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Abstract—In the literature of the database community, there
are a lot of studies about finding a utility function from a user
(representing the user’s preference), via interaction with the
user by asking a number of questions each requiring him/her
to compare 2 points for choosing a more preferred point, in
order to find the best tuple in the database containing a lot
of tuples. In the real world, the user may make mistakes
(carelessly), which means that s/he may answer some of the
questions wrongly. Unfortunately, existing interaction algorithms
may find the undesirable point based on the wrongly learnt utility
function because they assume that all answers from the user
are 100% correct. In particular, even if the user answers only
1 wrong answer, the output of the existing algorithms may be
far away from the users’ real need. Motivated by this, in this
paper, we propose a new problem of finding the most interesting
point via interaction which is robust to possible mistakes made
by a user. Besides, we propose (1) an algorithm that asks an
asymptotically optimal number of questions when the dataset
contains 2 dimensions and (2) two algorithms with provable
performance guarantee when the dataset contains d dimensions
where d ≥ 2. Experiments on real and synthetic datasets show
that our algorithms outperform the existing ones with a higher
accuracy with only a small number of questions asked.

I. INTRODUCTION

A database system may contain millions of points (or
tuples). In order to help the user to find his/her interesting
point, we need queries to obtain a representative set of points
consisting of his/her interesting point. Such queries can be
considered as multi-criteria decision making problems and
they can be applied in various domains, including house
buying, car purchase and job search. For example, in a car
purchasing database where each car is described by some
attributes, Alice wants to find a car with a low gasoline con-
sumption and a high speed, and is as cheap as possible. Here,
gasoline consumption, speed and price are some attributes that
Alice would consider when buying a car.

There are two popular types of traditional multi-criteria
decision making queries, namely top-k and skyline [6]. The
top-k query measures the utility of tuples based on a utility
function provided by the user. A high utility indicates that
the corresponding tuple is more preferred. The query returns
k tuples with the highest utility in the dataset. Top-k requires
the knowledge of the user’s exact utility function. On the other
hand, the skyline query does not need this information and
uses a “dominant” concept. Specifically, a tuple p is said to
dominate a tuple q if p is not worse than q in any attribute
and is better than q in at least one attribute. Intuitively, p is
better than q w.r.t. all monotonic utility functions. The skyline
query returns the set of tuples that are not dominated by any

tuple in the dataset. Unfortunately, the size of the returned set
is uncontrollable and could be as large as the database size.

Motivated by this, a novel interactive framework [28, 37, 40]
was proposed to overcome the disadvantages of both the top-k
query (requiring a given utility function) and the skyline query
(returning an output with an uncontrollable size). Intuitively,
it asks the user a number of rounds of simple questions and
returns the most interesting tuple to the user. The interactive
system not only does not require the user to provide an
exact utility function, but also can control the size of the
returned set (i.e., the only one tuple returned). Therefore, it
does not have the limitation of both top-k and skyline queries.
A widely applied form of question [28, 37, 40] is to display
2 points in each round, and the user is asked to select the
preferred point. Consider the car purchasing scenario. The
interactive framework simulates a sales assistant that asks
Alice to indicate her preference among several pairs of cars,
and make recommendations based on the answers of Alice.

However, in real world, when answering questions, people
make occasional mistakes due to various reasons. For example,
in a simple task of selecting the correct switch among two
given switches that are dissimilar in shape, a human knowing
which switch is correct can still select the wrong one with
probability 0.1% [21]. For operations that require some care,
the error probability can range from 1% to 3%, which may
even increase under high mental stress. Simple calculation
shows that if the system interacts with the user for 10 rounds
(i.e., asks the user a sequence of 10 questions), a user has
10%-30% chance to make at least one mistake. For example,
Alice may indicate her preference to a cheap car with high
gas consumption among some similar cars due to a careless
mistake, even though she intends to buy a low-consumption
car. Note that in the real world, a meticulous sales assistant
will notice the inconsistency and check with Alice.

It is worth mentioning that making a “small” mistake can
lead to unforgettable and unchangeable consequences. Let us
give two real cases. The first case is about the selection of
the tertiary school, one of the critical milestones of one’s
life. In 2020, an 18-year-old student in Guangdong province
in Mainland China who obtained a top-tier score from the
National College Entrance Examination in China (also called
gaokao) was admitted to a low-ranked college with a similar
name to his target university due to his mistake of choosing a
wrong school in the tertiary school selection system [38]. The
second case is about a huge financial loss due to a well-known
“fat finger error” (an error made by the operator in the trading
system when making a wrong deal in the trading system by



mis-clicking or pressing a wrong key). In 2018, Samsung
Securities made a wrong transaction worth 100 billion dollars
due to a fat finger error, which could incur a loss of 428 million
dollars, 12.17% of the company’s market capitalization [1].

Motivated by this, in this paper, we propose a new problem
called the interactive best point retrieval problem consider-
ing error-prone user input, which is more realistic. Roughly
speaking, our problem is to find the best point in a dataset D
for a user with an unknown utility vector u, in the scenario
that the user is “imperfect” and makes a random error with
probability at most θ for each question requiring a user to
select one preferred point among 2 points displayed, where θ
is called an error rate and is a user parameter. In other words,
the user chooses the preferred point with probability at least
1 − θ and chooses the other point with probability at most
θ. Note that θ can be obtained from some channels like user
behavior studies [21]. In our user study, θ is found to be 4.5%.

Although most (if not all) existing interaction algorithms
[28, 37, 40] do not consider user errors, unfortunately, their
adaptions may find the undesirable point based on the wrongly
learnt utility function since they assume that the user never
makes mistake. In our experiment, these algorithms return
incorrect results. For example, on a dataset with 1M points,
the accuracies of all closely related adapted algorithms Util-
ityApprox [28], UH-Simplex [40] and HD-PI [37] are at most
74% only.

Furthermore, all adapted versions of existing interactive
algorithms considering user errors [19, 31] for this problem
do not perform well. In our experiment, the accuracies of
the adapted versions of Active-Ranking [19] and Preference-
Learning [31] on a dataset with size 1M are at most 67% only,
which is not acceptable.

Contributions. We summarize our contributions as follows.
Firstly, we are the first to propose the best point retrieval
problem considering random interaction errors during user
interaction under interactive multi-criteria decision making
problems. Secondly, we prove a lower bound on the expected
number of questions needed to determine the best point with
a desired confidence threshold. Thirdly, we propose (1) an
algorithm with an asymptotically optimal number of questions
asked when the dataset contains two dimensions and (2) two
solutions with provable guarantee in terms of both the number
of questions asked and the confidence on finding the best point
when the dataset contains d dimensions where d ≥ 2. Fourthly,
we conducted comprehensive experiments to demonstrate the
superiority of the proposed methods. The results show that our
algorithms maintain a high accuracy (e.g., nearly to 100% in
most experiments) in finding the best point using only a small
number of questions, but existing approaches either ask too
many questions (e.g., twice as many as ours), or are much
inaccurate (e.g., more than 10% less accuracy than ours).

Organizations. The rest of this paper is organized as follows:
Section II gives our problem definition. Section III shows
the related work. We introduce the algorithm for the dataset
containing two dimensions in Section IV and two algorithms

for the dataset containing at least two dimensions in Section
V. In Section VI, we present the experimental results. Section
VII concludes the paper.

II. PROBLEM DEFINITION

In this section, we provide a formal definition to our
problem. We first introduce some basic terminologies. Then,
we formally define the random user error setting. Next, We
study the lower bound of the number of questions to return
the best point with a desired confidence. The input of our
problem is a dataset D in a d-dimensional space. Note that
each tuple in D could be described by more than d attributes,
but the user is interested in exactly d of them.

Terminologies. In this paper, we use the word “tuple” and
“point” interchangeably. We denote the i-th dimensional value
of a point p ∈ D by p[i] where i ∈ [1, d]. Without loss of
generality, the value of each dimension is normalized in range
[0, 1] and for each i ∈ [1, d], there exist at least one point
p ∈ D such that p[i] = 1. We assume that a larger value in each
dimension is more preferable to the user. If a smaller value
is preferred for an attribute (e.g., price), we can modify the
dimension by subtracting each value from 1 so that it satisfies
the above assumption. Consider the 2-dimensional example in
Table I. We have a database D = {p1, p2, p3, p4, p5, p6, p7}
and we are interested in attribute X1 and X2.

As widely applied in [26, 28, 31, 37, 39, 40], the user’s
preference is modeled as an unknown linear utility function.
Specifically, we model the utility function f : Rd

+ → R+ as
a linear function f(p) = u · p, where u is a non-negative d-
dimensional real vector and u[i] measures the importance of
the i-th attribute. We call f(p) the utility of p w.r.t. f and u is
called the utility vector. In the rest of this paper, we also refer
f by its utility vector u. We are interested in finding the point
with the highest utility, which is the point ph = argmaxp∈D u·
p. Note that scaling u does not change the rank of points in D
and thus, does not change the best point. Therefore, without
loss of generality, we assume that

∑d
i=1 u[i] = 1. Although

we target at retrieving the best point, the algorithms developed
in this paper can be easily adapted to return the top-k points
w.r.t. u. We include the details in [9] due to space constraint.

Handling Random Errors. The system interacts with a user
for several rounds, until a stopping condition is satisfied. The
user is asked 1 question in each round and we use the term
“question” and “round” interchangeably in the rest of this
paper. We adopt a popular strategy of asking questions in
the literature [19, 22, 24, 31] that in each round, the system
displays a pair of points, namely pi and pj , to the user, and
the user returns the preferred point between these 2 points.
We primarily focus on pairwise comparison in this paper, but
the algorithms we developed can be adapted to a variety of
question types (e.g., choosing one out of multiple points). The
details can be found in [9]. Instead of assuming the user always
makes correct choices, the user makes a random error with
probability at most θ in each round. Specifically, let p∗ denote
the point with a higher utility in two points pi and pj , the user
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p X1 X2 f(p)(u = (0.3, 0.7))
p1 0.2 1 0.76
p2 0.5 0.9 0.78
p3 0.8 0.7 0.73
p4 0.9 0.6 0.69
p5 1 0.2 0.44
p6 0.6 0.8 0.74
p7 0.8 0.5 0.59

TABLE I: Dataset and utility

D the input dataset
d the dimensionality of D
N size of raw dataset
n size of conv(D)
u the utility vector
θ the upper bound of user error rate
δ the failure probability
k parameter of the checking subroutine
pi tuple in the dataset
Pi best partition of point pi
hi,j the hyperplane related to pi and pj

TABLE II: Commonly used symbols

hi,j h+
i,j h−

i,j intersects
h1,2 {P1} {P2, P3} {P4, P5}
h1,4 {P1, P3, P5} {P4} {P2}
h2,4 {P2, P3, P5} {P4} {P1}
h2,5 {P1, P2, P4} {P3, P5} {}
h3,5 {P3} {P1, P2, P4, P5} {}

TABLE III: Table L
hi,j h+

i,j h−
i,j intersects

h1,2 {P1} {P2} {P4}
h1,4 {P1} {P4} {P2}
h2,4 {P2} {P4} {P1}

TABLE IV: Table L after selecting h2,5

chooses p∗ with probability at least 1−θ, and, with probability
at most θ, s/he selects the other point. Typically, θ should not
be too large since it is a careless mistake. Thus, it is natural
to assume that θ is smaller than 0.5 as supported by existing
statistics about the error rate described in Section I. If θ is
greater than 0.5, there is no hope that we could find the best
point for this user (because the user already gives more than
half of his/her answers wrongly.)

We summarize the frequently used symbols in Table II.

Lower Bound. We are interested in the following problem:
Given an input size n, and given that the user makes an error
with probability at most θ in each round, how many questions
do we expect to ask to obtain the best point? We present the
following theorem about the lower bound.

Theorem 1. For any dimensionality d, given an error rate θ
and a confidence parameter δ, there exists a dataset of n points
such that any pairwise comparison-based algorithm needs
to ask Ω( θ

2(1−θ)
(1−2θ)2 (log n) log(

logn
δ )) rounds on expectation to

determine the best point with confidence at least 1− δ.

Proof sketch. We first show that in order to find the best point,
Ω(log n) questions must be asked and the expected number
of errors we must handle is µ = Ω(θ log n). We then prove
that to let the total failure probability be less than δ, at least
k = Ω( θ(1−θ)

(1−2θ)2 log(
logn
δ )) additional questions must be asked

to handle each error. The total number of rounds is therefore
Ω(log n + µk) = Ω( θ

2(1−θ)
(1−2θ)2 (log n) log(

logn
δ )). The complete

proofs of theorems and lemmas presented in this paper can be
found in [9].

III. RELATED WORK

Besides the traditional top-k and skyline queries mentioned
in Section I, various types of multi-criteria decision making
queries were proposed. [3, 35] propose the similarity query
which looks for tuples that are similar to a given query tuple,
where the similarity is measured by a given distance function.
However, the query tuple and the distance function must be
provided in advance [4], which may be an unrealistic assump-
tion in practice. On the other hand, the regret-minimizing
related queries [10, 29, 30, 39] returns a set of tuples that
minimizes the regret level of the user, where the regret level
measures how regretful the user will be if s/he only examines
the returned points instead of the entire dataset. Although
regret minimizing related queries do not require the presence
of user’s utility function, it is hard to achieve both a small
regret level and a small size of returned set. When a small

regret level is fixed, the output size is usually large [10, 40].
Some recent studies [11, 26, 27] aim to combine top-k and
skyline and return personalized results by computing points
that are not dominated in a specific region. But, these studies
still require some knowledge on user’s utility function. If the
user cannot provide a good estimation on the utility function,
the performance of these algorithms will degenerate.

To overcome the limitations of the above queries, some
existing studies [4, 19, 28, 31, 34, 37, 40] proposed to involve
user interactions. The form of interaction varies. A form of
interaction that is widely adopted in [19, 28, 31, 37, 40]
is to ask the user to select the favorite point among a
set of displayed points. [28] proposed the interactive regret
minimizing query, which aims to lower the regret ratio while
keeping the output size small. [40] follows the study on
regret minimization and proposed two algorithms, namely UH-
Simplex and UH-Random, that only displays real tuples inside
the dataset. [37] proposed interactive algorithms, HD-PI and
RH, that target at searching for one of the top-k point in the
database. However, all of these algorithms assume that the
user never makes mistakes and completely prune some points
from further consideration, making it not applicable to adapt
them to handle user errors.

Besides asking a user to select one point from a set of
points, there are studies focusing on other types of interactions.
[41] developed algorithm Sort-Simplex which asks the user to
give a ranking on the displayed points. [25] asks the user
to partition points into superior and inferior groups to learn
his/her preference. [5] proposed the interactive similarity query
that learns the distance function and the query tuple via user
interaction. However, it requires a user to assign relevance
scores to hundreds of tuples to locate the query tuple. In
a user’s perspective, these interactions are too demanding
and may affect their willingness to interact with the system.
Besides, user errors are not considered in these studies.

The robustness issue is also studied in the Machine Learning
(ML) and Information Retrieval (IR) literature [17, 19, 20,
31, 33]. But, one major difference between their work and
ours is that most (if not all) of them focus on a given static
dataset without user interaction involved, but in our case, the
data is created dynamically during user interaction. It is worth
mentioning that for many algorithms in the ML/IR field, the
data required to return an accurate result can be more than 103

[17, 20], which means that if we directly adapt them to our
problem, the user needs to answer thousands of questions. [31]
proposed Preference-Learning to learn user’s preference that
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Fig. 1: 2D convex hull Fig. 2: Utility space in 3D

copes user errors by introducing a slack variant in a linear
SVM. [19] proposed Active-Ranking and resolves possible
conflict using the majority vote. Although these algorithms can
be adapted to find the best point considering user errors, they
are not efficient enough and tend to ask many more questions.

Compared with the existing studies, our work has the
following advantages. Firstly, we do not require the user to
provide an exact utility function or query tuple, as in the
top-k query or the similarity query. Secondly, we reduce the
user’s effort by asking fewer questions and only asking the
user to select one point (i.e., the most desirable point) in
each question, while some existing algorithms ask too many
questions (e.g., [19, 31]) and some other algorithms (e.g.,
[4, 25, 41]) ask too difficult questions. Finally, we allow the
user to make unavoidable errors in interaction, which discards
the unrealistic error-free assumption made in some existing
studies. Even under the user error setting, we guarantee the
retrieval of the best point with a desired confidence level.

IV. TWO-DIMENSIONAL ALGORITHM

In this section we focus on the case where d = 2 and present
the 2-dimensional Robust Interactive (2RI) algorithm. We first
introduce some important concepts in Section IV-A. Then, in
Section IV-B, we show a useful checking scheme that will
be used in later algorithms. Finally, we show the details of
2RI in Section IV-C. The number of rounds used by 2RI is
asymptotically equal to the lower bound in Section II.

A. Preliminaries

In geometry, the convex hull of a dataset D, denoted by
CH(D), is the smallest convex set containing all points in D
[16]. A point p ∈ D is a vertex of CH(D) if p /∈ CH(D/{p}).
We use conv(D) to denote the set of vertices of CH(D). Let
bi denote the point with the i-th coordinate being 1 and all
other coordinates being 0. Also, denote B = {bi|1 ≤ i ≤ d}
and denote the origin as O. Consider the set D∪B ∪{O}. In
the remaining sections, when we say conv(D), we mean the
set of points that are both in D and in conv(D ∪ B ∪ {O}).
We assume that there are n points in conv(D), namely
p1, p2, . . . , pn, in a clockwise order. Consider the dataset D
in Table I and its corresponding conv(D) visualized in Figure
1. In this example, conv(D) = {p1, p2, p3, p4, p5}. In our
experiment, conv(D) is found using an existing algorithm
called Quickhull [2].

One important conclusion is that the best point must be
in conv(D) [40], and thus, we need only look at points in
conv(D). This is because for any p /∈ conv(D) and any utility
vector u, there must exist a point p∗ ∈ conv(D) s.t. u · p ≤
u · p∗. This conclusion can also be applied to any dimensions

Algorithm 1 Check(pi, pj , k)

1: select pi ← 0, select pj ← 0
2: while select pi < ⌈k/2⌉ and select pj < ⌈k/2⌉ do
3: display pair (pi, pj) to the user
4: if pi is chosen by the user then
5: select pi ← select pi + 1
6: else
7: select pj ← select pj + 1

8: return pi if (select pi ≥ ⌈k/2⌉) and pj otherwise.

d ≥ 2. In the rest of this paper, unless explicitly stated, we
will assume that the input to our algorithm is conv(D) and
we use n to denote the size of conv(D).

B. Checking Subroutine

Before introducing 2RI, we first introduce a checking sub-
routine (called Check(·, ·, ·)), which will be applied later in
our algorithms. Intuitively, since the preference indicated by
the user between two points, pi and pj , is incorrect with
probability at most θ, we need to devise a way of “checking”
to increase the confidence level of the results obtained. The
details of the subroutine, Check(·, ·, ·), are shown in Algorithm
1. In short, what it does is to check the relation between two
points, namely pi and pj , for at most k times, where k is a
user parameter, and return whether pi is more preferred to pj
based on the majority vote. k is set to an odd number to break
ties. In case that we want to avoid asking repetitive questions
involving same points, we could use common techniques in
the field of questionnaire reliability (formally called intra-
rater reliability [18, 32]). One example is that we could re-
scale the two points in each question by multiplying with a
random number between 0.95 and 1 so that these 2 new points
are shown to the user and look different from the 2 original
points, resulting in a question which looks different from
the original question. Another example is asking correlated
questions which look differently using statistical methods.

Corollary 1. Given a user error rate θ and a desired failure
probability α, the checking subroutine fails with probability at
most α by setting k = Θ( θ(1−θ)

(1−2θ)2 log(
1
α )).

Proof sketch. The checking subroutine fails when fewer than
half of the k answers are correct. We can approximate the
number of correct answers in all k answers by a Gaussian
distribution with mean µ = (1− θ)k and variance σ2 = θ(1−
θ)k. Let zα denote the α-quantile of N(0, 1) (i.e., P (X ≤
zα) = α), by solving

k
2−µ

σ ≤ zα, we obtain k ≥ 4θ(1−θ)
(1−2θ)2 z

2
α.

Since zα = Θ(
√

log( 1
α )), k = Θ( 4θ(1−θ)

(1−2θ)2 log(
1
α )).

A naive solution of the problem is then to apply this
checking subroutine for every question asked to ensure their
correctness. However, this solution incurs too many unneces-
sary questions. We seek ways of using this subroutine as few
as possible and only invoke this subroutine when necessary.
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C. 2RI

We are now ready to present our 2-d algorithm 2RI. The
input is a list of points {p1, . . . , pn}, sorted in a clockwise
order. For the ease of illustration, we label the points from
1 to n. Intuitively, algorithm 2RI performs a search on this
sorted list by initializing a search range on this sorted list,
denoted by [L,U ], where L and U are initialized to 1 and n,
updating variables L and U to shrink/expand the search range
based on the user’s interaction and returning the point in the
search range as an output when it contains only one element.

Before we describe algorithm 2RI, we need to describe 3
concepts. The first concept is an observation on the increasing-
and-decreasing trend of the utility values over the sorted list.

Observation 1. Given the utility vector u and n points
p1, p2, . . . , pn in conv(D) ordered in a clockwise direction.
Let ph be the point with the highest utility score, that is, ph =
argmaxp∈conv(D) u · p. Then ∀1 ≤ i < j ≤ h, u · pi < u · pj .
Besides, ∀h ≤ i < j ≤ n, u · pi > u · pj .

The second concept is the size of a search range. Given a
range R = [L,U ], we define the size of the range R, denoted
as m, to be m = U − L+ 1.

The third concept is related to the details of an operation to
be used in algorithm 2RI. This operation is the procedure of
how we could determine whether the desired point ph (which
is unknown and is to be found) is in the search range [L′, U ′]
where h ∈ [1, n], L′ ∈ [1, n] and U ′ ∈ [1, n]. Without loss of
generality, we show how to decide if the left boundary of the
search range is correct, that is, if L′ ≤ h. The case of the right
boundary is then symmetric. To test the left boundary, we can
simply check if pL′ is preferred to pL′−1 (If pL′−1 does not
exist, then the left boundary is trivially correct). According to
Observation 1, if pL′ is preferred, then we can conclude that
L′ ≤ h. Otherwise, the left boundary is wrong and we must
adjust L′. In conclusion, checking the left (right) boundary
requires to call the checking subroutine Check(pL′ , pL′−1, k)
(Check(pU ′ , pU ′+1, k).).

We are ready to describe algorithm 2RI. Initially, the search
range, denoted by [L,U ], is initialized such that variable L is
set to 1 and variable U is set to n. In the following, variables L
and U are updated during the execution of the algorithm which
needs interaction from the user. Specifically, we perform the
following iterative process until U = L (i.e., there is only one
element in the search range). When U = L, we return pL as
the output point of this algorithm.

Specifically, the interactive process involves a number of
iterations. Each iteration has the following two steps.
• Step 1 (Search Range Shrinking): We initialize variables
L′ and U ′ to be L and U , respectively. We initialize variable
m to be the size of the initial search range (i.e., U −L+1).
Due to the increasing-decreasing trend of the utility value as
shown in Observation 1, we could perform a binary search
on range R′ = [L′, U ′] by updating variables L′ and U ′ until
the size of the updated search range R′ = [L′, U ′] is at most
⌈2mθ⌉. The reason why we choose this maximum size as
⌈2mθ⌉ can be found in Lemma 1. Here, each step involved

in a binary search corresponds to the operation of asking
the user to select a more preferred point among the two
displayed points where these two points are pr and pr+1

where r = ⌊U
′+L′

2 ⌋. Depending on the user’s answer, by
Observation 1, the search range could be shrunk accordingly.
This technique is similar to [28, 40] and details could be
found therein. It is worth mentioning that we did not call
any checking routine described before in this step.

• Step 2 (Search Range Verification and Correction): It
performs the checking subroutine to verify if the desired
point ph is still inside range [L′, U ′] (i.e., R′). If yes, the
algorithm proceeds to the next iteration with the confirmed
range R′ by updating variable L to be L′ and variable U
to be U ′. However, if one of L′ and U ′ is not correct, we
need to perform some additional checking subroutine and
update variables L′ and U ′ accordingly. Note that either the
left boundary L′ or the right boundary U ′ is wrong, but
not both. Without loss of generality, we assume that L′ is
wrong (i.e., L′ > h). In the following, we want to update
the search range such that both the left boundary and the
right boundary of the updated search range are smaller than
L′. At the same time, we also try to keep the size of the
updated search range at most ⌈2mθ⌉ w.h.p.. There are two
cases where the first is a general case and the second is a
boundary case.
– Case (1) (i.e., L′−⌈2mθ⌉ > L) In this case, the algorithm

performs the checking subroutine again to decide whether
ph is inside range [L′−⌈2mθ⌉ , L′−1]. If this is the case,
it updates variable L′ to be L′ − ⌈2mθ⌉ and variable
U ′ to be L′ − 1, which essentially “shifts” the search
range to this new range (i.e., [L′−⌈2mθ⌉ , L′−1]). Note
that this new range also has size at most ⌈2mθ⌉ and is
exactly just on the left-hand-side of the original search
range over the sorted list. But, if ph is still not in this
range (i.e., h is smaller than L′ − ⌈2mθ⌉), the algorithm
updates variable L′ to be L (i.e., the initial content of L
just at the beginning of the iteration) and variable U ′ to
be L′ − ⌈2mθ⌉ − 1. Note that this new search range is
on the left-hand-side of the original search range over the
sorted list. In this case, it is possible that the size of this
new search range could be greater than ⌈2mθ⌉ but the
chance is low (which could be explained by Lemma 1).

– Case (2) (i.e., L′−⌈2mθ⌉ ≤ L) In this case, the algorithm
directly sets variable L′ to be L and variable U ′ to L′−1,
without performing any checking subroutine. Note that
this new range also has size at most ⌈2mθ⌉ and is exactly
just on the left-hand-side of the original search range over
the sorted list.

The case where U ′ is wrong (i.e., U ′ < h) can also be
addressed symmetrically. Finally, it sets variable L to be
L′, variable U to be U ′ and enters the next iteration.

Consider the running example as shown in Figure 1, where
the input is {p1, p2, p3, p4, p5}. Assume that ⌈2mθ⌉ = 2, L =
1 and U = 5, and by performing a binary search, we obtain
L′ = 4 and U ′ = 5. Clearly, the user made some error because
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ph (= p2 in this case) is not in the current search interval. By
checking pair (p3, p4), the algorithm finds out that ph is on
the left of L′ (i.e., h < 4), it then checks p1, p2 and since p2 is
more preferred to p1, the algorithm shifts the search interval
to [2, 3], and enters a new iteration.

Lemma 1 shows an important property of the distance
between the best point and the search range, which explains
where the term ⌈2mθ⌉ in our algorithm comes from. Before
presenting Lemma 1, we first introduce an important concept
called Dist(·, ·) that will be used later in this lemma. Given
a point p and a range R = [L,U ] where L (resp. U ) is the
left (resp. right) boundary of the range, we define the distance
between the point and the range, denoted by Dist(p,R), to
be 0 if p ∈ [L,U ], and min(|p− L| , |p− U |) if p /∈ [L,U ].

Lemma 1. We are given the range size m = U−L+1 and the
user error rate upper bound θ. Let R′ be the range obtained
by the binary search just after Step 1 of 2RI and ph be the
real best point. Then, P (Dist(ph, R

′) ≥ ⌈2mθ⌉) ≤ 1
mθ .

Proof sketch. We first prove that E[Dist(ph, R
′)] ≤ mθ.

Then, let Di denote the increase of Dist(ph, R
′) “caused”

by answering the i-th question (i.e., Dist(ph, R
′) =

∑
i Di)

and σ2
Di

the variance of Di. Since Dis are independent and
σ2
Di

= m
2i+1 θ(1 − θ), using Chebyshev ineqality yields the

lemma.

Based on Lemma 1, Theorem 2 presents the main results
on 2RI. Corollary 2 shows that 2RI is asymptotically optimal.

Theorem 2. Given an input size n, an error rate θ and a
failure probability δ, 2RI finds the best point with probability
at least 1 − δ using O( 1

log 1
2θ

(log n) log logn
δ ) rounds on

expectation.

Proof sketch. We first prove that, the expected number
of iterations is O(log 1

2θ
n). Since each iteration contains

O(log 1
2θ + k) rounds, the total number of rounds required

is O(log n + k log 1
2θ

n) with total success probability at
least 1 − O(Pk log 1

2θ
n), where Pk is the probability that a

checking subroutine using k questions fails. Given Pk, the
corresponding k can be found using Corollary 1. Setting
δ = O(Pk log 1

2θ
n) yields the theorem.

Corollary 2. 2RI is asymptotically optimal.

Proof. Since θ is fixed, the time complexity of 2RI is asymp-
totically equal to the lower bound in Theorem 1.

V. MULTI-DIMENSIONAL ALGORITHM

Although the previous algorithm works well when d = 2,
it cannot be adapted to a higher dimensional situation due to
the change of nature of the convex hull in high dimensions.
A possible way of adapting it to a high-dimensional space is
to follow the idea presented in [28] and estimate the utility
value of each dimension one by one using artificial points.
This adaption, however, will be ineffective in a high dimension
space since it cannot determine if the estimation on the utility
value of each dimension is accurate enough, resulting in

asking unnecessary questions. In this section, we present two
algorithms, namely Verify-Point and Verify-Space, that can be
applied to databases with the dimensionality d ≥ 2. Both
algorithms enjoy provable theoretical guarantee in terms of
the success probability of best point retrieval and the number
of questions required (also called the round complexity), and
differ in a sense that Verify-Space is less dependent on the
distribution of data. Both algorithms follow a 2-phase frame-
work, and their first phase are similar. Therefore, we arrange
the following sections as follows. We first introduce some
preliminaries and the general algorithm framework in Section
V-A, and then introduce the first phase, called Conjecture
Phase, of the two algorithms in Section V-B. We then describe
the second phase, called Verification Phase, of Verify-Point and
Verify-Space in Section V-C1 and V-C2 respectively.

A. Preliminaries

Recall that in a d-dimensional database, the utility vector u
is a d-dimensional non-negative real vector and

∑d
i=1 u[i] = 1.

Therefore, the collection of all possible utility vectors, called
the utility space [16] and denoted as R0, is a (d − 1)-
dimensional polytope. For example, as shown in Figure 2, in
a 3-dimensional dataset, the utility space is a triangle with
vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).

For any two points, namely pi and pj , in conv(D), we
can construct a hyperplane hi,j that passes through the origin
with normal pi − pj . hi,j intersects the utility space and
divides it into two halfspaces [16]. The halfspace above
(resp. below) hi,j is denoted as h+

i,j (resp. h−
i,j), and contains

all the utility vectors that ranks pi higher (resp. lower) than pj ,
or equivalently, u·pi > u·pj (resp. u·pi < u·pj) where u is the
utility vector. When the user chooses from the two displayed
points, namely pi and pj , s/he will indicate in which halfspace
her/his utility vector lies. For the ease of illustration, we use
si,j to denote the halfspace chosen by the user that is bounded
by hi,j . Note that based on the user’s preference between pi
and pj , si,j may be either h+

i,j or h−
i,j . We also denote the

counterpart of si,j as s−i,j .
For a convex polytope P , we denote the set of its vertices

by VP . The utility range R [40], which is defined to be the
convex region that contains the true utility vector u, can be
determined as follows. Initially, R is the entire utility space
(i.e., R0). When a new halfspace (e.g., si,j) is provided by
the user’s answer to the comparison between pi and pj , it
means that u ∈ si,j so we update R to R ∩ si,j . Since R
can be represented by the intersection of halfspaces, it is a
convex polytope. Many existing studies [19, 37, 40] applied
this framework and strategically choose the pair of points to
reduce the number of questions asked. However, since in our
problem setting, each halfspace has probability at most θ to
be wrong, the utility range found by these algorithms may
deviate from the real utility vector and their performance will
degenerate when a user makes mistakes. To alleviate the effect
of user errors, we present two algorithms that have higher
error-tolerance.
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Fig. 3: Illustration on the con-
cept of partitions

Fig. 4: An example on
Verify-Space

The general framework of the algorithms works as follows.
It runs for several iterations and each iteration consists of
two phases, namely Phase 1, called Conjecture Phase, and
Phase 2, called Verification Phase. The input to Conjecture
Phase is a utility range R′ indicating a convex region where
the utility vector u lies, and a set C ′ storing some possible
best points. The goal of Conjecture Phase is to “pretend” that
there is no user error and interact with the user for several
rounds until some best point candidate pc ∈ C ′ is found.
During the execution of Conjecture Phase, we also maintain
a set S storing all halfspaces indicated by the user. Later, in
Verification Phase, we will selectively check the correctness
of some halfspaces in S so that if pc is not the real best point,
we will still have a chance to remedy the mistake. If all the
decisions made in Conjecture Phase and Verification Phase are
correct, then we can conclude that pc is the best point with
high confidence. However, if some questions in Conjecture
Phase are answered incorrectly, we may “waste” some rounds
and focus on the wrong region of the utility space that does
not contain the utility vector u. As a consequence, more than
one point can still be the best point and at least one additional
iteration is needed. In this case, with the shrunken size of
the set of points under consideration, the algorithm returns
to Conjecture Phase. It alternates between Conjecture Phase
and Verification Phase until only one point remains under
consideration. This point is returned as the final answer.
B. Conjecture Phase

Given a utility range R′ indicating a convex region where
the utility vector u lies, and a set C ′ containing some possible
best points, the purpose of Conjecture Phase is to locate the
user’s best point candidate with the least number of rounds,
without considering possible interaction errors. Note that since
the only information required by Verification Phase from
Conjecture Phase is the user’s answer on each question, or
in other words, the set S containing all halfspaces indicated
by the user, the design of Conjecture Phase is quite flexi-
ble. In general, it could be any comparison-based interactive
algorithms considering no user errors. Here, we adapt from
the algorithm HD-PI [37] since it uses the least number of
questions empirically to find the best point candidate.

At the beginning of Conjecture Phase, S is initialized to an
empty set. In each round of Conjecture Phase, the algorithm
selects a pair of points, namely pi and pj , and asks the user
to choose the preferred point. The user’s answer indicates the
halfspace si,j where the utility vector lies, so the algorithm
updates R′ to R′ ∩ si,j and inserts si,j into S. It is worth
mentioning that when the user makes an error, u will not lie
in si,j . However, in Conjecture Phase, the algorithm “pretend”

that the user has no error, and the potential error will be
handled later by Verification Phase. After Conjecture Phase
ends, the set S is passed to Verification Phase.

The round complexity of Conjecture Phase varies from
different implementations. Here, we denote the complexity of
Conjecture Phase as O(conj). For example, when we adopt
UH-Simplex [40] in Conjecture Phase, the round complexity
is O(degmax

d
√
n) where degmax is the maximum number

of neighboring vertices for a vertex in conv(D). When we
adopt HD-PI [37] in Conjecture Phase, O(conj) varies from
O(log n′) to O(n′) depending on the data distribution, where
n′ is the size of set C ′. In our experiment, we adopt HD-PI
in Conjecture Phase since it has the lowest round complexity
though it has a linear complexity in the worst case.
C. Verification Phase

When there is no user error, pc found in Conjecture Phase
would be the true best point. However, since the user may
make mistakes, the result from Conjecture Phase may no
longer be the true best point. Therefore, Verification Phase is
applied to make sure that the true best point is not pruned for
further consideration with high probability. In the following 2
sections, we introduce Verification Phases of Verify-Point and
Verify-Space respectively, where the pruning process in Verify-
Point is performed mainly based on points in the dataset but
that in Verify-Space is mainly based on the search space being
considered.

1) Verification Phase of Verify-Point: During Conjecture
Phase, the set of halfspaces selected by the user is stored
in set S. Observe that for each halfspace s ∈ S, s contains
the utility vector u with probability at least 1 − θ and its
counterpart s− contains u with probability at most θ (since a
user makes a mistake with probability at most θ). Based on this
observation, it would be more efficient to verify the correctness
of those halfspaces that are expected to help eliminate many
points from further consideration. Therefore, we develop the
algorithm called Verify-Point.

Before we present Verify-Point, we first introduce some
preliminaries and data structures that will be used in this
algorithm. Recall that the input of Verify-Point is conv(D).
For each point pi ∈ conv(D), we define its best partition Pi,
or partition for short, as Pi = {u|pi = argmaxp∈D u · p},
which corresponds to the region in the utility space where
pi is the max-utility point. In another perspective, pi being
the max-utility point means that it ranks higher than any
other point. Therefore, Pi is also equal to the intersec-
tion of a set of halfspaces and the utility space R0, i.e.,
(
⋂

pj∈conv(D)/{pi} h
+
i,j) ∩R0, which is a (d− 1)-dimensional

convex polytope. Given a partition P and a hyperplane hi,j ,
there are 3 cases: (1) P is in h+

i,j , (2) P is in h−
i,j and (3)

P intersects hi,j . For example, as shown in Figure 3, (1) P1

is in h+
1,2, (2) P2 and P3 are in h−

1,2, and (3) both P4 and
P5 (marked with shaded regions) intersect h+

1,2. Suppose that
the true utility vector is verified to lie in halfspace si,j and
this could be done in Verification Phase (to be described later)
w.h.p.. If a partition Pi is disjoint from this verified halfspace
si,j , we can safely prune pi from further consideration because
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for any u ∈ R, there is always some point pj that ranks higher
than pi. To find the relation between P and the hyperplane
hi,j , it is sufficient to check P ’s vertices with hi,j in O(|VP |)
time, where VP is the set of vertices of a convex polytope P .

In Verification Phase of Verify-Point, given a set S of
halfspaces returned from Conjecture Phase, we want to find the
“best” halfspace that is expected to help eliminate the largest
fraction of partitions and their corresponding points from
further consideration, so that we can minimize the number
of questions. To efficiently find this halfspace, we maintain
a table L, where each row records the relation between a
hyperplane hi,j and a set X of all partitions that are intersected
or contained by the utility range R. Specifically, L consists of
3 columns, which are named (1) h+

i,j , which stores a set of all
partitions in X that are entirely in h+

i,j , (2) h−
i,j , which stores

a set of all partitions in X that are entirely in h−
i,j , and (3)

intersects, which stores a set of all partitions in X that intersect
with hi,j . An example of L corresponding to Figure 3 is shown
in Table III. By maintaining table L, we can efficiently find
the best halfspace using a concept called Num(·). Specifically,
given a halfspace s, we define Num(s) to be the number of
partitions that lie entirely outside s. For example, from Table
III, we could compute Num(h+

2,5) = 2 since there are two
partitions that are completely outside halfspace h+

2,5 (because
P3 and P5 are in h−

2,5). As described before, we want to
find the best halfspace that is expected to prune the largest
number of partitions. Thus, the best halfspace is defined to be
the halfspace in S with the greatest value of Num(·) (i.e.,
argmaxs∈S Num(s)).

We are now ready to introduce Verify-Point which involves
two steps. The first step is the initialization step. Initially, we
set the utility range R to be the entire utility space R0 and
the set C containing all possible best points to be conv(D).
We also set L to record the relation between the set of
all hyperplanes {hi,j |pi, pj ∈ conv(D)} and the set of all
partitions {Pi|pi ∈ conv(D)}. The second step is the iterative
step which involves a number of iterations where at each
iteration, Conjecture Phase is first performed and Verification
is then performed until some stopping conditions are satisfied.
Thus, Conjecture Phase and Verification Phase is performed
in an interleaving way for this iterative step.

• Conjecture Phase: We create variable R′ and variable C ′,
denoting the current content of the utility range R and the
current content of set C, respectively, just before Conjecture
Phase is performed. The intuition of why we maintain
these copies can be understood as follows. In Conjecture
Phase, R′ and C ′ is updated based on “conjectures” (which
could be regarded as the information which has a lower
confidence) according to the steps described in Section V-B
(which includes how to update S, initialized to an empty
set each time we re-perform Conjecture Phase). It is worth
mentioning that variable R, variable C and variable L
does not change in Conjecture Phase. But, they will be
updated in the next Verification Phase based on “verified”
information, and thus, these data structures are correct with

high confidence.
• Verification Phase: Verification Phase runs for several

rounds.
– In each round, it selects the best halfspace in S and

verifies with the user using the checking subroutine
developed in Section IV-B. Formally, we select si,j =
argmaxs∈S Num(s) and then perform Check(pi, pj , k)
for checking. Based on the checking result, the correct
halfspace may be h+

i,j or its counterpart h−
i,j . For the

ease of illustration, assume that h+
i,j is correct. We then

update the data structures R, C, S and L as follows: (1)
update the utility range R to R ∩ h+

i,j ; (2) update the
set S of halfspaces: remove si,j from S; then, for each
halfspace s ∈ S, if R is contained completely in s, or if
R is completely outside s (which may happen due to user
errors), remove s from S because no useful information
can be obtained from s (because the question generated
from s cannot help us further reduce the size of R); (3)
for each partition Pl in h−

i,j , we delete Pl from all rows of
L and remove the corresponding point pl from the set C;
(4) for each partition Pl which intersects h+

i,j , we update
Pl to Pl∩h+

i,j , and update each row in L (corresponding to
a hyperplane) by recomputing the relation of the updated
Pl with the hyperplane; and (5) for each row in L and its
corresponding hyperplane h, if R lies completely on one
side of h (i.e., h+ or h−), we remove this row from L
because we already know that all remaining partitions in
R lies on one side of h (i.e., h+ or h−), so maintaining the
relationship between h and partitions is no longer needed.
One can verify that after the above steps, the updated table
L correctly stores the relations between hyperplanes and
partitions within the updated utility range.

– Verification Phase keeps selecting the next halfspace for
checking until (1) there is only 1 point left in C, which
is returned as the final best point, or (2) after running for
at least 1 round, all halfspaces s ∈ S cannot prune at
least β1 portion of the remaining partitions in R, where
β1 is a non-negative real number and a user parameter.
When the first stopping condition is satisfied, we could
terminate the whole algorithm (since we find the answer
already). When the second stopping condition is satisfied,
we need to enter the next iteration and re-set variable S
to an empty set.

Consider the example in Figure 3. The utility range R is
the outer triangle and the partitions are polygons bounded by
solid lines. The corresponding set C containing possible best
points is {p1, p2, p3, p4, p5} and table L is shown in Table
III. Assume that the algorithm enters Verification Phase with
S = {h+

2,5, h
+
1,4, h

+
2,4}. Verification Phase chooses to check

h+
2,5 first, because Num(h+

2,5) is the largest (i.e., 2 in this
case). Assume that after the user is checked via the checking
subroutine, h+

2,5 is verified to be correct. Then, the algorithm
will update the utility range R to R∩ h+

2,5, remove p3 and p5
from C (since P3 and P5 are in h−

2,5) and remove h+
2,5 from

S. The updated L is shown in Table IV.
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It is shown in [9] that given the input size n, the error
rate θ and a failure probability δ, Verify-Point returns the best
point with probability at least 1−δ, using an expected number
of O( c

1−θ log n(conj + log log n + log 1
δ )) rounds where c

is a data-dependent parameter denoting the pruning power
(whose value is studied in Section VI-A) and conj is the round
complexity of Conjecture Phase. The processing time of each
round in Verification Phase is O(n3 + n2d |V |), where |V | is
the maximum number of vertices of all polytopes processed
in Verification Phase.

It is worth mentioning that |V | is not large in our typical
setting. Note that |V | = O(m⌊

d
2 ⌋) [36] where m is the largest

number of halfspaces bounding a polytope. Typically, m is
small (i.e., m << n) although m = O(n) in the worst case.
In our experiment, when d = 5 and n = 10, 000, we have
m < 100. Besides, following [27, 37, 40], due to the limited
number of attributes for user’s decision making, d is not large
too (usually, d is at most 7).

2) Verification Phase of Verify-Space: Our second algo-
rithm, Verify-Space, is closely related to Verify-Point: Its
Verification Phase also runs for several rounds and in each
round, it selects the best halfspace in S for checking (i.e.,
calling the checking subroutine), where S stores all halfspaces
indicated by the user in Conjecture Phase. However, the key
difference is that instead of finding the halfspace that prunes
the largest number of partitions, Verify-Space directly finds
the halfspace that prunes the largest space of utility range R,
which makes it less data-dependent.

Verify-Space shares the same structure with Verify-Point.
The main difference is that in Verify-Space, whenever we want
to decide the next halfspace for checking, we find the halfspace
s ∈ S that is expected to remove the largest space of the utility
space (i.e., the halfspace s ∈ S that minimizes the resulting
utility space R). To find this “best” halfspace, one major step is
to compute the volume of the polytope formed by intersecting
the halfspace s with the current utility range R (i.e., s∩R). Let
vol(P ) denote the volume of a (d− 1)-dimensional polytope
P . Our task is to find si,j = argmins∈S vol(s∩R). However,
computing the volume of a polytope in a high-dimensional
space is time-consuming. There are several approximation
algorithms that can estimate the volume of polytope, but to
the best of our knowledge, even the fastest algorithm among
them [7] takes O(d3) time , which is very time-consuming if
we compute the volume of s∩R for each s ∈ S. Fortunately,
what we really want is to minimize the ratio between the new
utility range and the old one (i.e., vol(s∩R)

vol(R) ), and thus, it is not
necessary to compute the exact volume. Therefore, we apply a
random sampling technique called Billiard Walk [8] to sample
a number of points in R and use the sampled points to compute
this ratio. Each point can be sampled within O(|S| d) time
[7]. Lemma 2 shows that sampling a small number of points
suffices to compute all ratios with high accuracy.

Lemma 2. Let R ⊆ Rd be the utility range. Let T be a set of
points randomly sampled from R. Then, given a non-negative
real number ρ ∈ [0, 1] and a non-negative real number ε,

if sample size |T | = O( 1
ε2 (log

1
ρ + d)), then with probability

1−ρ, for any halfspace s ⊆ Rd, vol(s∩R)
vol(R) −

|{t∈T |t∈s∩R}|
|{t∈T |t∈R}| ≤ ε.

The above lemma is derived directly from Theorem 5 in
[23]. In order to make the relative errors of all intersections
smaller than ε, we need only to sample |T | = O( 1

ε2 (log
|S|
ρ +

d)) points. The failing probability can be easily proved to be
less than ρ using the union bound. As a convention, in our
experiments, we set ρ = 0.1.

To illustrate Verification Phase of Verify-Space, consider the
example shown in Figure 4. Assume that now the utility range
is R and after Conjecture Phase, we record S = {s1, s2, s3}
from the user. After sampling, the algorithm first chooses to
verify s2 because it has the smallest intersection with R. If
the user confirms that s2 is correct, then the utility range is
updated to s2 ∩R, and s2 is removed from S. The algorithm
then continues to select from S the next halfspace that has the
smallest intersection with s2 ∩R.

It is shown in [9] that given the input size n, the error rate θ
and a failure probability δ, Verify-Space returns the best point
with probability at least 1 − δ, using an expected number of
O( d

1−2θ log n(conj+log log n+log 1
δ )) rounds, where d is the

dimensionality and conj is the round complexity of Conjecture
Phase. The processing time of each round in Verification Phase
is O(n3 + n2d |V |), where |V | is the maximum number of
vertices of all polytopes processed in Verification Phase.

VI. EXPERIMENT

We conducted experiments on a computer with 1.80 GHz
CPU and 12 GB RAM. All programs were implemented in
C/C++. The source code and the datasets used could be found
in https://github.com/qixuchen/Robust Interact.

Datasets. The experiments were conducted on synthetic
and real datasets that are used in [28, 37, 40]. Specifically,
we generated anti-correlated datasets by a dataset generator
developed for skyline operators [6].

Besides, we used 4 real datasets, namely GasSensor [13],
AirQuality [12], Weather [15] and HTRU [14]. GasSensor
contains 928,991 two-dimensional points. AirQuality includes
420,478 tuples described by 4 attributes. Weather is a 6-d
dataset consisting of 96,483 weather records. HTRU involves
7 attributes and contains 17,898 points. Each dimension is
normalized into range [0, 1]. Following the existing studies
[37, 40], we preprocessed all the datasets to contain only
the skyline points (which are all the possible best points for
any utility function), since we are only interested in the best
point. As can be found in [9], this preprocessing step does not
unfairly favor our algorithms. The skyline sizes of synthetic
datasets with size 100,000 and d = 2, 3, 4, and 5 are 35,
578, 3780 and 11439, respectively. The skyline sizes of real
datasets GasSensor, AirQuality, Weather and HTRU are 2074,
3948, 2110 and 11720, respectively.

Algorithms. We evaluated our 2-d algorithm: 2RI and
two multi-dimensional algorithms: Verify-Space and Verify-
Point. The competitor algorithms are: Median [40], Hull [40],
2D-PI [37], Active-Ranking [19], Preference-Learning [31],
UtilityApprox [28], UH-Simplex [40], HD-PI [37] and RH
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[37]. Since some of them cannot return the best point directly,
when comparing them with our algorithms, we made the
following adaptions.

(1) Algorithms Median, Hull and 2D-PI are designed for 2
dimensional tasks. Median and Hull already aim at returning
the user’s best point so they are left unchanged. 2D-PI returns
one of top-l points where l is a user parameter, so we set l
to 1 such that it returns the best point. (2) Algorithm Active-
ranking aims at learning the entire ranking of all points by
interacting with the user. We return the best point after the
full ranking is determined. (3) Algorithm Preference-learning
focuses on learning the utility vector of the user. According
to the experimental result in [31], the utility vector learnt is
very close to the theoretical optimum if the error threshold
ϵ of the learnt utility vector is set to a value below 10−5

(e.g., 10−6). In our experiment, we set ϵ to 10−6 (since the
learnt utility vector could achieve the optimum), and return
the best points w.r.t. the learnt utility vector. (4) Algorithm
UtilityApprox and UH-Simplex focus on reducing the regret
ratio below a given threshold ϵ. Following [37], we set ϵ =
1 − f(p2)/f(p1), where p1 and p2 are the top-1 and top-2
points w.r.t. the user’s utility vector, respectively. In this way,
if no user error is made, the returned point is guaranteed to be
the best point. (5) Algorithms HD-PI and RH, similar to the
2-d algorithm 2DPI, aim at returning one of the top-l points.
We make them return the best point by setting l = 1.

Parameter Setting. We evaluate the performance of each
algorithm by varying different parameters: (1) the dataset size
N ; (2) the dimensionality d, (3) the user error rate upper
bound θ, (4) the stopping threshold β1 in Verify-Point and
β2 in Verify-Space, (5) the variable ε in Lemma 2, and (6)
the parameter k in the checking subroutine. Unless stated
explicitly, for each synthetic dataset, we set N = 100, 000
and d = 4. We set θ = 0.05, which is a reasonable error rate
upper bound according to the human reliability assessment
data in [21]. According to the results in Section VI-A, we set
the default value of β1 = 0.2, β2 = 0.2, k = 3 and ε = 0.1.

Performance Measurement. We evaluate the performance
of each algorithm with the following measurements: (1) Ac-
curacy which is the probability of retrieving the best point.
Formally, we define the accuracy to be Nc

Ne
where Ne is the

total number of experiments and Nc is the number of times
the best point is returned. (2) Number of questions required to
return the result, and (3) Execution time which is the average
processing time to determine the question asked in each round.
For each setting, we repeat the algorithm 100 times and the
average value is reported.

In Section VI-A, we study different configurations of our
algorithms. The performance of all algorithms on synthetic
and real datasets are discussed in Section VI-B and VI-C,
respectively. We conducted a user study with user errors in
Section VI-D. We summarize the experiments in Section VI-E.

A. Study on Configuration of Our Algorithms
In this section, we study the effect of different settings of

parameters β1, β2, ε and k on our algorithms 2RI, Verify-Point

and Verify-Space. We also study the empirical value of param-
eter c in Section V-C. We briefly describe the experiments and
results here and the related figures are included in [9] for the
sake of space.

We studied the effect of ε by varying ε between 0.05 and
0.25. We observe no significant change in the number of
questions and the accuracies. But, when ε > 0.15, the standard
deviation of the number of questions increases, and when
ε < 0.1 the average processing time increases. We eventually
decided to set ε = 0.1.

We studied the effect of β1 on Verify-Point and β2 on Verify-
Space by varying them from 0 to 0.5. Changing β does not
have obvious impact on the accuracy, but both algorithms use
the least number of rounds when β1 = β2 = 0.2. Therefore,
in the rest of our experiments, we set β1 = β2 = 0.2.

We evaluated the effect of different choices of k on 2RI
(on 2-d synthetic dataset), Verify-Point and Verify-Space (on
4-d synthetic dataset). We chose k = 3 for later experiments
because it asks a small number of questions while achieving
a satisfactory level of accuracy (i.e., 90%).

We studied on the empirical value of c in Section V-C. For
all the datasets we tested, the value of c never exceeds 3.
Therefore, c can be regarded as a small constant.

B. Performance on Synthetic Datasets

We compared our 2-d algorithm 2RI against 2DPI, Median
and Hull on a 2-d synthetic dataset. For completeness, we also
record the performance of all d-dimensional algorithms. Figure
5 presents the performance of all the algorithms when N varies
from 100 to 1,000,000. According to Figure 5 (c), all algo-
rithms determine the next question to be asked within 10−2

second and their execution times do not increase significantly
when the input size grows. As shown in Figure 5 (b), 2RI
achieves the highest accuracy among all the algorithms under
all settings, and finishes within only 5-6 questions as shown
in Figure 5 (a). On the other hand, 2DPI, Median and Hull
cannot efficiently handle user errors and their accuracies is at
least 10 percentage lower than 2RI. It is worth mentioning that
a lower accuracy could lead to unforgettable and unchangeable
consequences as described in Section I.

In Figure 6, we evaluated the performance of our algo-
rithms Verify-Point and Verify-Space against other existing d-
dimensional algorithms on 4-d synthetic datasets. The num-
ber of questions required by Verify-Point and Verify-Space
gradually increases along with the input size. We observe
that our algorithms are the most accurate on finding the best
point, and their accuracies decrease with the slowest rate along
with the increase in the input size. Algorithm UtilityApprox
has the highest accuracy among the remaining algorithms,
but, it is still 10% lower than ours and it asks around 10
more questions. HD-PI and UH-Simplex ask slightly fewer
questions than our algorithms. But, their accuracies are more
than 10 percent and 30 percent lower than ours, respectively.
Algorithm Active-Ranking aims at learning the entire ranking
and algorithm Preference-Learning aims at learning the user’s
utility vector. Therefore, although they claim that they can
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Fig. 5: Effect of input size on 2d dataset Fig. 6: Effect of input size on 4d dataset
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Fig. 7: Effect of θ Fig. 8: Effect of d

handle user errors, their performance is poor in terms of both
the number of questions asked and the accuracy. According to
Figure 6 (c), for all algorithms, the running time on deciding
the next question to be asked increase along with the input
size. But, Verify-Point and Verify-Space finish within 1 second
on 1M datasets, which is acceptable for real-time interaction.

We studied the effect of different values of the user error
rate θ on d-dimensional algorithms. Figure 7 shows the result.
When θ grows, the degeneration of accuracy can be observed
on all the algorithms. However, the performance of Verify-
Point and Verify-Space degenerates at the slowest rate and
their accuracies remain the highest for all settings of θ. In
particular, when θ is high (i.e., 0.15), our algorithms can
still reach 70% accuracy while all other algorithms are lower
than 50%. We notice that the number of questions asked
by Verify-Point and Verify-Space gradually increases when θ
increases, which can be attributed to the extra checking rounds
required to resolve conflicts caused by extra user errors. The
number of questions grows in a slow rate and both algorithms
finish within 30 questions even if the error rate is high
(i.e., 0.15). Figure 8 presents our experiment on evaluating
the scalability on the dimensionality d. Compared with the
existing algorithms, Verify-Point and Verify-Space constantly
achieve higher accuracies for all dimensional settings, and the
gap gets even larger when d increases. Meanwhile, the number
of questions asked by our algorithms grows only by 6-7
questions for each dimensionality increase. As for the running
time, all algorithms require more time when the dimensionality
is larger. However, for d = 5, our algorithms still finish within
several seconds, which is an acceptable interactive speed.

We studied the P95, median and accumulated processing
times of algorithms (in addition to the average time). Firstly,
we observe that no matter what measurements we used (i.e.,
P95, median and average time costs), 2RI runs within mi-
croseconds, and at least 95% questions in Verify-Point and
Verify-Space can be determined in 1-2 seconds, which proves
that our proposed algorithms run in an interactive speed.
Secondly, Verify-Point and Verify-Space have the accumulated
processing time at most 6 seconds but the average processing
time per round is less than 0.3 seconds. Detailed results could
be found in Section B3 of our technical report [9].
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Fig. 9: Results on dataset Weather

Furthermore, we experimented on how different preferences
(i.e., the weight on different dimensions may vary for distinct
users) affect the performance of algorithms. We observe that
the superiority of Verify-Point and Verify-Space is consistent
in different preference settings since they achieve the highest
accuracy among all competitors in all cases. Detailed results
could be found in Section B4 of our technical report [9].

C. Performance on Real Datasets
We conducted experiments on 4 real datasets, namely

GasSensor, AirQuality, Weather and HTRU. For four 2-d
algorithms 2RI, 2DPI, Median and Hull, their performance on
the 2-d dataset GasSensor is reported. For completeness, the
performance of all d-dimensional approaches are also reported.
Among all 2-d algorithms, 2RI requires less than 5 questions,
and obtains the highest accuracy which is around 98%. Other
competitors take 1-2 less questions compared with 2RI, but
their accuracies are much lower. Specifically, the accuracies of
2DPI, Median and Hull are 90%, 90% and 86%, respectively.
Detailed experimental results can be found in [9].

For d-dimensional algorithms, we studied their performance
on all 4 datasets. Due to the lack of space, we only show
the results on Weather in Figure 9. The performance on
GasSensor, AirQuality, and HTRU can be found in [9]. Verify-
Point and Verify-Space obtain the highest accuracy using a
small number of questions on all datasets, which is consistent
with their performance on synthetic datasets.
D. User Study

To see the impact of user errors and how our algorithms can
help improve the quality of the returned point, we conducted
a user study on the Car dataset [37], which consists of 68,005
used cars. Following the same settings in [31, 37, 40], we
randomly selected 1000 candidate cars from the database and
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each record is described by 4 attributes, namely price, year
of purchase, power and used kilometers. We compared our
algorithms Verify-Point and Verify-Space against 4 existing
algorithms, namely HD-PI, UH-Simplex, Preference-learning
and Active-Ranking. For each algorithm, the users were asked
to select the preferred car from a pair of cars for several rounds
until a car is returned. 25 participants were recruited and their
average results were reported. Since we cannot directly obtain
the user’s utility vector, UH-Simplex and Preference-Learning
were re-adapted (different from the way described previously):
(1) Algorithm Preference-Learning maintains an estimated
user’s utility vector u during the interaction. We compared
the user’s answers of some randomly selected questions with
the prediction w.r.t. u. If 75% questions [31] can be correctly
predicted, we stop and return the best point w.r.t. u. (2) For
UH-Simplex, we set the threshold ϵ = 0, which guarantees
that the returned car is the best point in the algorithm’s view.

Each algorithm was measured via the following metrics:
(1) the number of questions asked; and (2) the dissatisfactory
level, which is an integer score ranging from 0 to 10 given by
each participant. It indicates how dissatisfied the participant
feels about the returned car, where 0 indicates the least
dissatisfied and 10 the most dissatisfied.

We also measured how frequently user errors occur during
interactions. Since we cannot directly verify the correctness of
each answer, we created a new version of Verify-Point, called
Verify-Point-Adapt, and changed the checking subroutine as
follows: Instead of stopping immediately once the majority is
determined, it always checks a pair of points for exactly k
times before returning the answer. Modified in this way, let
nc denote the number of checking subroutines invoked, and
denote wi the number of questions asked and mi the number of
majority answers of the user in the i-th checking, 1−

∑nc
i=1 mi∑nc
i=1 wi

will be an unbiased estimator of the user error rate. Among
all the 220 checking questions asked by Verify-Point-Adapt,
users made 10 errors, yielding an overall error rate of 4.5%.

In the experiment, we observe that Verify-Point and Verify-
Space obtain the lowest dissatisfaction score, which is slightly
above 1 (out of 10). On the other hand, the dissatisfaction
scores of all other competitors are at least 3. As for the
number of questions asked, HD-PI and UH-Simplex use the
least number of rounds which is around 8. Verify-Point and
Verify-Space also finish with slightly over 10 rounds. On the
other hand, Active-Ranking and Preference-Learning require
a lot more rounds. They use on average 23 and 32 rounds,
respectively. The related figures can be found in [9].

In Figure 10 (a) and (b), we compared the user’s pref-
erence on the recommendations of our algorithms Verify-
Point and Verify-Space, respectively, against HD-PI, UH-
Simplex, Preference-Learning and Active-Ranking. Specifi-
cally, for each user, if the dissatisfaction score of algorithm A
is lower than algorithm B, then the recommendation of A is
better than B. For example, in Figure 10 (a), when Verify-Point
is compared with HD-PI, 12 users favor the car recommended
by Verify-Point, while only 4 think the recommendation of

����!����
���������

	���

�	�������#

�����$������

����

�
�
��
��
��
��

��
��
� 
��
��

�����$�������"���
����"���

����!�����
���������

	���

�	�������#

�����$������

����

�
�
��
��
��
��

��
��
� 
��
��

�����$�������"���
����"���

(a) Verify-Point (b) Verify-Space
Fig. 10: User study comparing whether Verify-
Point/Verify-Space is better than each of the competitors

HD-PI is more preferred. Overall, the recommendation made
by our algorithms are much more preferred than the existing
algorithms. On the other hand, there is no significant gap
between the performance of Verify-Point and Verify-Space.

E. Summary
The experiments demonstrated the superiority of our 2-d

algorithm 2RI and our d-dimensional algorithms, Verify-Point
and Verify-Space, over the existing approaches: (1) we are
efficient and effective. We achieve nearly 100% accuracy in
most experiments within a small number of rounds. In partic-
ular, for all 2-d experiments, 2RI consistently outperforms all
other algorithms and obtains an accuracy close to 100% even
when the input size is large (e.g., 1,000,000). In d-dimensional
experiments, Verify-Point and Verify-Space maintain the high-
est accuracy among all competitors. (2) The scalability of
Verify-Point and Verify-Space is demonstrated. Specifically,
they are scalable to the input size and the dimensionality. For
example, on the 7-d dataset Diamond, our algorithms obtain
over 90% accuracies using only slightly over 20 questions,
while UtilitApprox, Preference-Learning and Active-Ranking
are significantly lower than ours using over 50 questions.
(3) Our algorithms are capable to handling many user errors.
When the user error rate is very large (e.g., 0.15), only our
algorithms can keep the accuracies above 70%, while all other
algorithms drop under 50%.

VII. CONCLUSION

In this paper, we propose a more robust interactive model
that returns the best point in dataset under the setting of
random errors. Our model is more practical than existing
algorithms in a sense that ours can return the best point
with high confidence even if the user makes mistake when
interacting with the system. Specifically, we propose a 2-d
algorithm that is asymptotically optimal in terms of the number
of rounds required and two multi-dimensional algorithms with
provable guarantee and superior empirical performance. We
conducted extensive experiments to show that our algorithms
is both efficient and effective in determining the best point
facing user errors compared with existing algorithms. In the
future, we consider the case where user makes persistent errors
when answering questions.
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