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Abstract—Public transport contributes significantly to address-
ing some city issues such as air pollution and traffic congestion.
As the public transport demand changes in urban development,
we need to plan new routes to match the demand. Existing
methods of planning new bus routes either are inefficient in
using the path’s cost or use other inaccurate cost measurements.
This paper focuses on finding a new bus route efficiently on
road networks. Specifically, we first propose the Bus Routing
on Roads (BRR) problem which combines two common goals of
minimizing the walking costs of passengers and maximizing the
connectivity of the new route to the existing transit network. They
are consistent with matching the demand and facilitating the
transfer. We first show the NP-hardness of the BRR and design
an approximation algorithm called Efficient Bus Routing on
Roads (EBRR). We theoretically analyzed its approximation ratio
and time complexity. Extensive evaluations with state-of-the-art
solutions on three real-world datasets validate the effectiveness
and efficiency of EBRR. It could recommend a new bus route with
high quality in around 10 seconds, 60x faster than the baselines.

I. INTRODUCTION

Public transport, as an alternative to traveling by private
vehicles, brings many societal and environmental benefits
through ride-sharing. These benefits may include improving
road congestion, providing economic opportunities, or reduc-
ing air pollution. To promote the use of public transport,
a transit network (connected by all bus routes in a city)
should suit as much demand as possible. However, as cities
are constantly expanding or reshaping themselves [1], the
demand pattern, which mainly depends on the spatial distri-
bution of passengers’ origins and destinations, never ceases
to change [2], [3]. Since the current transit network could lag
behind such changes in some local areas, we need to plan new
routes for better use of public transport.

The studies of the route planning problem, including the
traditional methods of using surveys and recent research ef-
forts [4]–[10], all first focus on fulfilling passengers’ demands,
which are reflected in the spatial distribution of origins and
destinations of passengers’ trips. Specifically, an ideal bus
route should pass through some bus stops near the demand
since it would reduce passengers’ travel time. Take the city
of Orlando as an example. We visualize the demand extracted
from [11] near Lake Nona in Figure 1 since there could be a
promising neighborhood in that area [12]. The blue bus icons
represent the existing bus stops, and the red areas show the
demand. An ideal bus route, shown in cyan blue, would set
some new bus stops (shown by green icons) near the red areas
and pass through them. Moreover, it would be convenient for

Fig. 1: A toy example in Orlando

passengers if the route passes through some existing bus stops
which provide more transfer choices.

It is nontrivial to determine the bus stops for a new route.
Manual selection through surveys has issues such as subjective
decisions, limited samples, and high implementation cost.
With the availability of spatial data, algorithms give reliable
advice by quantitative comparison. However, it remains to
define the utility score for different potential bus stops, e.g.,
bus stops of high utility are close to the demand and offer more
transfer choices. Furthermore, since the utility values for some
bus stops may decrease after we select the others (e.g., the
demand pattern changes since much demand near the selected
ones would be satisfied), we need to carefully consider the
consequences of selecting different bus stops. Apart from the
utility concern, the selected bus stops should be finally linked
by a valid route satisfying some regularity constraints such as
the restriction on the maximum number of bus stops. These
routing constraints should be carefully treated in the selection.

Despite many existing solutions, they overlook two practical
issues. First, none of them is explicitly concerned about the
road network. Since the passengers have to walk some paths
along network edges to the bus stops to take buses, the
cost measurement should be the path’s cost which is more
consistent with the real scenario. However, some solutions
use arbitrary and inaccurate cost measurements, such as the
Manhattan distance [5] and the Euclidean distance [13]. They
would fail to identify the real demand centers. Others that
use the path’s cost have the efficiency issue. They either
assume that the cost between all pairs of nodes are given
beforehand [9], [14] or compute them repeatedly on the
fly [15], which may result in redundant searches and run
slowly on large road networks. Furthermore, [10] performs
matrix operations to measure the utility. Its preprocessing



procedure for new data takes many hours long and involves
complicated matrix transformations. Since practitioners may
fine-tune some parameters or adjust the input (e.g., the demand
of different targeted areas) frequently, more efficient solutions
which optimize the search on networks would be preferred.

Motivated by the above limitations, in this paper, we for-
mulate a problem called Bus Routing on Roads (BRR) which
redefines the two goals under the context of road networks. It
aims to find a new bus route which 1) minimizes the walking
cost of passengers by setting new nearby bus stops and 2)
maximizes the connectivity to the existing transit network by
passing through existing stops with more transfer choices. To
make the new bus route practical, we propose 1) the maximum
bus stop number constraint and 2) the maximum adjacent bus
stop cost constraint. We prove its NP-hardness and propose an
algorithm named Efficient Bus Routing on Roads (EBRR) with
theoretical guarantees. Since computing path’s cost is time-
consuming, EBRR is carefully designed to avoid redundant
computations. We accelerate EBRR by designing the filtered
priority queue and pruning bounds.

We summarize our contributions as follows.
• We consider the efficiency issue of planning a bus route

on road networks. We formally propose the Bus Routing
on Roads (BRR) problem which plans a new route
satisfying passengers’ demands and connecting to the
existing transit network. We also prove its NP-hardness.

• We design the Efficient Bus Routing on Roads (EBRR)
algorithm which generates a bus route of high utility
and efficiently deals with path’s cost. We also show its
approximation ratio and analyze its complexity.

• We propose several speed-up techniques, such as the
filtered priority queue and pruning bounds.

• We empirically evaluated EBRR on three real-world
datasets. It could run 60x faster than state-of-the-art
solutions and generate a new route superior in many
aspects. We also conducted a case study in Chicago
which showed that our route covers more previously
“uncovered” demand than all routes found by baselines.

II. RELATED WORK

Traditional methods of planning a new bus route involved
surveying the demand of local areas and following some
intuitive principles [16]. However, it could be costly to obtain
comprehensive surveys and the results were easily biased due
to the subjective decision-making. Recent methodologies could
be basically divided into two groups: learning from human mo-
bility patterns (e.g., origins, destinations, or trajectories) [5],
[6], [8], [10], [17]–[21] and mathematical programming on
detailed elements [4], [9], [13]–[15], [22].

The first group usually adopts a two-phase framework which
first obtains the demand flow patterns within different pickup
and dropoff areas by clustering the trajectories and then
identifies a bus route based on the patterns by some heuristic
ideas. Though they essentially aimed to fulfill the demand of
passengers, specific goals could be improving existing routes
by incorporating multiple features such as the bus fare [17],

maximizing the total profits [19], matching the supply and
demand in the temporal dimension [8], or matching as many
trajectories as possible [5], [10], [21]. Some considered differ-
ent types of bus routes: the night routes (where the demand at
different time windows is distinguished) [6] and the shared
buses with dynamic routes [5], [19], [20]. Most of them
(except for [10], [18]) ignore the routes’ connectivity with
the existing transit network, but we consider it. [18] tried to
rebuild the network configuration which might be impractical
since it changes many existing routes. The state-of-the-art
solution focused on the demand and the connectivity [10]. It
maximized the new route’s similarity to existing trajectories
plus the gain on the network connectivity produced by the
new route. However, the demand that the new route serves
will overlap some existing stops based on the transit demand
from the trajectories, and the evaluation of the connectivity is
often time-consuming.

The second group usually defines a mathematical program
to optimize a function with many objectives and constraints
and uses some solvers or the heuristic algorithms to obtain
the solution. The objectives could be maximizing the passen-
gers [15] and the total profits [14], [23]–[25], and minimizing
the travel cost [4], [9], [13], [22], the walking cost [14], and
the number of transfers [22]. The recent solution combined
k-means clustering and the genetic heuristic algorithm to
solve the mathematical program [13]. The formulations can
be comprehensive since it characterizes many elements, but
it is hard to implement them in practice for several reasons
such as the inefficiency, hard choices on parameters, and no
theoretical guarantee on the final solution. Besides, they did
not consider the connectivity and using the path’s cost.

III. PROBLEM STATEMENT

A. Problem Definitions

Definition 1 (Road Network): A road network G = (V,E) is
a connected undirected graph with the node set V and the edge
set E. Each edge e is associated with its cost ce ∈ R, which
could be the travel time or the distance by user preferences.

Definition 2 (Path): A path π is a finite sequence of nodes
where π = (v1, v2, . . . , v|π|) such that each (vi, vi+1) ∈ E for
i = 1, 2, . . . , |π| − 1. Its cost is

∑|π|−1
i=1 c(vi, vi+1).

Definition 3 (Existing Bus Stop and Bus Route): The set of
existing bus stops and the set of existing routes are denoted
by Sexisting and Rexisting, respectively. Each existing bus stop is
a node v ∈ Sexisting ⊂ V . Each existing bus route r ∈ Rexisting

is represented by a pair (Br, πr) where Br ⊆ Sexisting is a set
of existing stops that the route r passes through and πr is the
path connecting all the stops in Br.

Example 1: Figure 2 shows a road network with Sexisting =
{v1, v2}, where we omit the other bus stops for the ease of
illustration. There are four bus routes in Rexisting (represented
by red, blue, gray, and purple lines). Route 1-4 pass through
{v1}, {v1}, {v1, v2}, and {v2}, respectively.

Note that several bus routes could pass through the same
stop. The set Rexisting of routes is also called a transit network.



Users would then issue the transit routing queries (defined
below) and submit their pick-up and drop-off locations to the
platforms such as Google Maps [26] or Uber [27].

Definition 4 (Transit Routing Query): Each transit routing
query q = (vs, vt) specifies an origin node vs ∈ V and a
destination node vt ∈ V .

The new bus route should fulfill as much demand as
possible. It can be achieved by building a certain number
of new bus stops from a set Snew of candidate locations
(Sexisting∩Snew = ∅). Building a new bus stop with its pole and
flag has a cost starting from 300 dollars [28]. It is common in
cities’ new bus plans [1], [29]. These new bus stops should be
close to the origins and destinations of transit routing queries
so that passengers can easily access them. If the set Snew of
candidate locations is not specified, it suffices to consider the
midpoints of all edges E since the edges, representing small
road segments, are dense enough to cover all roads. Note that
we only consider city roads and ignore highways.

To measure the travel cost from the origins/destinations to
the bus stops, we define the walking cost outside the transit
network for each query. Let dist(vi, vj) be the path with the
smallest cost between vi, vj ∈ V ∪ Snew.

Definition 5 (Walking Cost): The walking cost of a query
q = (vs, vt) walking to a set S of bus stops, denoted by
f(q, S), is defined as the minimum walking cost from its origin
to its nearest bus stop in S plus the minimum walking cost
from its destination to its nearest bus stop in S, i.e., f(q, S) =
minv∈S dist(vs, v) + minv∈S dist(vt, v).

Example 2: Back to Example 1, suppose that there is a
transit routing query q = (v6, v1). Its walking cost to Sexisting

is f(q, Sexisting) = dist(v6, v2) + dist(v1, v1) = 7 since the
nearest existing stops of v6 and v1 are v2 and v1, respectively.

Definition 6 (Sum of Walking Costs): Given a set Tquery of
all transit routing queries, we use Q to denote the multiset of
all origins and destinations, i.e., Q = {vs, vt|q = (vs, vt) ∈
Tquery}. The sum of walking costs to a set S of bus stops can
be written as: Walk(S) =

∑
v∈Q minv′∈S dist(v, v′).

By the symmetry of the origin and destination, we could
regard them as one type of nodes without differentiating them.
We will use the “query” node to represent either of them.
Also note that any query data collected by map applications
would be representative enough since they could be viewed as
uniform samples from the demand distribution.

Example 3: Suppose that there are three transit routing
queries q1 = (v6, v1), q2 = (v1, v7), and q3 = (v8, v1). Then,
Q = {v1, v1, v1, v6, v7, v8}. The walking cost Walk(Sexisting) =
3 · dist(v1, v1) + dist(v6, v2) + dist(v7, v2) + dist(v8, v2) =
7 + 11 + 8 = 26 since the nearest existing stops for the last
three query nodes are all v2. Consider Walk({v1, v2, v3, v4}).
Since the nearest stops for v6, v7, v8 are v3, v4, v3, respectively,
Walk({v1, v2, v3, v4}) = 3 · dist(v1, v1) + dist(v6, v3) +
dist(v7, v4) + dist(v8, v3) = 3 + 3 + 4 = 10.

We want to find a set B of new stops where B ⊆ Snew

to minimize Walk(Sexisting ∪ B) after incorporating B into the
transit network. This would help passengers reduce their trips’
travel costs and promote the use of buses. It is equivalent to
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Fig. 2: A toy example of the road network

maximizing the difference Walk(Sexisting)−Walk(Sexisting ∪B)
since its first term is a constant and it could be viewed as the
decrease on the walking cost affected by the set B.

Apart from decreasing the walking cost, a new bus route
should also be connected to the existing transit network to
provide the queries with more transfer choices, which can be
done by choosing some existing bus stops from Sexisting.

Definition 7 (Connectivity): Consider a bus route r =
(Br, πr). For each bus stop v ∈ Sexisting, we use routes(v)
to denote the set of routes that pass through the stop v, i.e.,
routes(v) = {r|v ∈ Br, r ∈ Rexisting}. Given a set B of
stops where B ⊆ Sexisting ∪ Snew, we define its connectivity to
the existing transit network Rexisting as the number of distinct
existing routes passing through the existing stops in B, i.e.,
Connect(B) = Connect(B\Snew) = | ∪v∈B\Snew routes(v)|.

Example 4: Back to Example 1, if B = {v1},
Connect(B) = 3 because stop v1 serves three routes, i.e.,
Route 1, 2, 3 and routes(v1) = {Route 1,Route 2,Route 3}.
If B = {v1, v2}, Connect(B) = 4.

Since the operating budget of a practical bus route is limited,
we propose two constraints to regularize the new bus route.

Definition 8 (New Bus Route): For a new bus route r∗ =
(Br∗ , πr∗), where Br∗ ⊆ Snew ∪ Sexisting, the maximum bus
stop number constraint requires that its number of stops |Br∗ |
should be at most the maximum number, denoted by K. Given
an ordered sequence of stops (v1, . . . v|Br∗ |), the maximum
adjacent bus stop cost constraint requires that the cost between
any two adjacent stops dist(vi, vi+1) is at most the maximum
cost, denoted by C, for i = 1, . . . |Br∗ | − 1.

Note that the values of K and C could be manually set or
follow some statistics from data, such as the maximum number
of bus stops for each route and the maximum cost for each pair
of adjacent bus stops of an existing route. Also note that the
cost of the new bus route is implicitly bounded by (K− 1)C.

To combine the two objectives about the walking cost and
the connectivity, we define the utility function as follows.

Definition 9 (Utility Function): Given a new bus route with
its Br∗ ⊆ Snew∪Sexisting, the utility function, denoted by U , is
defined as the decrease on the sum of the walking costs plus



TABLE I: Summary of notations

Notations Descriptions
V , E The node and edge sets of the network

Rexisting, r The set of all existing bus routes and a route
Sexisting, Snew The set of existing stops and locations for new ones

Br, πr Route r’s set of bus stops and path
Tquery, q The set of transit routing queries and a query

Q The multiset of queries’ origins and destinations
routes(v) The set of existing routes that traverse the stop v
Walk(B), The walking cost of a bus stop set B from Q

Connect(B) The connectivity of a bus stop set B
K The maximum number of bus stops in the new route
C The maximum distance between two adjacent bus stops

U(Br∗ ), U(v) The utility value of the new bus route r∗ and a stop v

v(i), B(i) The selected stop and set of stops in the i-th iteration

its connectivity balanced by a parameter α > 0:

U(Br∗) =Walk(Sexisting)−Walk(Sexisting ∪Br∗)

+ α · Connect(Br∗). (1)

Note that the parameter α used to capture the influence
of two factors is common in bus routing [10], [14]. It can
be subjectively refined multiple times or set according to the
corresponding values of some sample bus routes in a city.

Abusing notations slightly, we define U(v) = U({v}).
Example 5: We still use Example 1 to illustrate the utility

U(·). Suppose that Snew = {v3, v4, v5} and we take Br∗ =
{v1, v2, v3, v4} from Snew ∪ Sexisting shown by the green line
(where we take two existing stops v1 and v2 and two new ones
v3 and v4) and α = 1. The previous Example 3 and Example 4
show that Walk(Sexisting) = 26 and Walk(Sexisting ∪ Br∗) = 10
since Sexisting∪Br∗ = {v1, v2, v3, v4}, and Connect(Br∗) = 4.
Hence, the utility U(Br∗) = 26− 10 + 1× 4 = 20.

We finally propose our Bus Routing on Roads problem.
Definition 10 (Bus Routing on Roads (BRR)): Given the road

network G, a set Rexisting of existing routes, and a multiset Q
of query nodes, the problem aims to find a new bus route
r∗ = (Br∗ , πr∗), where Br∗ ⊆ Snew ∪ Sexisting, to maximize
the utility such that |Br∗ | ≤ K and the cost between any two
adjacent stops in the path πr∗ is at most C.

Table I lists the main notations used throughout the paper.

B. Hardness

We first show that the utility function (1) is a monotone
submodular function, and then derive the NP-hardness of BRR
as the constrained submodular maximization.

Let V ′ = Snew∪Sexisting. A function U : 2V
′ → R≥0 is said

to be submodular if for any B,B′ ⊆ V ′ and v ∈ V ′/(B′ ∪
B), U(B ∪ {v})− U(B) ≥ U(B ∪ B′ ∪ {v})− U(B ∪ B′).
Let ∆UB(v) = U(B ∪ {v}) − U(B). The inequality can be
rewritten as ∆UB(v) ≥ ∆UB∪B′(v).

Theorem 1: The function (1) is monotone submodular.
Proof: The monotonicity can be easily observed since

either the decrease on the walking cost or the connectivity
should not decrease as we include more nodes in the set.

To prove ∆UB(v) ≥ ∆UB∪B′(v), we could first ignore
the constant Walk(Sexisting) in the U(B) since the difference

on both sides of the inequality would all be 0. If v ∈ Snew,
Connect(B∪{v}) = Connect(B) for any B, which means that
the differences about the connectivity are all 0 on both sides
of the inequality. We only need to show that Walk(Sexisting ∪
B) − Walk(Sexisting ∪ B ∪ {v}) ≥ Walk(Sexisting ∪ B ∪ B′) −
Walk(Sexisting ∪ B ∪ B′ ∪ {v}). It suffices to prove it for any
vq ∈ Q. Let v′ be the nearest node of vq in Sexisting ∪B ∪B′.
If v′ ∈ Sexisting∪B, we can remove B′ in the RHS and the two
sides are equal. If v′ ∈ B′, let v′′ be the nearest node of vq
in Sexisting ∪ B and dist(vq, v

′) < dist(vq, v
′′). Since the two

sides can be rewritten as max(dist(vq, v
′′)−dist(vq, v), 0) and

max(dist(vq, v
′)− dist(vq, v), 0), the inequality still holds.

If v ∈ Sexisting, the differences about the walking cost are
all 0. We next show that Connect(B ∪ {v})− Connect(B) ≥
Connect(B ∪B′ ∪ {v})− Connect(B ∪B′). It holds because
Connect(B) = | ∪v∈B routes(v)| is a type of coverage
function and the difference is the number of routes that are
different from the obtained distinct routes and pass through v,
which is smaller with more selected nodes.

Theorem 2: The BRR problem is NP-hard.
Proof: We will use the reduction from the submodular

maximization problem with cardinality constraints [30]. The
decision version of the submodular maximization problem
tries to answer whether the function value of a submodular
function on a set of items could be at least some value L > 0
under the constraint of the maximum number of items, denoted
by k. We construct our decision problem by setting K = k,
C as the maximum cost between any two nodes, and using
the same submodular function. Since C makes no restriction,
we could choose any stop given any current solution set. The
submodular maximization problem has a yes answer if and
only if ours has a yes solution.

IV. METHODOLOGY

A. Overview

Recall that the utility of a new stop in Snew is its decrease on
the walking cost and the utility of an existing stop in Sexisting is
its increase on the number of distinct transfer choices. We want
to include some stops with high utility values in the solution.
Intuitively, a route including multiple stops that significantly
decrease the walking cost is supposed to be scattered to suit
more demand queries. However, if they are far from each other,
we may break the maximum bus stop number constraint of
K and the maximum adjacent bus stop cost constraint of C.
Therefore, we propose to select stops one by one while caring
about the constraints and terminate until we estimate that the
constraints should be tight if the selected stops were linked by
a path. Two essential parts, the iterative selection of stops and
the estimation of the constraints, are all based on our proposed
price function for a stop w.r.t. a set of selected stops. The price
of a stop can be seen as an approximation of its effect on the
increase on the number of stops in the final bus route with the
constraint of C satisfied. Then, we can terminate the algorithm
when the sum of the prices indicates that the maximum bus
stop number K would be violated. The iterative selection finds
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the most “profitable” stop that maximizes the increase on the
utility divided by its price.

We define the price function by considering the two con-
straints of K and C. Let B(i−1) denote the currently selected
stops at the end of the (i−1)-th iteration and also the beginning
of the i-th iteration. Let v(i) denote the stop that we select
in the i-th iteration. Let v(0) be an arbitrarily selected stop
and B(0) = {v(0)}. Now we are about to select the stop
v(i). If a stop has high utility values and a cost at most C
from one of the selected stops in B(i−1), we can include it in
the solution without worrying about C. However, if it has a
cost larger than C from any stop in B(i−1) and we still want
to select it (due to its high utility), we need to additionally
select some necessary intermediate stops in Snew ∪ Sexisting

so that there is a path between v(i) and its nearest stop in
B(i−1), denoted by v(i),ns = minv∈B(i−1) dist(v(i), v), with
the adjacent cost between intermediate stops and v(i) and
v(i),ns at most C. The minimum number of intermediate stops
plus one (corresponding to v(i)) is the price. Take Figure 3 as
an example. The price of the stop v(i) is 3 since we need
at least 2 intermediate stops from v(i) to the node v(i),ns in
B(i−1). Formally, the price is defined as follows.

Definition 11: The price of a stop v ∈ Snew∪Sexisting\B(i−1),
denoted by p(v,B(i−1)), is the minimum number of interme-
diate stops that we have to use in any path between v and its
nearest stop vns ∈ B(i−1) without violating the constraint of
C plus one (i.e., v).

Example 6: Suppose that B(i−1) = {v1} and C = 4.
p(v3, B

(i−1)) = 2 because dist(v3, v1) = 8 > C and we
need to add at least one intermediate stop (e.g., v2) to link
v3 to v1 ∈ B(i−1). p(v2, B

(i−1)) = 1 since the number of
necessary stops between v2 and v1 ∈ B(i−1) is zero.

It is useful to consider (v(i), v(i),ns) as a virtual edge below.
Definition 12: There exists a virtual edge (vi, vj) between

any two stops vi and vj . The price of this virtual edge is
defined to be the minimum number of intermediate stops that
we have to use in any path between vi and vj without violating
the constraint about C plus one.

It follows directly that the price of (v(i), v(i),ns) is equal
to v(i)’s price p(v(i), B(i−1)). Moreover, the i virtual edges
(v(1), v(1),ns), (v(2), v(2),ns) . . . , (v(i), v(i),ns) form a span-
ning tree which connects v(0), v(1), . . . , v(i) because they form
a connected graph with i virtual edges and i + 1 nodes. The
following corollary can also be derived.

Corollary 1: The sum of prices of all virtual edges in a tree
is equal to the number of stops to connect all the endpoints
of virtual edges minus one.

Algorithm 1: Efficient Bus Routing on Roads (EBRR)
input : The network G, a set Rexisting of existing

routes, a multiset Q of query nodes, the
constraints of K and C

output: A new bus route r∗ = (Br∗ , πr∗)
1 preprocess to get initial utility values U({v}) (Alg. 2)
2 v(0) ← an arbitrarily selected stop in Snew ∪ Sexisting

3 B(0) ← {v(0)}
4 repeat
5 v(i) ← argmaxv∈Snew∪Sexisting\B(i−1)

∆U
B(i−1) (v)

p(v,B(i−1))
(Alg. 3)

6 B(i) ← B(i−1) ∪ {v(i)}
7 until

∑i
j=1 p(v

(j), B(j−1)) ≥ 2K
3 ;

8 use the Christofides’ algorithm to get an order on B(i)

9 use the order to generate the final bus route r∗ (Alg. 5)
10 return r∗ = (Br∗ , πr∗)

In other words, the sum of prices of the virtual edges in
the spanning tree is equal to the number of stops (i.e., the
intermediate and profitable ones) to connect all profitable ones
(i.e., v(0), . . . , v(i)) minus one (i.e., v(0)).

We select the profitable stops repeatedly once the price∑i
j=1 p(v

(j), B(j−1)) is no less than 2K
3 . To finally create a

path (instead of a tree) visiting each profitable stop once, we
can use the Christofides’ algorithm [31] to first create a virtual
path, defined to be any permutation order of all profitable ones.
The reason why we use 2K

3 in the stopping condition is that
the Christofides’ algorithm guarantees that the resulting virtual
path has its sum of prices of all consecutive virtual edges less
than 3

2 times the sum of prices of the virtual edges in the
spanning tree on the Euclidean plane. The virtual path then
has basically less than K stop.

The whole procedure is shown in Algorithm 1. We prepro-
cess the utility values in line 1 and start with an arbitrary
stop in lines 2-3. If the increase on the utility is denoted
by ∆UB(i−1)(v) = U(B(i−1) ∪ {v}) − U(B(i−1)), we select
the most profitable stop in each iteration which has the
maximum ratio of the increase on the utility to the price (i.e.,
∆U

B(i−1) (v)

p(v,B(i−1))
) until the number of stops is greater than 2K

3 in
lines 4-7. We get a visiting order by the Chritofides’ algorithm
in line 8 and generate the final path in line 9.

B. Query Preprocessing

The purpose of preprocessing the utility values U({v}) for
each stop v ∈ Snew ∪ Sexisting is to obtain an initial order for
the stops and to efficiently select the profitable ones later.
We use U(v) = U({v}) for the ease of notations. For each
v ∈ Sexisting, U(v) can be easily computed as α · |routes(v)|
by Definition 7. However, for each v ∈ Snew, computing its
initial U(v) is hard. A straightforward but costly method is to
separately consider each v ∈ Snew. It requires us to identify the
query nodes whose walking costs would decrease if the stop v
were selected. Since we need to independently find the set of
query nodes which are the reverse nearest neighbors of each



v ∈ Snew (where the reverse nearest neighbor of v means that
its nearest neighbor is v), denoted by RNN(v), this method
could search the whole road network redundantly. Instead, we
start the search from each query node until a stop v ∈ Sexisting,
which stops quickly in a small area of the network.

For each v ∈ Snew, its utility value U(v) can be viewed as
the difference between the two walking costs before and after
the stop v is included. Specifically, there is only Sexisting first
and each query node vq has to walk to its nearest existing
stop, denoted by nn(vq) ∈ Sexisting. We could gain a decrease
on its walking cost if a stop v ∈ Snew closer than nn(vq)
were selected. We will iterate through all the query nodes to
find such stops v ∈ Snew where the decreases could happen and
finally sum over the corresponding decreases on each v ∈ Snew.

Since the Dijkstra search has the property that the cost from
the starting stop in each iteration monotonically increases, we
could use a single search from each query node vq to find
those close v ∈ Snew until its nearest existing stop nn(vq) is
visited. Specifically, we start the search from each query node
vq . If a stop v ∈ Sexisting is visited for the first time, it must be
the nearest existing stop nn(vq). We stop the search since the
remaining stops must have costs no less than dist(vq, nn(vq))
by the Dijkstra property. If we visit a stop v ∈ Snew before the
search stops, we add the query node vq in v’s set of reverse
nearest neighbors since dist(vq, v) ≤ dist(vq, nn(q)) and v
would be the nearest stop of vq if v were selected.

Algorithm 2 summarizes the procedure. We do the Dijkstra
search for each query node in lines 1-10 and compute the U(v)
for v ∈ Snew in lines 11-14 and for v ∈ Sexisting in lines 15-16.
As in a classical Dijkstra procedure, we initialize the priority
queue in line 2 and relax edges in lines 10. In lines 5-7, when
visiting a stop v ∈ Sexisting, we set it as the nn(vq), store its
cost dist(vq, nn(vq)), and stop the search. In lines 8-9, for
v ∈ Snew before the search stops, we include vq in RNN(v).
We then sum over RNN(v) to compute U(v) in lines 11-14.

Example 7: Using the query nodes in Example 3, we start
the search from v6. As shown in Figure 4, the search will
first visit the stop v3 with dist(v6, v3) = 3. We will update
RNN(v3) = {(v6, 3)} since the nearest stop of v6 would be
v3 if v3 were selected. Then, the search visits v7 and we do
nothing since it is a query node. It does not matter whether we
visit v2 or v4 next since dist(v6, v2) = dist(v6, v4) indicates
that v4 offers no decrease on the walking cost. Suppose that
we process v2 first. We save nn(v6) = v2 and its cost
dist(v6, v2) = 7, and stop the search.

Next, to compute the utility values for each v ∈ Snew,
we have to go through each RNN(v). For v3, U(v3) =
dist(v6, nn(v6))−3+dist(v7, nn(v7))−7+dist(v8, nn(v8))−
4 = 4+4+4 = 12. Similarly, U(v4) = dist(v7, nn(v7))−3 =
8 and U(v5) = dist(v7, nn(v7))− 7 = 4. For v ∈ Sexisting, the
utility values U(v1) = 3 and U(v2) = 2. Finally, the priority
queue stores v3, v4, v5, v1, v2 with their utility values.

C. Stop Selection

To find the most profitable stop in each iteration, which
maximizes the ratio

∆U
B(i−1) (v)

p(v,B(i−1))
, a straightforward idea is to

Algorithm 2: Query Preprocessing
input : The road network G, a set Rexisting of existing

bus routes, a multiset Q of query nodes
output: The initial utility values U(v) for each

v ∈ Snew ∪ Sexisting in a priority queue
1 foreach vq ∈ Q do
2 initialize a priority queue Queue for costs
3 while Queue is not empty do
4 v ← the stop with the smallest priority in

Queue
5 if v ∈ Sexisting then
6 set v as nn(vq) and store dist(vq, nn(vq))
7 break

8 if v ∈ Snew then
9 RNN(v)← RNN(v) ∪ {(vq, dist(vq, v))}

10 relax edges incident to v

11 foreach v ∈ Snew do
12 U(v)← 0
13 foreach (vq, dist(vq, v)) ∈ RNN(v) do
14 U(v)← U(v) + dist(vq, nn(vq))− dist(vq, v)

15 foreach v ∈ Sexisting do
16 U(v)← α · |{r ∈ R : v ∈ Br}|
17 return a queue in the decreasing order of U(v)
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do function evaluations to get the true utility ∆UB(i−1)(v)
and price p(v,B(i−1)) for each stop v and compare their
ratios. However, this requires us to perform a large number of
function evaluations. A single evaluation is time-consuming
since it may search the whole network. The lazy forward
selection is well-known for performing far fewer evaluations,
but it only handles the case of fixed price [32]. It is infeasible
here since our price is different under different B(i−1) and the
rankings of the ratios could change dramatically. We propose
the filtered queue to improve efficiency.

The filtered queue is built by first pruning some stops from
the preprocessing result, then adding upper bound values (as
an approximation of the true ratios) into the filtered queue, and
finally using the lazy selection technique to find the maximum
ratio. For the upper bound of the true ratio, it uses a technique
of the lower bound price which can be updated efficiently.



Algorithm 3: Stop Selection
input : The initial utility U(v) in the decreasing order
output: The most profitable stop v(i)

1 thresh← ∆U
B(i−1) (v)

p(v,B(i−1))
where v = argmaxv U(v)

2 initialize an empty priority queue RQueue
3 foreach v in the decreasing order of U(v) do
4 if U(v) < thresh then
5 break

6 insert v with its priority U(v)
lbp(v) into RQueue where

lbp(v) is given by Algorithm 4
7 while |RQueue| ≥ 0 do
8 pop the top v and evaluate ∆UB(i−1)(v) and

p(v,B(i−1))

9 if |RQueue| is empty or
∆U

B(i−1) (v)

p(v,B(i−1))
is no smaller

than the next largest priority then
10 return v(i) ← v

11 else
12 insert v with its priority

∆U
B(i−1) (v)

p(v,B(i−1))
to

RQueue again

1) Pruning Stops: We first show that we could filter some
stops in each iteration from the priority queue. Initially, from
the preprocessing result, we have U(v1) ≥ U(v2) ≥ . . ..
Now suppose that we get two true values ∆UB(i−1)(v) and
p(v,B(i−1)) for one stop v by function evaluations. We claim
that we could ignore any stop vj with U(vj) ≤

∆U
B(i−1) (v)

p(v,B(i−1))
.

Claim 1: In the i-th iteration, given any v with its true ratio
∆U

B(i−1) (v)

p(v,B(i−1))
, any vj with U(vj) ≤

∆U
B(i−1) (v)

p(v,B(i−1))
can be pruned.

Proof: It holds since
∆U

B(i−1) (v)

p(v,B(i−1))
≥ U(vj) ≥

∆UB(i−1)(vj) ≥
∆U

B(i−1) (vj)

p(vj ,B(i−1))
, where the second inequality

is due to the submodular property that U(vj) = ∆U∅(vj) ≥
∆UB(i−1)(vj) and the third one is because each price is no
smaller than 1 (Definition 11).

The ratio of any stop v could be a threshold for filtering
stops in the decreasing order of U(v). A large threshold can
surely filter more stops, but computing one requires us to
perform two costly function evaluations. In practice, peeking
at the first one in the queue or a few stops suffices to provide
a threshold without costing too much time.

2) Lazy Selection: The goal is to efficiently find the stop
with the maximum ratio. To perform few function evaluations,
we propose to use an upper bound U(v)

lbp(v) as an approximation,
where lbp(v) is the lower bound price defined as lbp(v) =

minv′∈B(i−1)
distE(v,v′)

C and distE(v, v
′) is the cost under

the Euclidean metric. U(v)
lbp(v) ≥

∆U
B(i−1) (v)

p(v,B(i−1))
because U(v) ≥

∆UB(i−1)(v) as in Claim 1 and lbp(v) ≤ p(v,B(i−1)).
The upper bound is then applied by the following claim.
Claim 2: The stop v achieves the maximum ratio

∆U
B(i−1) (v)

p(v,B(i−1))
if

∆U
B(i−1) (v)

p(v,B(i−1))
≥ U(v′)

lbp(v′) holds for any other v′.
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Fig. 5: The running example of the stop selection

Proof: We have
∆U

B(i−1) (v)

p(v,B(i−1))
≥ U(v′)

lbp(v′) ≥
∆U

B(i−1) ({v′})
p(v′,B(i−1))

.

We can then construct a priority queue U(v1)
lbp(v1)

≥ U(v2)
lbp(v2)

≥
..., called RQueue. Each time we pop the top element we
evaluate its true ratio. If the true ratio is no smaller than the
second largest element, we find the most profitable stop by
Claim 2. Otherwise, we push it to the queue again and inspect
the next one. The advantage of upper bounds is that they can be
computed efficiently and we avoid many function evaluations.

The procedures of pruning stops and lazy selection are
illustrated in Algorithm 3. We compute a threshold in line
1 and use it to filter stops in lines 3-6. We insert stops with
the upper bounds U(v)

lbp(v) in line 6 and terminate it when the
rest of U(v) is less than the threshold. In line 8, we take the
current largest element in the RQueue and perform function
evaluations. If it is no smaller than the second largest element,
we find the profitable stop in lines 9-10. Otherwise, we push
it to the queue again in lines 11-12.

Example 8: Suppose that in Algorithm 1, K = 4 and we
select an arbitrary stop in B(0) = {v1}. In the first iteration, as
shown in Figure 5a, we have a descending sequence of U(v).
To get a threshold (Claim 1), we evaluate v3’s utility and price,
i.e., ∆UB(0)(v3) = 12 and p(v3, B

(0)) = 2 (Example 6). The
thresh = 6 and the RQueue is built by considering only the
first two elements. The ratio of v3 directly uses its true value.
For v4, its ratio U(v4)

lbp(v4)
= 8

3 because lbp(v4) =
dist(v1,v4)

4 =
12
4 = 3. In RQueue, since the first value is larger than the

second one, we select v3 as the most profitable stop in the
first iteration by Claim 2 and B(1) = {v1, v3}. In the second
iteration, since ∆UB(1)(v4) = 4 and p(v4, B

(1)) = 1, the
threshold is 4, shown in Figure 5b. Similarly, we could obtain
an RQueue and the profitable stop v4. Algorithm 1 stops here
because p(v1, B

(0)) + p(v2, B
(1)) = 2 + 1 ≥ 2K

3 = 8
3 .

For any stop v ∈ Sexisting, we will use binary values for
different routes, which is a common technique to speed up
the set intersection. Different routes are mapped into different
array elements of binary indicators. Then, we maintain such
arrays for B(i−1) and v ∈ Sexisting. The value ∆UB(i−1)(v) can
be simply obtained by counting the number of common array
elements. Note that it works because the number of existing
routes |Rexisting| is usually bounded.

3) Updating Lower Bounds of Costs: If we evaluate the
lower bound price lbp(v) = minv′∈B(i−1)

distE(v,v′)
C by iter-

ating through each v′ ∈ B(i−1) directly, there are redundant
computations since the costs to some stops in B(i−1) could
have been computed in previous iterations. We will maintain
an index lbIndex(v) for each stop v to record the part of the



Algorithm 4: Lower bound Price Update
input : The index lbIndex(v) and a stop v
output: The lower bound price lbp(v)

1 if v’s price p(v,B(i−1)) is valid then
2 return its true price p(v,B(i−1))

3 else
4 for i← lbIndex(v), . . . , |B(i−1)| do
5 lbp(v)← min(lbp(v), distE(v,v(i))

C )

6 lbIndex(v)← |B(i−1)|
7 return max(1, lbp(v))

stops that have been computed and ignore them in fetching the
lower bound price. It is only used when we evaluate lbp(v).

The procedure is shown in Algorithm 4. For each stop v, we
return its true price if its price is valid in lines 1-2. Otherwise,
we start with the lbIndex until the last stop in B(i−1) to
update the lower bound price lbp(v) in lines 4-5. We update
the lbIndex in line 6 and return in line 7 max(1, lbp(v)).

Example 9: We will show how to obtain lbp(v4) in the first
iteration of Algorithm 1. Since the price p(v4, B

(0)) is invalid
and lbIndex(v4) = 0 initially, we go through the stops in
B(0) and get lbp(v4) = dist(v4,v1)

C = 3. Finally, we update
lbIndex(v4) = 1 which means that we could ignore the stop
in B(0) next time when we fetch the lower bound value.

D. Path Refinement

The final path refinement essentially finds a path visiting
our selected profitable stops exactly once and makes it satisfy
all the regularity constraints (Definition 8). Before the path
refinement, we use the Christofides’ algorithm to generate a
visiting order on the final B(i) (i.e., line 8 of Algorithm 1). Its
visiting order starts from some stop, visits each stop exactly
once, and goes back to the origin stop. Since we do not have
to go back to the origin stop, we discard the longest part
which uses the maximum number of intermediate stops in its
visiting order. It guarantees that the visiting order uses few
intermediate stops. We finally add/delete some terminal stops
to match the maximum number K. This final step usually adds
stops because we use a strict bound of 2K/3 in the stopping
condition of Algorithm 1 and we discard the longest part.

Algorithm 5 states the basic procedure. In lines 1-4, we use
the order to visit all the stops in B(i). We still need to add
necessary intermediate stops if the cost between two adjacent
stops vi and vi+1 in the order is larger than C (lines 3-4). In
lines 5, we make the bus stop number satisfy the constraint.

Example 10: For the final set B(2) = {v1, v3, v4}, the
Christofides’ algorithm may give an order (v1, v3, v4). We add
one necessary stop v2 since the adjacent cost between v1 and
v3 is larger than C = 4. Finally, we get πr∗ = (v1, v2, v3, v4).

V. THEORETICAL ANALYSIS

Let v(i) be the most profitable stop in the i-th iteration
and B(i) be the set of these stops until v(i), i.e., {v(j)|j =

Algorithm 5: Path Refinement
input : An order generated by the Christofides’

algorithm
output: The new bus route r∗ = (Br∗ , πr∗)

1 for each two adjacent stops vi and vi+1 in the input
visiting order do

2 πi ← the path between vi and vi+1 with the
minimum number of intermediate stops

3 for each stop in Snew ∪ Sexisting along πi do
4 Add it into Br∗ and πr∗ if it is the farest one

from its previous stop with its cost at most C

5 Add or delete terminal stops until |Br∗ | = K
6 return r∗ = (Br∗ , πr∗)

1, . . . , i}. We first prove the correctness of the algorithm.
Theorem 3: Suppose that in the last iteration i,∑i
j=1 p(v

(j), B(j−1)) = 2K
3 . The path has at most K nodes.

Proof: Given a set B(i) of points in a plane, the
Christofides’ algorithm [31] produces a tour with its price less
than 3p(MST (B(i)))

2 , where p(MST (B(i))) is the sum of prices
of virtual edges in the minimum spanning tree on B(i). Since
our tree has its price 2K

3 ≥ p(MST (B(i))), the final path has
3p(MST (B(i)))

2 ≤ K nodes.
Note that the resulting path usually has fewer than K nodes

since the theoretical guarantee of Christofides’ algorithm gives
the worst case ratio and we also discard the longest part.
We next show the approximation ratio of the EBRR by first
proving some inequalities. A monotone submodular function
has the following inequality for any B′, B:

Lemma 1 ( [33]): U(B′) ≤ U(B) +
∑

v∈B′\B ∆UB(v).
Let BOPT be the optimal solution set of the stops.
Lemma 2: U(B(i)) − U(BOPT ) ≥ (U(B(i−1)) −

U(BOPT ))(1− p(v(i),B(i−1))∑
v∈BOPT

p(v,B(i−1))
).

Proof: By Lemma 1, we have U(BOPT ) ≤
U(B(i−1)) +

∑
v∈BOPT \B(i−1) ∆UB(i−1)(v).

The right hand side RHS = U(B(i−1)) +∑
v∈BOPT \B(i−1)

∆U
B(i−1) (v)

p(v,B(i−1))
p(v(i), B(i−1)). Since we choose

the profitable node v(i) = argmaxv
∆U

B(i−1) (v)

p(v,B(i−1))
, U(BOPT ) ≤

U(B(i−1)) +
∆U

B(i−1) (v
(i))

p(v(i),B(i−1))

∑
v∈BOPT \B(i−1) p(v,B(i−1)).

Taking the super set of BOPT \B(i−1), we know that

RHS ≤ U(B(i−1)) +
∆U

B(i−1) (v
(i))

p(v(i),B(i−1))

∑
v∈BOPT

p(v,B(i−1)).
After rearranging the inequality, we prove this lemma.

Theorem 4: Algorithm 1 is a 1− exp(− 2C
3maxi,j dist(vi,vj)

)-
approximation algorithm. An upper bound of the approxima-
tion ratio is 1− exp(− 2

3 ) = 0.49.
Proof: Using Lemma 2 recursively, we get U(B(i)) ≥

(1 −
∏i

j=1(1 −
p(v(j),B(j−1))∑

v∈BOPT
p(v,B(j−1))

))U(BOPT ). By the

inequality 1 − x ≤ e−x for x ≥ 0, we have
U(B(i))

U(BOPT ) ≥ 1 − exp(−
∑i

j=1
p(v(j),B(j−1))∑

v∈BOPT
p(v,B(j−1))

). We

have
∑

v∈BOPT
p(v,B(j−1)) ≤

∑
v∈BOPT

p(v,B(0)) ≤



K maxi,j dist(vi,vj)
C , where the first inequality is because the

price will decrease as B(i) is larger and the second inequality
is from the definition of the price function. Since our algorithm
ensures that the numerator

∑i
j=1 p(v

(j), B(j−1)) ≥ 2K
3 , after

replacing the two terms, we get the approximation ratio of
1− exp(− 2C

3maxi,j dist(vi,vj)
). An upper bound of the approx-

imation ratio is 1 − exp(− 2
3 ) = 0.49. We can obtain it by

using K as the lower bound of
∑

v∈BOPT
p(v,B(j−1)) and

replacing the numerator with 2K
3 .

Since C = 2 and maxi,j dist(vi, vj) = 80 in the default set-
tings of the experiments, an lower bound of the approximation
ratio is 1− exp(− 1

60 ) ≈ 0.02 after we replace them.
We next analyze the time complexity. Its space complexity

is the same as the input since no extra structures are involved.
Theorem 5: The EBRR has its time complexity of

O(|Q|T1(Sexisting) + |V | ln |V | + KT2(Sexisting)|RQueue|),
where T1(Sexisting) and T2(Sexisting) denote the maximum time
of searching a network from each query node until an existing
stop and that with an upper bound cost.

Proof: We will analyze the time complexity of each
algorithm. For Algorithm 2, the Dijkstra search is fast since
it stops at an existing stop soon. The time cost of the
search dominates the later computation of the utility values
because both the set RNN(v) and the stops in Sexisting are
also processed by the search. Hence, the time complexity of
Algorithm 2 is O(|Q|T1(Sexisting)).

For Algorithm 3, using a priority queue to store an ordered
sequence of the initial utility values U(v) needs O(|V | ln |V |).
In each iteration of stop selection, the lazy selection evaluates
functions for all the nodes in the RQueue in the worst case.
Each evaluation searches the network with the upper bound
cost maxvq dist(vq, nn(vq)) and its time cost T2(Sexisting)
(determined by the maximum cost from a stop to its existing
stops). Algorithm 4 uses at most O(|RQueue|) to compute
the lower bound price for each node. Note that though there
is a for-loop in Algorithm 4, the amortized time over each
profitable stop v(i) is a constant. Since there could be at
most 2K

3 iterations, Algorithm 3 runs in O(|V | ln |V | +
KT2(Sexisting)|RQueue|).

The time complexities of the Christofides’ algorithm and
Algorithm 5 of finding paths between adjacent nodes are
O(K2 logK) and O(Kmax(T1(Sexisting), T2(Sexisting)), re-
spectively. They could be ignored since K is a small constant.
Overall, the EBRR runs in O(|Q|T1(Sexisting) + |V | ln |V | +
KT2(Sexisting)|RQueue|).

VI. EXPERIMENTAL STUDY

A. Experiment Setup

1) Implementation: The proposed algorithms were imple-
mented in C++ with the compiler gcc 9.4.0 and were per-
formed in a machine with 2.66GHz CPU and 48GB RAM
under the CentOS 7 Linux distribution. We used Python 3 to
clean the data and Mapbox API [34] for visualization.

2) Datasets: The problem requires the network, transit,
and query data in a city. We collected them for three cities:

TABLE II: Real datasets for three cities.

Dataset |V | |E| |Snew| |Sexisting| |Q|
Chicago 58,337 178,102 89,051 10,517 1,076,324

NYC 134,551 397,956 198,978 9,225 793,496
Orlando 95,678 238,674 119,337 3,949 136,813

Chicago, New York City (NYC), and Orlando. The detailed
statistics of the datasets are shown in Table II. All the network
data of the three cities are from DIMACS [35]. The transit data
include the information of existing bus stops. The Chicago,
NYC, and Orlando transit data are from Chicago Transit Au-
thority [36], Metropolitan Transportation Authority [37], and
Lynx [38], respectively. The past workloads of transit routing
queries for Chicago and NYC use the same sources as in [10],
and those for Orlando are extracted from Uber Movement [27].
We collected their pick-up and drop-off locations to make the
multiset Q. An overview of the road network and transit stops
is shown in Figure 6. Red lines are the edges representing road
segments and blue icons are the existing stops.

3) Compared Algorithms: Following previous work [10],
we compared two state-of-the-art baselines below. We could
directly use their results since they finally generate new bus
routes with K stops. Note that their routes could violate the
constraint of C because their problems do not require it.

(1) ETA-Pre [10]. It aims to find the bus route that
maximizes a linear objective function. It mainly wants to
match as many trajectories (corresponding to the demand)
as possible and to maximize the natural connectivity [39] of
the whole transit network. It first generates a set of candidate
paths and compares their objective values by using the matrix
method as an estimation.

(2) vk-TSP [21]. It defines a distance measurement between
two paths and tries to find the route which minimizes such
distances from all trajectories. It uses the greedy idea to
append new edges shown in many trajectories into the route.

Note that since their preprocessing steps could run in at
least 4 hours long, we directly use their preprocessing results.

We assess their performance in terms of the walking cost,
the connectivity, and the execution time. We vary the max-
imum number K of stops, the maximum cost between two
adjacent stops C, and the multisets Q of query nodes to test the
performance. We also conduct real case studies and a survey.

B. Experiment Results

1) Effectiveness: We first tested the effectiveness by the
quantitative study on the walking costs (after including the
new stops) and the connectivity, i.e., Walk(Sexisting ∪Br∗) and
Connect(Br∗). Since the other two baselines do not impose
the constraint of C, we only vary the maximum number
K from 10 to 50 and the set Q of query nodes in the
experiments about effectiveness. All the costs represent the
distances in kilometers, and our EBRR uses C = 2. They
can be transformed to the travel time or other costs according
to user preferences. For Chicago, we divide the whole query
nodes into four parts of similar size along the vertical direction.
For NYC, we use four sets of query nodes from four boroughs:
Brooklyn, Manhattan, Queens, and Bronx.
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Fig. 6: An overview of road networks and existing bus stops
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Fig. 7: Walking cost of varying K

Effect of K. The results of varying the maximum number
K of stops are shown in Figure 7 and Figure 8. The multiset
Q uses all the query nodes spanning over the entire city as
in [10]. Note that we choose the parameter α in the utility
function (Eq. 1) as 2000 and 200 in the Chicago and NYC
datasets, respectively, and fine-tuning it with other values may
give even higher utility values.

For the walking cost, in both two sub-figures of Figure 7,
our EBRR achieves smaller costs than ETA-Pre and vk-TSP
and will help passengers access the transit network easily.
Since we adopt the path’s cost, our new route could place
stops in the real demand centers. Our EBRR decreases the
cost as K is larger because there are more stops in the
solution. ETA-Pre and vk-TSP barely optimize the walking
cost, which makes their values nearly flat. They pass through
many demand centers where there are already many existing
stops. The walking costs in Figure 7a are longer than those
in Figure 7b because there are more queries in the Chicago
dataset than those in the NYC dataset.

For the connectivity, in Figure 8, our EBRR gives higher
values than those of ETA-Pre and vk-TSP, which will facilitate
passengers’ transfer since a higher value means more transfer
choices. It could be observed there is a drop when K is equal
to 30. This is because EBRR finds more profits on some distant
nodes which decrease the walking cost, which is consistent
with the drop when K is 30 in Figure 7. These nodes could
be pruned when K is small but are reconsidered in the node
selection when K is larger.

Effect of Q. Figure 9 and Figure 10 present the results of
varying Q. The maximum number K of stops is 30, and α is
2000 and 10000 in Chicago and NYC data, respectively.

In Figure 9, it can be observed that EBRR achieves the
minimum costs among all algorithms for all datasets. In some
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Fig. 8: Connectivity of varying K
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Fig. 9: Walking cost of varying Q

cases, such as Dataset1 in Chicago and the Brooklyn one, the
walking cost of EBRR is four times shorter than the other two.
For the other cases where EBRR reduces less cost, it could
have higher connectivity values, as shown in Figure 10. The
other two baselines optimize the walking cost less.

For the connectivity, shown in Figure 10, we can still find
that EBRR performs better than the other baselines since it has
the highest connectivity values on all datasets. For the dataset
in Queens, NYC, the connectivity value of EBRR could be 6
times higher than those of the other two algorithms.

Approximation Ratio. Since our EBR problem is NP-
hard, we could only compare it with the optimal solution
(OPT for short) on a small dataset. From the NYC data, we
extract a small graph with 110 nodes and 324 edges, 132
query nodes, 7 new and 7 existing stops. OPT is derived
through an exhaustive search on all combinations of the
stops. In Figure 11a, we directly report the utility values of
the two solutions when varying K. It can be observed that
EBRR achieves a smaller utility value than OPT for each K.
However, the approximation ratio of EBRR over OPT is close
to 1, which also indicates a more competitive performance
than the theory suggests in practice.
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Fig. 10: Connectivity of varying Q
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Fig. 11: Other effectiveness metrics

Travel Cost. We also tested the travel cost (i.e., the cost of
the entire trip) on Chicago datasets. It includes the walking
cost, the cost of using the public transit, and the transfer cost
between bus routes, in terms of minutes, shown in Figure 11b.
By considering the travel cost of each query, we reported the
average difference between the two travel costs before and
after the new bus route is incorporated into the transit system.
When K is getting larger, it can be found that all algorithms
reduce the travel cost more since more bus stops should fulfill
more demand queries. However, when K is 40 or 50, the travel
cost decrease reaches a plateau, which is because 40 stops are
sufficient to cover most areas of high demands. Note that a bus
route of 40 stops could be 80 km long since C = 2. We can
also observe that EBRR always achieves the largest decrease
of travel cost among the three algorithms, which suggests that
EBRR could satisfy more demand queries.

Case Study. We conducted two case studies, one in Or-
lando shown in Figure 1 and the other in Chicago shown
in Figure 12. For Orlando, we generated the query multiset
Q by using the ridership data from the Lynx Bus Service in
Orlando [11]. The ideal route in cyan blue in Figure 1 can be
obtained by running EBRR with parameters α = 100, K = 7,
and C = 2. Since we use the accurate network cost, the route
passes through all demand centers shown by red areas and
some existing stops as transfer choices. People would prefer
using public transit more since they can easily access it.

In Figure 12, we considered the query nodes across the
whole city of Chicago. Similarly, the route in light green is
obtained by EBRR with α = 2000, K = 30, and C = 2.
ETA-Pre and vk-TSP use purple and orrange lines. Though
the other two algorithms pass through some red areas along
the coastline, there are so many existing bus stops (shown by
small blue dots) along the routes, which makes them satisfy
less demand. However, EBRR not only tries to match the
uncovered demand in new areas around the airport (in the top-

Fig. 12: Case study in Chicago
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Fig. 13: Execution time of varying K

left region) but also spans over the existing network. Besides,
we conducted a survey by showing the routes in Figure 12
and questioning real users from Prolific [40] and collected 96
responses. The results showed that the number of users voting
EBRR as the best route is the greatest.

2) Efficiency: We evaluated our algorithm’s efficiency by
varying all the parameters. The results of varying the maxi-
mum number K of stops and the multiset Q of query nodes
were obtained from the same experiments as in Section VI-B1.
Since the other two baselines do not require the maximum cost
between two adjacent stops C and the balancing parameter
α, we only reported the time cost of EBRR by varying
C = [1, 2, 3, 4, 5] and α = [1000, 2000, 3000, 4000, 5000].
The range of C from 1km to 5km is because the costs between
two adjacent stops in the datasets fall into it. The range of α
from 1k to 5k corresponds to a change from focusing on the
walking costs to connectivity. The default settings are marked
in bold and use K = 30 and the whole query nodes.

Effect of K. The results of varying the maximum number
K of stops are shown in Figure 13. Our EBRR takes around
10 seconds to plan a new bus route, which is faster than the
other two baselines. The execution time is basically larger as
K increases since we consider more nodes. Besides, the time
cost on the final path refinement is greater when there are
more nodes, but it could be ignored since a bus route in a real
scenario usually has few stops.

Effect of Q. Figure 14 plots the results of varying the
multiset Q of query nodes. The superiority of EBRR can be
easily seen from both the Chicago and NYC datasets. The time
cost of EBRR is negligible, but the other two algorithms take
minutes long. The execution time could be even longer when
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Fig. 14: Execution time of varying Q

TABLE III: Execution time (s) of EBRR of varying C (km)

Datasets C = 1 C = 2 C = 3 C = 4 C = 5
Chicago 4.51 2.10 3.54 3.59 3.64

NYC 4.73 7.43 7.06 9.62 12.4
Orlando 1.50 1.67 2.15 2.43 4.48
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Fig. 15: Ablation study on Chicago datasets
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Fig. 16: Ablation study about the path refinement

they preprocess the other data by some matrix operations.
Effect of C. Table III presents the time cost of varying the

maximum cost between two adjacent stops C. Basically, the
execution time increases as C is larger on all datasets because
more potential stops satisfy the constraints and are taken into
consideration. It could be observed that the time cost for NYC
is higher than that of the other two cities, which is consistent
with the largest size of NYC datasets. For all settings, it just
takes at most 20 seconds for EBRR to plan a bus route, which
is efficient in practice.

Effect of α. Table IV shows the execution time of varying
α. When α is larger, the results include more existing stops
with more transfer choices. It can be seen that the time cost
is insensitive to α. EBRR still runs fast in 10 seconds.

Ablation Study. To learn the performance of our proposed
speed-up techniques, we did an ablation study. Specifically,
we considered five variants: the vanilla one which finds the
node with the maximum utility by enumerating all nodes,
EBRR using the real cost instead of the lower bound price

TABLE IV: Execution time (s) of EBRR of varying α

Datasets α = 1k α = 2k α = 3k α = 4k α = 5k
Chicago 1.62 1.87 2.10 3.65 5.48

NYC 7.39 7.35 7.43 7.37 7.40
Orlando 2.95 1.68 1.67 1.78 1.75

(Algorithm 4), EBRR without the filtered queue, EBRR without
the path refinement, and EBRR. Since the first two variants
need at least one hour long, we only reported the results of
the last three algorithms by varying the maximum number K
in Figure 16. In Figure 15a, it can be seen that EBRR runs
faster than its variant without the filtered queue for each K,
which further indicates that EBRR does benefit from using
the filtered queue. Since path refinement is the final step of
EBRR, it can be observed in Figure 15b that EBRR runs a bit
slower than its variant without the path refinement. However,
path refinement is important for EBRR because it increases the
utility values of EBRR (shown in Figure 16a) and the number
of bus stops (shown in Figure 16b).

C. Summary

We summarize our findings as follows.
(i) Our proposed EBRR outperforms the other two baselines

by achieving up to a 50% reduction on the walking cost and
offering transfer choices twice as many as the others.

(ii) EBRR is efficient for the large network and query data
of a city. It runs in 20 seconds without preprocessing data,
whereas the baselines need more than one minute with their
preprocessing times of at least 4 hours.

(iii) The proposed speed-up techniques could save the
execution time by at least one hour long.

VII. CONCLUSION

This paper studies the problem of planning a bus route on
road networks. Specifically, we propose the Bus Routing on
Roads problem which takes into consideration two common
goals of matching the demand and connecting the transit
network. Noticing the efficiency issue of previous work, we
designed the algorithm named Efficient Bus Routing on Roads
(EBRR). It could plan a new bus route for large road networks
in around 10 seconds while using the accurate cost measure-
ment. We also propose speed-up techniques such as the filtered
queue and the lower bound price. We show its approximation
ratio and time complexity and empirically compare it with two
state-of-the-art solutions. Experimental results demonstrate the
superiority of our EBRR. Our EBRR could run 60x faster than
the baselines while achieving higher utility values. It also does
not preprocess data, whereas other baselines spend at least 4
hours. For future work, since other factors may be considered
in reality, one may study the post-processing solutions when
considering our results as the first-stage output.
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