )

2 ≥
(1+ 1

2λc(e)
)v(e,τ)

2Um ≥ (1+ 1
2 )

v(e,τ)
λc(e)

2Um , where the second inequality is
because (1 + 1

2b ) ≥ (1 + 1
2 )

1
b for b ≥ 1 and λc(e) ≥ 1. After

taking the natural logarithm on both two sides and replacing
v(e,τ)
c(e) by l(e, τ), we obtain l(e, τ) = O(λ lnn).

Suppose that the last departure time of all the paths so far
is t′ and let τ ′ = ⌊t′⌋. We next show that λ/2 < OPT , which

further makes the O(lnn) competitive ratio, since any load
l(e, τ) = O(lnn) ·OPT . Let OPT[0,τ ′] and OPT[τ ′+1,τ ′+U ]

be the maximum load of the optimal solution from step 0 to
τ ′ and step τ ′ + 1 to τ ′ + U , respectively. We first prove the
statement on OPT[τ ′+1,τ ′+U ]).

Lemma 2: If
∑

e,τ 1p(e, τ)x(e, τ) > λ or x(e, τ) > exp( 12 )
for one edge-step pair (e, τ), the current estimate λ is smaller
than OPT[τ ′+1,τ ′+U ].

Proof: The idea of using the primal and dual programs
is based on [32]. We construct the following linear program
where y(p) is the variable indicating whether we select the
path p in the solution. The first set of constraints states that
we could only select one path p ∈ P(q) for a query q. The
second set of constraints state that for each pair (e, τ), its
load should be smaller than λ after we move λ in the RHS.
If λ ≥ OPT[τ ′+1,τ ′+U ], there exists a feasible solution (i.e.,
OPT ) with its objective value equal to |Q|, where Q is the
set of queries up to t′. If its optimal objective value is smaller
than |Q|, we know that λ < OPT[τ ′+1,τ ′+U ].
max

∑
q∈Q

∑
p∈P(q)

y(p)

s.t.
∑

p∈P(q) y(p) ≤ 1, ∀q ∈ Q∑
p:1p,t(e,τ)=1

y(p)
λc(e)≤ 1, ∀e ∈ E, τ ′ + 1 ≤ τ ≤ τ ′ + U.

We can find its dual program as follows. If the dual objective
value of any feasible solution is smaller than |Q|, the primal
one is also smaller than |Q| and OPT[τ ′+1,τ ′+U ] > λ.

min
∑
e∈E

τ ′+U∑
τ=τ ′+1

c(e)x(e, τ) +
∑
q∈Q

z(q)

s.t.
∑

e,τ :1p,t(e,τ)=1 x(e.τ)/λ+ z(q)≥ 1, ∀q ∈ Q, p ∈ P(q).

Let θ = minp∈P(q)

∑
e,τ 1p(e, τ)x(e, τ) and Γ = θ/λ. We

construct a feasible dual solution as follows. For each q ∈ Q,
we set the variable x(e, τ) as in Equation 3 and z(q) = 1−Γ
so that the constraint is met with equality. Each time we route
a path, the dual value increases at most Γ/2+1−Γ = 1−Γ/2.
For the last query q, if we find θ > λ for some path p, the
dual solution has already been feasible since all the constraints
for potential paths related to this query are satisfied. We have
a feasible dual solution with its objective value at most 1

2 +
|Q| − 1 < |Q| (where we use 1 as an upper bound for each
increase of 1 − Γ/2 and the initial dual value is Um

2Um = 1
2 ),

which further indicates OPT[τ ′+1,τ ′+U ] > λ.
When one x(e, τ)c(e) > exp( 12 ), we can only consider

those iterations where the corresponding x(e, τ)c(e) is in-
creased from 1 to exp( 12 ) and use 1 as the upper bound
for other iterations. There are at least λc(e) iterations since
(1 + 1

2λc(e) )
λc(e) ≤ exp( 12 ). When x(e, τ)c(e) ≥ 1, we also

have Γ ≥ x(e,τ)
λ ≥ 1

λc(e) . We set z(q) = 1 for the last request
to make a feasible dual solution with its objective value strictly
smaller than 1

2 + |Q|−1−λc(e)+λc(e)(1− 1
2λc(e) )+1 = |Q|,

which indicates OPT[τ ′+1,τ ′+U ] > λ as before.
Theorem 2: Algorithm 1 is O(lnn) competitive.

Proof: Lemma 2 shows that 1
λ < OPT[τ ′+1,τ ′+U ] in

terms of the final λ. If OPT = OPT[τ ′+1,τ ′+U ], we directly



Algorithm 2: Pruning Low Edge Loads

input : The statistics l̂(e, τ) and r(e, τ) from history
output: A candidate set C

1 Sort {(e, τ)|e ∈ E, τ = 0, 1, . . . , T} in the descending
order of l̂(e, τ) + r(e, τ)

2 C ← ∅
3 foreach (e, τ) in the sorted list do
4 lb← max(lb, l̂(e, τ)− r(e, τ))

5 if l̂(e, τ) + r(e, τ) < lb then
6 return C
7 C ← C ∪ {(e, τ)}

have λ
2 < OPT . If OPT = OPT[0,τ ′] > OPT[τ ′+1,τ ′+U ], we

have λ
2 < OPT[τ ′+1,τ ′+U ] < OPT . Combining Lemma 1, the

maximum load is at most O(λ lnn) = O(lnn) ·OPT .

B. Online Routing with History

Based on SOR, we propose the algorithm SRH that further
optimizes the performance by considering the future traffic
status. Intuitively, if we know that some road segments are
about to be crowded, we can avoid using the paths that will
traverse them. Since the real traffic is often periodic (e.g., in
a cycle of 24 hours), we could obtain such information from
history. Specifically, if we know that some edge-step pair (e, τ)
cannot be the one with the maximum edge load with high
probability (from the statistics), we do not need to use its
corresponding variable x(e, τ) in the metric of selecting paths.
By considering only those pairs that are most likely to be
congested in the metric, we avoid using them and can further
optimize the performance. We first generate a candidate set of
such edge-step pairs (denoted by C) by estimating the edge
load and the cardinality of the query set, and then give the
algorithm SRH with a better competitive ratio of O(ln(|C|)).

1) Estimating the Edge Load: In the following, we consider
each edge load l(e, τ) as a random variable and use l̂(e, τ) to
denote its sample means in history.

The idea is that if the edge load l(e, τ) is smaller than any
edge load l(e′, τ ′) with high probability, we could prune the
pair (e, τ) since we only care about the maximum load. We
would keep the edge-step pairs that cannot be pruned in the
set C. To find such events of high probability, we first obtain a
confidence interval for each load l(e, τ), defined by lower and
upper confidence bounds (i.e., it lies in the interval with high
probability). If the upper bound of the load of a pair (e, τ) is
smaller than the lower bound of the load of some other pair
(e′, τ ′), we know that l(e, τ) < l(e′, τ ′) with high probability.

Example 8: In Figure 5, we plot the confidence intervals
for five pairs, with lower and upper bounds shown in bold
points. The lower bound of the load l(e3, 1) is shown by the
dashed line with its y-axis value of l̂(e3, 1)−r, where r is the
confidence radius, defined below. Since it is greater than the
upper bound of l(e1, 0), we can safely prune (e1, 0).

መ𝑙(𝑒1, 0) − 𝑟

(𝑒, 𝜏)(𝑒1, 0) (𝑒1, 1) (𝑒2, 0) (𝑒3, 1)

𝑙(𝑒, 𝜏)

(𝑒6, 2)

መ𝑙(𝑒1, 0)

መ𝑙(𝑒1, 0) + 𝑟

Fig. 5: The confidence bounds of edge loads

To define the confidence radius r, we first give the lower
and upper bounds of l(e, τ). By the Hoeffding bound [33],
we have P(|l(e, τ) − l̂(e, τ)| ≥ ϵ) ≤ 2 exp

(
− 2ϵ2N

R2

)
, where

ϵ,N,R are a non-negative real number in (0, 1), the number
of samples, and the range of l(e, t) ≥ 0, respectively. Note that
all the samples are from the historical loads corresponding to
the pair (e, τ) in cycles. Using an equivalent form, we have
the following with probability 1 − δ/2, l(e, τ) ∈ [l̂(e, τ) −
r(e, τ), l̂(e, τ)+r(e, τ)], where the confidence radius r(e, τ) =√

R2(ln 4−ln δ)
2N . This can be proved by replacing ϵ with r(e, τ)

in the Hoeffding bound.
The pruning procedure is summarized in Algorithm 2. In

Line 1, we first sort all the edge-step pairs in the descending
order of their upper bounds l̂(e, τ) + r(e, τ), and T is the
number of steps in a cycle. In Line 4, we maintain a maximal
lower bound lb when iterating (e, τ). If there exists a pair
whose upper bound is lower than lb, we can stop the algorithm
and safely prune all the remaining edge-step pairs (Lines 5–6)
by Theorem 3. We initialize the candidate set C as an empty
set in Line 2 and update it in Line 7.

Example 9: In Figure 5, suppose that we only need to
consider the five pairs for simplicity. We first sort them by their
upper bounds: (e3, 1), (e1, 0), (e2, 0), (e6, 2), (e1, 1). After we
process (e3, 1), the lb is updated as (e3, 1)’s lower bound.
When we process (e2, 0), Algorithm 2 stops since its upper
bound is lower than lb. Finally, C = {(e3, 1)}.

Theorem 3: With probability 1 − δ, any pair (e, τ) with
l̂(e, τ) + r(e, τ) < lb is not the one with the maximum load.

Proof: There must be one pair (e′, τ ′) before the algo-
rithm stops such that lb = l̂(e′, τ ′)−r(e′, τ ′). By the Hoeffding
bounds, we know that l(e′, τ ′) > l̂(e′, τ ′)− r(e′, τ ′) = lb and
l(e, τ) < l̂(e, τ) + r(e, τ) < lb both with probability 1− δ/2.
After chaining these inequalities and using the union bound,
we have l(e, τ) < l(e′, τ ′) with probability 1− δ.

2) Estimating the Cardinality of the Query Set: Instead
of estimating the edge loads directly, we introduce the other
useful statistics in pruning the edge-step pairs. Let Qι for
ι ∈ N denote the set of queries with their departure times
in [ι, ι+ 1). We consider the estimate |Q̂ι|.

The basic intuition is as follows. At each step ι, we maintain
the current maximum load up to step ι, denoted by L(ι).
Before processing the queries in Qι, we can ignore some edge-
step pairs such that their loads are so small that they cannot
be the maximum one at step ι+1. Formally, l(e, ι+1) cannot



Algorithm 3: Spatiotemporal Routing with History
(SRH)

1 x(e, τ)← 1
2|C|c(e)) and v(e, τ)← 0 for each (e, τ)

λ← mine
1

c(e)

2 for time step ι← 0, 1, . . . do
3 L(ι)← maxe,τ l(e, τ)
4 C′ ← C from Algorithm 2
5 foreach e ∈ E do
6 if l(e, ι+ 1) + |Q̂ι|+ r(Qι) ≤ L(ι) then
7 C′ ← C′ \ {(e, ι+ 1)}

8 foreach new query q ∈ Qι do
9 P(q)← {p|sp = sq, dp = dq, γp ≤

(1 + a)γf∗(q)}
10 p← argminp∈P(q)

∑
(e,τ)∈C′ 1p(e, τ)x(e, τ)

11 while
∑

(e,τ)∈C′ 1p(e, τ)x(e, τ) > λ or there

exists one x(e, τ) >
exp( 1

2 )

c(e) do
12 λ← 2λ

13 x(e, τ)←
(1+ 1

2λc(e)
)v(e,τ)

2|C|c(e) for all e, τ
14 p←

argminp∈P(q)

∑
(e,τ)∈C′ 1p(e, τ)x(e, τ)

15 use the path p for query q, i.e., f(q)← p
16 foreach e, τ such that 1f(q)(e, τ) = 1 do
17 v(e, τ)← v(e, τ) + 1
18 x(e, τ)← (1 + 1

2λc(e) )x(e, τ)

be the maximum load at step ι+ 1 if the load is smaller than
the current maximum load L[0,ι) even when all the paths that
return for Qι traverse (e, ι+1), i.e., l(e, ι+1)+ |Qι| ≤ L[0,ι).
Finally, we just need to use the upper confidence bound of
|Qι| to replace it as in the previous technique. Note that this
procedure has to be done at each step ι.

3) Optimized Online Routing: The two techniques above
are summarized in Algorithm 3. The basic procedure is similar
to Algorithm 1. We can imagine that there are Um candidate
pairs in Algorithm 1 (i.e., C = {(e, τ)|e ∈ E, τ = ι+1, . . . , ι+
U}) and it uses the pairs whose location indicators are equal to
1. Similarly, Algorithm 3 uses the edge-step pairs in C whose
location indicators are equal to 1. The only three differences
are that we first generate C by Algorithm 2, that we apply the
technique in Section III-B2 in Lines 3–7, and that we replace
Um by |C| in Lines 1 and 13 and change the sum of variables
in Lines 10 and 14. The time complexity is still O(m ln(n)).

Example 10: Suppose that C = {(e3, 1)}. All the variables
are initialized as 1

2|C|c(e) = 1
2 . Algorithm 3 would select the

path (e1) for the first two queries q1 = q2 = (0, A,B). The
incurred loads are also shown by the white blocks in Figure 3b.
This is because the path (e1) contains no pair in C and its sum
of variables is 0, but the metric value for the path (e2, e3, e4)
is 1

2 since 1(e2,e3,e4)(e3, 1) = 1. For the two queries q3 =
q4 = (0.1, C,D), we can only select (e5, e3, e6). The variable

x(e3, 1) is first updated as (1 + 1
λc(e) )

1
2 = 3/4 and then (1 +

1
λc(e) )

3
4 = 9/8 after the query q4. Algorithm 3 results in an

optimal maximum load l(e3, 1) = 2 in this example.
Theorem 4: Algorithm 3 achieves a competitive ratio of
O(ln |C|) with probability 1− δ.

Proof: We can construct similar primal-dual programs by
using C instead of all (e, τ) for e ∈ E and τ ′ + 1 ≤ τ ≤
τ ′ + U . Since we prune the candidate pairs correctly with
probability 1 − δ as discussed above, we regard those events
as deterministic ones in the following. We construct the first
program with constraints only for those (e, τ) ∈ C and the
second one with the sum of terms w.r.t. (e, τ) ∈ C in the
constraints. The initial primal objective value also starts with
1/2. We can get similar results to Lemma 1 and Lemma 2.
Since the maximum load occur in C with high probability, we
still have λ/2 < OPT and l(e, τ) = O(ln(|C|)) ·OPT

IV. DYNAMIC EDGE WEIGHTS

When each driver follows the route that the algorithms
returned for her past routing query, the edge weight can
change at any time in a dynamic network [9], [24] and also
affect her route. We can handle it by canceling the effects of
the past query and processing a new query with her current
location and original destination as the new query’s source
and destination, respectively. The new query just acts like the
past one does not exist. The main idea is to build an index
to efficiently find the affected past queries and maintain the
variables and the loads correctly.

Two types of queries are not affected when the weight we′

of an edge e′ is updated at some time t′ ∈ R≥0. The first is
the future query since our SOR and SRH all find routes based
on the current updated weights. The second is the past query
that will not traverse the updated edge e′ after the time t′. The
rest are the affected queries which are currently traversing e′

or will traverse it.
To efficiently find those affected queries, we build an index

which stores the mapping from edges to the paths routed so far,
denoted by trav(e). Specifically, for each edge e, we store the
triple (p, tdep, tarr) where tdep ∈ R≥0 is the departure time of
the path p and tarr ∈ R≥0 is the time when the path p finishes
traversing the edge e. We insert these triples into trav(e) after
the routing algorithms return the path p for each query. We
can simply iterate the edges in the path p and compute the
time tarr of each edge. Note that if the weight is so small
that the path p traversing the edge does not show at any step,
we can omit the related triples (as e5 in Example 4) since no
loads and variables will be affected.

Example 11: Back to Example 5, suppose that we use SRH
to return paths. At t = 0, after we return p1 = (e1) and
p2 = (e1) to query q1 and q2, respectively, we add (p1, 0, 1.3)
and (p2, 0, 1.3) to trav(e1) since p1 and p2 finish traversing
e1 at t = 1.3. The procedure is also shown in Figure 6. At t =
0.1, for query q3 and q4, we similarly add (p3, 0.1, 1.3) and
(p4, 0.1, 1.3) into trav(e3) and (p3, 0.1, 2.3) and (p4, 0.1, 2.3)
into trav(e6). We add no triple to trav(e5) because we5 is so
small that p3 and p4 traversing e5 do not show at any step.



Algorithm 4: Edge Weight Update
input : The old and new weights for the updated edge

e′, the update time t′, and the index trav(e)
output: The index trav(e)

1 foreach (p, tdep, tarr) ∈ trav(e′) do
2 if tarr < t′ then
3 remove the triple and continue

4 cancel the effects of the path p on the variables
x(e, τ), the loads l(e, τ), and the index trav(e)

5 route a new path for this affected query with its
new source based on the new edge weight

6 update the index, variables, and loads

Now suppose that the weight w′
e of an edge e′ is updated

at time t′ ∈ R≥0. To obtain the affected queries in trav(e′),
we remove the triples (p, tdep, tarr) in trav(e′) with tarr < t′

since the path has traversed e′ at time t′. For these affected
(p, tdep), what we need to do is to cancel their effects on the
variables x(e, τ), loads l(e, τ), and the index of trav(e), then
reroute the paths by regarding them as new queries with the
new sources and departure times and the original destinations,
and finally maintain the variables, the loads, and the index
by the newly returned path. To cancel the effect on trav(e),
we iterate p’s edges based on the original weight and remove
the corresponding triples in the index. To cancel the effect on
the loads and variables, we iterate the edge-step pairs that p
traverses. Finally, we maintain the index, variables, and loads
index as previously stated.

Note that p’s current location could lie on any edge. For ease
of computation, we can use the destination vertex of this edge
as the new source of the new query. We estimate its departure
time at the new source by using the current time plus the
remaining time of traversing this edge. If its current location
lies on the updated edge, we can multiply the remaining time
by the ratio of the new edge weight to the old one.

Algorithm 4 summarizes the procedure. For each triple in
trav(e′), we first prune the obsolete ones in Lines 2–3. We
cancel the effects of the corresponding path in Line 4, return a
new path based on the new edge weight in Line 5, and finally
update the index, variables, and loads in Line 6.

Example 12: At t = 1.1, suppose that we3 is increased to
2. We first prune the triples with tarr < 1.1 in trav(e3). For
(p3, 0.1, 1.3), we cancel its effect on the index trav(e) by
removing (p3, 0.1, 1.3) from trav(e3) and (p4, 0.1, 2.3) from
trav(e6). We then route q3 = (1.5, F,D) with its new source
as the destination of e3. Its new departure time is 1.1 + 0.2 ·
2/1 = 1.5, where the remaining time on e3 is 0.1+0.2+1−
1.1 = 0.2. Since we return the path p5 = (e6) to this new
query, we update trav(e3) by inserting (p5, 1.5, 2.5) with its
tarr = 1.5+ 1 = 2.5. The updates for loads and variables are
omitted. We similarly process (p4, 0.1, 1.3).

The space cost is O(|Q|U), where U is the maximum time
span. This is because each query can be stored in different
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𝑡𝑟𝑎𝑣 𝑒6 = { 𝑝3, 0.1, 2.3 , (𝑝4, 0.1, 2.3)}

𝑡 = 1.1 𝑤𝑒3 is increased to 2

Cancel the effects of (𝑝3, 0.1, 1.3):

𝑡𝑟𝑎𝑣 𝑒6 = {(𝑝4, 0.1, 2.3)}

Route for 𝑞3 = 1.5, 𝐹, 𝐷

𝑡𝑟𝑎𝑣 𝑒3 = {(𝑝4, 0.1, 1.3)}

Process 𝑡𝑟𝑎𝑣 𝑒3 :

Cancel the effects of (𝑝4, 0.1, 1.3): 𝑡𝑟𝑎𝑣 𝑒6 = { 𝑝5, 1.5, 2.5 }

Route for 𝑞4 = 1.5, 𝐹, 𝐷

Update the index:

𝑡𝑟𝑎𝑣 𝑒6 = { 𝑝5, 1.5, 2.5 , (𝑝4, 0.1, 2.3)}

𝑡𝑟𝑎𝑣 𝑒3 = {}

Update the index: 𝑡𝑟𝑎𝑣 𝑒6 = { 𝑝5, 1.5, 2.5 , (𝑝6, 1.5, 2.5)}

𝑝5 = 𝑒6
𝑝6 = 𝑒6

Fig. 6: Edge weight update

TABLE I: Real dataset statistics

Datasets |Q| Time Periods
NYC 20,775 5 p.m. - 6 p.m.

Baidu Maps 22,881 7 a.m. - 7:30 a.m.
Didi 22,794 9 a.m. - 9:35 a.m.

trav(e) at most U times. However, it is much smaller in
practice since we remove obsolete triples continuously. The
time complexity is O(U maxe trav(e)) since we examine each
triple in trav(e) and for each triple, the time of canceling and
updating the index, the variables, and loads are all O(U).

V. EXPERIMENTAL STUDY

A. Experiment Setup

In our experiments, algorithms are implemented using the
compiler gcc 9.4.0 with O3 optimization and performed on a
machine with a 2.66GHz CPU and 48GB RAM installed with
the CentOS 7 Linux distribution.

Datasets. We collected road network and query data for
experiments. We used two road networks, one in New York
City (NYC) from DIMACS1 and the other in Beijing (BJ)
from OpenStreetMap2. The NYC network has 264,346 nodes
and 733,846 edges, and the Beijing network has 188,229 nodes
and 436,648 edges. For routing queries, we used NYC taxi trip
data from August 2013 from the NYC TLC Trip Record Data
[34], routing query data from April 2017 from Baidu Maps’s
Q-Traffic Dataset [35], and online taxi-calling trip data from
October 2016 from Didi [36]. The NYC queries were tested
on the NYC network, and the queries from Baidu Maps and
Didi were tested on the Beijing network. We set the duration
of a time step to one minute according to the setup in Baidu
Maps [25] so that t = 0.1 means 6 seconds from now.

We evaluated our algorithms by varying (1) the query set
Q, (2) the detour factor a, and (3) the penetration rate ρ
(defined as the ratio of the number of queries that adopt our
proposed/existing routing algorithms to the total number of

1http://www.dis.uniroma1.it/challenge9/download.shtml
2https://download.bbbike.org/osm/bbbike/Beijing/
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Fig. 7: Varying |Q| on NYC
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Fig. 8: Varying |Q| on Baidu
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Fig. 9: Varying |Q| on Didi
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Fig. 10: Scalability test

queries). (1) Following existing work [9], [24], [37], we set
|Q| = [5000, 7500, 10000, 12500, 15000], where the default
value is underlined. We extracted the query sets of the above
sizes from three sources shown in Table I. We also conducted
the scalability test by varying |Q| = [1, 2, 3, 4, 5] × 105

on NYC. (2) For the detour factor a, since a small value
could result in less detour cost, we varied a small a =
[0.05, 0.075, 0.1, 0.125, 0.15] from the three sources but also
tested large values from 0.1 to 0.5. Note that SRH uses a set C
of candidates from history to guide its routing. For each of the
three sources, we generate and use only one set C of candidate
pairs by considering the corresponding edges and periods in
the previous 20 days. (3) For the penetration rate, we vary
ρ = [0.2, 0.4, 0.6, 0.8, 1] to simulate the real scenarios where
the ρ fraction of vehicles follow the recommended routes. In
our experiment, the 1−ρ fraction of queries adopt ShortestPath
(instead of our proposed/existing algorithm) to find routes. All
the experiments use the same setting of δ = 0.1, which is the
best value after multiple tests.

Compared algorithms. We compared four algorithms
widely used for practical routing.

(1) ShortestPath. It regards the travel time of each road
segment as the edge weight and finds the path minimizing the
sum of traversed edges’ weights.

(2) Iterative Penalty Method (IPM). The representative
approach of alternative paths (though not for minimizing con-
gestion) is the IPM which gives alternative paths by imposing
a penalty weight on the traversed edges [10]. Since the recent
study shows that the variant using a penalty weight of 1.4 is
superior to competitors [16], we implement this variant.

(3) Balanced Routing (BR). BR is one congestion avoid-
ance strategy in the transportation area [18]. It defines the
entropy-based metric function to choose the best path from a
set of dissimilar paths [17].

(4) Global Routing Optimization (GRO). GRO is the
state-of-the-art routing strategy for queries in batches [23]. It
finds routes for a given batch of queries by gradually reducing
the sum of travel times. Since our online queries should be
processed right away but not in a batch, we implement its
variant by combining the queries of each step in a batch.

(5) SOR. Our first algorithm uses no history and chooses
the path based on the existing congestion status.

(6) SRH. Our second improvement generates future con-
gested edge-step pairs from history to guide the routing.

We assess the performance of the above algorithms in
terms of the maximum load and the average execution time
per query. Basically, different load values can be shown in
different colors (e.g., red and green) of road segments in
navigation apps. A load less than one for an edge means that
there is no congestion and that all vehicles can traverse the
edge at a given normal speed at the time corresponding to the
step [26]–[28].

B. Experiment Results

1) Effect of |Q|: Figures 7, 8, and 9 show the results of
varying |Q| on NYC, Baidu, and Didi, respectively.

For the maximum load, all the algorithms have larger values
when |Q| is larger. Note that some lines are flat because the
datasets of large |Q| are made up by supplementing queries
to the datasets of small |Q| and the maximum load appears
early in the datasets of small |Q| (e.g., the maximum load of
ShortestPath appear in the first 5,000 queries on NYC). Among
all the algorithms, ShortestPath is the worst since it does not
consider the congestion status of the edges. IPM achieves
larger maximum loads on NYC and Baidu but smaller ones on
Didi. BR is basically at the medium level. GRO performs worse
on Baidu and Didi since the batch in one minute gives it little
information, and it cannot handle fast online queries. SOR is



 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  0.5  1  1.5  2  2.5  3

#
 o

f 
e
d
g
e
-s

te
p
 p

a
ir
s

Edge load

ShortestPath
IPM
BR

GRO
SOR
SRH

(a) All edge-step pairs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2  2.5  3  3.5

#
 o

f 
e
d
g
e
-s

te
p
 p

a
ir
s

Edge load

ShortestPath
IPM
BR

GRO
SOR
SRH

(b) Top 100 edge-step pairs

Fig. 11: Results of load distribution on NYC

the second best one in some cases. SRH always achieves the
smallest maximum load and could reduce the maximum load
of the baseline by nearly 20% on Didi.

In terms of the execution time, all the algorithms have
a constant time cost per query. Their times are insensitive
to |Q| because each query is processed by each call of the
algorithms independently and because we report the average
time per query. BR is slow on all datasets because it needs to
compute and compare multiple paths for each query. The time
costs of the other algorithms are around 10 ms and hence are
acceptable in practice.

2) Load distribution: Figure 11 shows the load distribution
on the default setting. We split edge-step pairs into equal-width
intervals by their edge loads and count the number of pairs
for each interval. Note that we omit the pairs with zero loads.

Figure 11a shows the load distribution of all pairs. We
see that the loads for most pairs are less than 0.5. We need
to focus on the tiny minority of pairs with loads higher
than 1 because the most congested ones are bottlenecks for
congestion minimization. We consider the top 100 edge-step
pairs with the highest loads in Figure 11b. We find that the
loads for the top 100 pairs basically exceed 1. The pairs of
SOR and SRH, shown in dark black bars, concentrate on the
left interval [1,1.5]. However, ShortestPath and IPM could
have loads above 2. The results are consistent with the least
maximum load of SRH.

3) Scalability test.: Figure 10 gives the results of the
scalability test where we vary |Q| in the order of 105. The
average processing time of all the algorithms except BR is still
low in around 10 ms per query. For the memory cost, they are
stable since the dominant part of memory consumption lies in
the edge loads, where we have to store values for each edge-
step pair. Note that the memory cost is in the same order of
the problem size (which is O(mT )) since we need to check
the edge load of each edge-step pair. SRH takes double the
memory of the other ones because when checking if a pair
is in the candidate set C, we simply use Boolean values for
all pairs, with the same size of O(mT ) as the edge loads. In
conclusion, all the algorithms scale with respect to |Q|.

4) Effect of ρ: The results of varying the penetration rate
ρ is shown in Figure 12. In Figure 12a, we see that all
algorithms, except IPM that is not designed for congestion
minimization, tend to achieve lower maximum loads when
the penetration rate is higher, which also indicates that higher
usage of the routing algorithms is beneficial for mitigating
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Fig. 12: Results of varying the penetration rate ρ (NYC)

congestion. We also observe that SRH achieves the smallest
maximum load among all algorithms. In terms of the query
time, all algorithms need more time when ρ is larger because
more queries adopt them, yielding higher time costs.

5) Effect of small a: Figures 13, 14, and 15 present the
results of varying a small detour factor a on NYC, Baidu,
and Didi, respectively. In terms of the maximum load, Short-
estPath, IPM, and GRO remain unchanged since they do not
consider the detour constraint. We see a downward trend for
the other three algorithms when a is increased. This is because
we allow more detour costs and give the algorithms more
path choices. For the maximum load when a = 0, SOR and
SRH achieve the same load as ShortestPath since they are
not allowed to use detours. Setting a small a reduces the
load significantly (e.g., the load of SRH changes from 2.69
to 1.42 when a is increased to 0.05 on NYC), which is also
our motivation for sacrificing small detour costs to mitigate
congestion. It is possible that there is little improvement when
a is increased. The main reason is that the load has decreased
significantly when a becomes non-zero, and there is a point
where decreasing a makes no difference due to the existence of
“bottleneck” edges. They always appear in the paths for some
queries, no matter how we set a (e.g., several queries may
have the same source with only one incident edge.). SRH still
achieves the smallest maximum load among all algorithms on
all datasets. The execution times of our algorithms are stable.
The main reason is that for most queries, the paths minimizing
the metric function do not violate the constraint and can be
found quickly.

6) Effect of large a: To further explore the effect of a
large detour factor, we show the results of a from 0.1 to
0.5 in Figure 16. For the maximum load, it could be found
that only SRH gradually decreases when a is larger. There is
a plateau for SOR and BR after some point. The reason is
similar to the previous one of the bottleneck edges. We can
learn that a small detour factor of around 0.1 is enough for
congestion minimization. Large values may not give noticeable
improvement. The rest findings are similar.

C. Dynamic edge weights

We evaluate Algorithm 4 by using the default settings
on NYC. Following existing work [7], [24], we randomly
select 1000 edges and change their weights we by drawing
samples from a uniform distribution on [we, (1+c)we], where
c ∈ {1, 2, 3, 4, 5}. The update times of weights are uniformly



 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.05  0.075  0.1  0.125  0.15

M
a

x
im

u
m

 l
o

a
d

a

ShortestPath

IPM

BR

GRO

SOR

SRH

(a) Max. load when varying a

 1

 10

 100

 0.05  0.075  0.1  0.125  0.15

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

a

ShortestPath
IPM
BR

GRO
SOR
SRH

(b) Time when varying a

Fig. 13: Varying a on NYC
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Fig. 14: Varying a on Baidu
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Fig. 15: Varying a on Didi
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Fig. 16: Varying a large a
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distributed over 20 minutes. Since IPM, BR, and GRO cannot
be adapted easily to handling dynamic weights, we only
implement variants of ShortestPath, SOR, and SRH.

The results are shown in Figure 17. For the maximum
load, when c increases, the upper bound of the edge weights
increases. Although the updated edges may not be the most
congested ones, the maximum loads of all algorithms generally
increase. The time cost per update is 0 when c is 0 since no
weight is updated. All the algorithms perform one edge weight
update within 5 ms, which is competitive to the update time
of existing solutions [7], [24].

D. Case Study

We study the traffic status of an area next to the North 3rd
Ring Road in Beijing. To simulate the traffic, we duplicate
the queries from 7:00 a.m. to 7:30 a.m. (during the morning
rush hour) on April 21, 2017 from Baidu Maps five times.
The routes of the ShortestPath, SOR, and SRH are shown in
Figure 18a as dark purple, orange, and pink lines, respectively.
It can be seen that ShortestPath chooses the path with the
shortest travel time for 20 vehicles, which results in the most
crowded road segments. SOR distributes some vehicles to
other road segments but still guides many vehicles to the seg-
ments in the left part. SRH scatters the vehicles and guides 9
vehicles to use other road segments to reduce congestion. The

(a) The routes made by ShortestPath, SOR, and SRH

(b) The routes of SRH under a traffic change

Fig. 18: A case study of the Beijing network

recommended routes with limited detour costs are reasonable
under our small detour factor setting.

For the same setting, we also simulate the scenario where
the travel time of the segment in red increases, as shown in
Figure 18b. We observe that SRH (shown in pink lines) can
handle such a change by avoiding using the red segment.

E. Summary

(i) Our proposed SRH that considers future congestion status
outperforms the state-of-the-art baselines. It can reduce up to
33% the maximum load incurred by baselines.

(ii) SOR and SRH are efficient in terms of the average
processing time (around 10 ms per query). They are scale to
large city road networks and frequent online routing queries
and process each edge weight update with running times
similar to those of existing solutions.



(iii) The proposed SRH performs well in real-world scenar-
ios and responds to traffic changes immediately.

VI. RELATED WORK

A. Routing for Shortest Travel Time

The basic algorithm for finding the shortest paths on road
networks is Dijkstra’s algorithm [38]. State-of-the-art solutions
construct precomputed indexes to improve query efficiency.
The indexes can be used to either prune the search space [39]–
[41] or store distances as labels for quick lookups [7], [8],
[42]–[44]. To handle real-time updates of edge weights, some
studies directly reduce the update time complexity [9], [24],
[37], [45], while other studies model edge weights by pre-
dictable time-dependent functions [46]–[53]. Since SOR and
SRH essentially find the paths that minimize a metric function
under a detour constraint, it is also a constrained shortest path,
which has been studied widely [31], [54]–[59]. However, these
existing proposals can cause congestion when they are used
for answering a number of queries.

A line of work analyzes the inefficiency caused by routing
algorithms that optimize the travel time or distance only. This
is first formulated by the Price of Anarchy (PoA), defined as
the ratio of the congestion cost over that of a globally optimal
strategy [60]. Its worst case is analyzed [3], and subsequent
studies consider the model under different cases: differentiable
and convex latency functions [61], the heavy traffic [62], or
both light and heavy traffic [5]. However, these studies assume
that pairs of origins and destinations are given beforehand and
try to analyze the inefficiency under different traffic models;
they do not aim to influence and guide drivers. Our problem
is to process online routing queries so as to guide drivers.

B. Routing for Alternative Paths

Finding alternative routes, in contrast to the shortest ones, is
a possible way of reducing congestion. Early methods include
Yen’s algorithm [63] and Eppstein’s algorithm [64]. Recent
techniques are based on penalties [10], [11], plateaus [12],
[13], and dissimilarity [14], [15], [65] (see [16] for a thorough
study). However, one main issue is that there is no common
notion of a “good” route. Their recommended routes may not
optimize the congestion status and hence are suboptimal for
the problem we study. Our proposed algorithms mitigate con-
gestion by considering the existing and future traffic statuses.

C. Routing for Congestion Minimization

In the transportation area, congestion avoidance strategies
on a small part of a network are considered, such as at
junctions (see [18] for a summary). Some studies propose re-
routing heuristics that change routes when certain congested
conditions are met [17], [19], and others consider drivers as
individual agents and study their interactions [20], [21]. These
studies of ten involve detailed models of traffic elements,
which reduces their scalability (as shown in our experiments).
Experiments are often reported on networks with fewer than
10,000 edges. In contrast, our solution can process queries
efficiently on large networks and can recommend routes based

on existing and future traffic statuses. Moreover, recent studies
consider minimizing the sum of travel times of queries given
batches of queries [22], [23]. They optimize routes repeat-
edly and gradually when they are aware of many queries.
However, they are effective only when they have sufficient
query information. In real scenarios, online queries must be
processed independently and immediately to meet the need for
fast responses. They cannot wait for the algorithms to process
the batches. Further, the returned paths may involve long
detours, which are impractical since they do not support detour
constraints. In contrast, our solutions are able to respond to
frequent routing queries right away, and all returned paths
satisfy a specified detour constraint.

In telecommunication networks, online algorithms are also
proposed to improve congestion [32], [66]–[69]. Specifically,
the routes in their problems increase the loads of traversed
edges at an instant and last forever, whereas a vehicle in our
problem can move along routes in both space and time. In
one study [66], an optimal O(lnn)-competitive algorithm is
proposed to minimize the maximum load. It is later proved to
be equivalent to a primal-dual algorithm [32]. Other objectives
can be to minimize the average latency [68], maximize the
total throughput [67], or minimize the load under a different
input model [69]. However, their networks are different from
our road networks, and we are planning routes for vehicles that
occupy different roads at different times. We consider practical
issues such as the detour constraint and return routes based on
the existing and future traffic statuses.

VII. CONCLUSION

This paper studies a new type of routing queries aiming at
mitigating traffic congestion. To do this, we identify the load
of each road segment (incurred by the vehicles following the
recommended routes) in the temporal dimension. We first pro-
pose the Congestion-mitigating Spatiotemporal Routing (CSR)
problem and prove its NP-hardness under the offline setting. To
address it, we design the algorithm SOR based on the existing
traffic status with a competitive ratio of O(lnn), where n is
the number of nodes. Noticing the recurring property of traffic
congestion, we further optimize SOR by focusing more on
future congested segments and propose SRH with a ratio of
O(ln |C|), where C is a set of candidate congested segments
derived from history. We report on experiments on real-world
data that offer evidence that the proposed algorithms are
capable of outperforming baselines and advancing the state-
of-the-art. In future work, it is of interest to study how to
minimize the average traffic status or how to optimize different
traffic elements (e.g., controlling traffic light times or deciding
where to build new roads). It is also of interest to consider the
influence of external factors that cause unexpected congestion.
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[11] D. Cheng, O. Gkountouna, A. Züfle, D. Pfoser, and C. Wenk, “Shortest-
path diversification through network penalization: A washington DC area
case study,” in SIGSPATIAL, 2019.

[12] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Alternative
routes in road networks,” ACM J. Exp. Algorithmics, 2013.

[13] L. Li, M. A. Cheema, M. E. Ali, H. Lu, and D. Taniar, “Continuously
monitoring alternative shortest paths on road networks,” PVLDB, 2020.

[14] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths with
diversity,” IEEE Trans. Knowl. Data Eng., 2018.

[15] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and D. B. Blumen-
thal, “Finding k-shortest paths with limited overlap,” VLDB J., 2020.

[16] L. Li, M. A. Cheema, H. Lu, M. E. Ali, and A. N. Toosi, “Comparing
alternative route planning techniques: A comparative user study on
melbourne, dhaka and copenhagen road networks,” IEEE Trans. Knowl.
Data Eng., 2021.

[17] R. Liu, H. Liu, D. Kwak, Y. Xiang, C. Borcea, B. Nath, and L. Iftode,
“Balanced traffic routing: Design, implementation, and evaluation,” Ad
Hoc Networks, 2016.

[18] S. E. Hamdani and N. Benamar, “A comprehensive study of intelligent
transportation system architectures for road congestion avoidance,” in
UNet, 2017.

[19] J. Pan, I. S. Popa, K. Zeitouni, and C. Borcea, “Proactive vehicular
traffic rerouting for lower travel time,” IEEE Transactions on vehicular
technology, 2013.

[20] S. Wang, S. Djahel, and J. McManis, “A multi-agent based vehicles re-
routing system for unexpected traffic congestion avoidance,” in ITSC,
2014.

[21] P. Desai, S. W. Loke, A. Desai, and J. Singh, “Caravan: Congestion
avoidance and route allocation using virtual agent negotiation,” IEEE
Transactions on Intelligent Transportation Systems, 2013.

[22] K. Li, L. Chen, and S. Shang, “Towards alleviating traffic congestion:
Optimal route planning for massive-scale trips,” in IJCAI, 2020.

[23] Y. Xu, L. Li, M. Zhang, Z. Xu, and X. Zhou, “Global routing optimiza-
tion in road networks,” in ICDE, 2023.

[24] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang, and X. Lin,
“Efficient shortest path index maintenance on dynamic road networks
with theoretical guarantees,” PVLDB, 2020.

[25] “Taffic api of baidu maps,” 2022, https://lbsyun.baidu.com/index.php?
title=webapi/traffic.

[26] A. M. Rao and K. R. Rao, “Measuring urban traffic congestion-a review.”
IJTTE, vol. 2, no. 4, 2012.

[27] R. L. Bertini, “You are the traffic jam: an examination of congestion
measures,” in The 85th annual meeting of transportation research board,
2006, p. 115.

[28] R. Arnott and K. Small, “The economics of traffic congestion,” American
scientist, vol. 82, no. 5, pp. 446–455, 1994.

[29] “Level of service,” 2022, https://en.wikipedia.org/wiki/Level of
service (transportation).

[30] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[31] W. M. Carlyle and R. K. Wood, “Near-shortest and k-shortest simple
paths,” Networks, vol. 46, no. 2, pp. 98–109, 2005.

[32] N. Buchbinder and J. Naor, “Improved bounds for online routing and
packing via a primal-dual approach,” in FOCS, 2006.

[33] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, 1963.

[34] “NYC taxi trips,” 2022, https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page.

[35] B. Liao, J. Zhang, C. Wu, D. McIlwraith, T. Chen, S. Yang, Y. Guo, and
F. Wu, “Deep sequence learning with auxiliary information for traffic
prediction,” in KDD, 2018.

[36] “Didi data,” 2022, https://outreach.didichuxing.com/research/opendata/.
[37] Z. Yu, X. Yu, N. Koudas, Y. Liu, Y. Li, Y. Chen, and D. Yang,

“Distributed processing of k shortest path queries over dynamic road
networks,” in SIGMOD, 2020.

[38] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[39] P. Sanders and D. Schultes, “Engineering highway hierarchies,” ACM J.
Exp. Algorithmics, vol. 17, no. 1, 2012.

[40] J. Dibbelt, B. Strasser, and D. Wagner, “Customizable contraction
hierarchies,” in SEA, 2014.

[41] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact routing in
large road networks using contraction hierarchies,” Transp. Sci., 2012.

[42] T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata, “Fast shortest-
path distance queries on road networks by pruned highway labeling,” in
ALENEX, C. C. McGeoch and U. Meyer, Eds., 2014.

[43] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and X. Lin, “Scaling up
distance labeling on graphs with core-periphery properties,” in SIGMOD,
2020.

[44] ——, “Scaling distance labeling on small-world networks,” in SIGMOD,
2019.

[45] T. Hayashi, T. Akiba, and K. Kawarabayashi, “Fully dynamic shortest-
path distance query acceleration on massive networks,” in CIKM, 2016.

[46] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest paths on A
road network with speed patterns,” in ICDE, 2006.

[47] L. Li, S. Wang, and X. Zhou, “Time-dependent hop labeling on road
network,” in ICDE, 2019.

[48] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route
planning on public transportation networks: A labelling approach,” in
SIGMOD, 2015.

[49] Y. Wang, G. Li, and N. Tang, “Querying shortest paths on time
dependent road networks,” PVLDB, 2019.

[50] Y. Yuan, X. Lian, G. Wang, Y. Ma, and Y. Wang, “Constrained shortest
path query in a large time-dependent graph,” PVLDB, 2019.

[51] L. Li, W. Hua, X. Du, and X. Zhou, “Minimal on-road time route
scheduling on time-dependent graphs,” PVLDB, 2017.

[52] L. Li, S. Wang, and X. Zhou, “Fastest path query answering using time-
dependent hop-labeling in road network,” IEEE Trans. Knowl. Data
Eng., 2022.

[53] L. Li, K. Zheng, S. Wang, W. Hua, and X. Zhou, “Go slow to go
fast: minimal on-road time route scheduling with parking facilities using
historical trajectory,” VLDB J., 2018.

[54] H. Joksch, “The shortest route problem with constraints,” Journal of
Mathematical Analysis and Applications, vol. 14, no. 2, pp. 191–197,
1966.

[55] G. Y. Handler and I. Zang, “A dual algorithm for the constrained shortest
path problem,” Networks, vol. 10, no. 4, pp. 293–309, 1980.

[56] D. Delling and D. Wagner, “Pareto paths with SHARC,” in SEA, 2009.
[57] S. Storandt, “Route planning for bicycles - exact constrained shortest

paths made practical via contraction hierarchy,” in ICAPS, 2012.
[58] Z. Liu, L. Li, M. Zhang, W. Hua, P. Chao, and X. Zhou, “Efficient

constrained shortest path query answering with forest hop labeling,” in
ICDE, 2021.

[59] L. Wang and R. C. Wong, “QHL: A fast algorithm for exact constrained
shortest path search on road networks,” Proc. ACM Manag. Data, vol. 1,
no. 2, pp. 155:1–155:25, 2023.

[60] E. Koutsoupias and C. H. Papadimitriou, “Worst-case equilibria,” in
STACS, 1999.
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