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Abstract—Session-based recommendation aims to predict the
next item in an anonymous session. Recent advances have
shown the importance of exploiting inter-session dependencies,
such as item-item transitions and session-session similarities.
However, the existing methods either ignore the relative order
of item co-occurrences or assign the same importance to co-
occurrence patterns at all distances. Besides, they are prone
to extracting wrong signals to learn user preferences from
dependencies between sessions. To solve these problems, we
propose a model called FOCOL to better exploit the inter-
session dependencies by considering Fine-grained item co-
Occurrences and applying the COntrastive Learning frame-
work. Specifically, to capture inter-session item-item depen-
dencies, we propose a component called FOGCN (Fine-grained
co-Occurrence Graph Convolution Network) to automatically
learn the importance of item co-occurrence patterns from a
global graph that encodes the detailed information about item
co-occurrences such as relative order and distance. To directly
capture dependencies between sessions, we view the recommen-
dation task as a clustering problem, and propose a component
called CSRL (Contrastive Session Representation Learning) to
implicitly group similar sessions (i.e., sessions with the same
next item) into the same cluster and push apart sessions at
different clusters. Extensive experiments conducted on three
public datasets show that the proposed model is superior to
the state-of-the-art methods and the proposed two components
can learn more informative item and session representations by
considering the fine-grained item co-occurrences and directly
capturing dependencies between sessions.

1. Introduction

With the explosive growth of information, recommender
systems (RSs) become a critical tool to alleviate the infor-
mation overload problem in many online services such as
e-commerce and media sharing websites. Conventional rec-
ommendation methods such as collaborative filtering [1, 2]
rely on tracking user identities to model each individual
user’s preferences, which may make them perform poorly
in scenarios where user identities cannot be tracked, due to
some reasons including anonymous users or privacy issues
[3, 4, 5]. Session-based recommendation (SBR) addresses
this problem by assuming that users perform actions on
a session basis, where a session is a sequence of actions
in close temporal proximity. Under this assumption, users’
actions in the same session are highly correlated [3, 6, 7],
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Figure 1. An example of inter-session relationships

and thus, the sequential and co-occurrence patterns in the
active session can be utilized to more accurately model
the current user’s preferences. Since SBR does not require
user information and the “session-based” assumption is a
common phenomenon, it is of great practical value and has
received much attention from researchers recently.

The task of SBR is to predict the next action given the
historical actions in an anonymous session. Early studies
in SBR [3, 7, 8, 9, 10] extract user preferences only from
the contextual information within the given session. Since
sessions are usually very short, it is hard to correctly infer
user preferences from the limited number of user actions
[9, 10, 11]. To mitigate this data insufficiency issue, several
recent studies [5, 12, 13, 14] have attempted to utilize the
inter-session relationships to more accurately model user
preferences. There are two levels of inter-session relation-
ships which are useful to predict users’ future intent, namely
the item level and the session level.

The item-level inter-session relationships refer to the
dependencies between item co-occurrences in different ses-
sions. An example is shown in Figure 1. Suppose the current
session s3 consists of a sequence of tablets clicked by an
anonymous user and the the ground-truth next item we
aim to predict is a Smart Keyboard. If only the context
information in s3 is used to predict the next item, the RS
may think the user wants to see more tablets. However,
the user may have already decided to buy iPad Pro and
s/he wants to buy a keyboard case next. Thus, the RS fails
to correctly infer the user’s intent. If the RS is aware of
the co-occurrence pattern in another session s1, where a
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user first clicks the iPad Pro and then clicks the Smart
Keyboard, the RS will be able to add Smart Keyboard into
the recommendation list. Therefore, it is crucial to utilize
the item-level inter-session relationships to correctly capture
user preferences. Although methods that predict the next
item by considering only the within-session information
may learn to capture such simple first-order co-occurrences
implicitly, they cannot handle more complex higher-order
inter-session co-occurrences that involve multiple items and
sessions. Recent studies explicitly encode the item-level
inter-session relationships by a global item graph. Each edge
has a weight to denote the correlation strength between
two items, which is empirically defined to be the number
of direction transitions [14], co-occurrences within a fixed-
sized window [5], or all co-occurrences [13] in the training
set. By propagating the item embeddings on the global
graph with a multi-layered graph neural network (GNN),
the final item representations can effectively capture the
complex high-order inter-session item dependencies which
can provide rich information for the subsequent session
representation learning. However, these methods either do
not consider all co-occurrences [5, 14] or are unaware of
the relative order and distance of items [5, 13].

The session-level inter-session relationships refer to the
connections between sessions with similar intents. There
are two representative methods along this line of research.
CSRM [15] learns a neighbor view of the current session
which is a weighted sum of the representations of the top-
k most similar sessions in a first-in-first-out memory bank.
However, even when there is no similar sessions in the mem-
ory bank, a neighbor view is still extracted and contributes
to the prediction, which could provide incorrect signals to
infer the real user preferences. DHCN [13] captures inter-
session relationships by a line graph that contains sessions
as nodes, where the edge weight between two sessions is
defined to be their Jaccard similarity [16] (i.e., the ratio of
intersection over union). The session embeddings (initial-
ized as average item embeddings) are refined by a graph
convolution network (GCN) to make adjacent sessions have

similar representations. The problem of this approach is that
sessions with a large Jaccard similarity does not necessarily
reflect similar preferences. For example, in Figure 1, s2 has
a larger Jaccard similarity to s3 than s1, but s1 provides a
correct hint to the next item of s3 (a keyboard case) while
s2 provides an incorrect hint (an adapter).

To tackle the above problems of existing methods in cap-
turing inter-session relationships, we propose a model called
FOCOL which considers Fine-grained co-Occurrences and
applies COntrastive Learning to directly capture inter-
session relationships. The model architecture of FOCOL
is shown in Figure 2. First, we build a global item graph
called FOG (Fine-grained co-Occurrence Graph) from all
historical sessions that encodes the detailed information
about item co-occurrence such as the frequency, relative
order and distance as weight vectors on directed edges.
Then, we propagate the initial item embeddings E(0) on
FOG with a graph convolution network called FOGCN
which can automatically learn the co-occurrence patterns
with different relative order and distance. The final item
representations E(g) of FOGCN capture the item-level inter-
session relationships. To capture session-level inter-session
relationships, given the current session s, we sample one
positive session that has the same semantics as s and Kns

negative sessions that have different semantics. We consider
two sessions to have the same semantics if they have the
same next item. The current session is encoded by the
session encoder to obtain the session embedding hs while
the sampled sessions are encoded by the augmented session
encoder which applies augmentation operations that do not
change the semantics before encoding the sampled sessions.
The session embeddings are contrasted by the contrastive
session representation learning (CSRL) component to im-
plicitly group similar sessions and push away different ses-
sions, which can effectively improve session representation
learning. Finally, the recommendation module generates a
probability distribution of the next item from the global item
embeddings and the current session embedding.

The main contributions of this study are summarized as



follows. (1) To capture item-level inter-session relationships,
we propose FOG to encode the item co-occurrences at
a fine-grained level and apply FOGCN to automatically
learn the importance of ordered co-occurrences at different
distances. (2) To directly capture session-level inter-session
relationships, we view the recommendation task as a cluster-
ing problem and apply the contrastive learning framework to
implicitly groups similar sessions into the same cluster and
push away sessions at different cluster, which can effectively
improve session representation learning. (3) Extensive ex-
periments are conducted on three public benchmark datasets,
which show that the proposed model FOCOL can achieve
state-of-the-art performance and is effective in learning more
informative item and session representations.

2. Related Work

In this section, we review the related work on session-
based recommendation (Section 2.1) and constrastive learn-
ing (Section 2.2).

2.1. Session-based Recommendation

Collaborative filtering (CF) has been widely applied in
recommender systems to model users’ general preferences
by their historical interactions with items. CF methods such
as [1, 2] that are based on factorizing the user-item interac-
tion matrix can be adapted for SBR by considering each
session as a user. The test sessions are treated as cold-
start users and the average of item embeddings in each test
session is used as the session representation. The problem
of these approaches is that there is a discrepancy between
training and testing, and the ordering information in sessions
are neglected. Item-based CF has also been applied to SBR
by computing an item-item similarity matrix from item co-
occurrences in all historical sessions [17]. Similar to matrix
factorization-based CF methods, item-based CF methods fail
to capture the sequential order of items in sessions.

To model the sequential signals in sessions, Markov
chain-based methods can be applied. Each session is mod-
eled as a Markov chain and the user’s next action can
be inferred from the last state. For example, Rendle et al.
[18] proposed FPMC which combines matrix factorization
and Markov chain to capture both general user preferences
and sequential patterns. Since the number of states grows
exponentially when more previous items are considered,
most Markov chain-based methods use only the first-order
transition matrix, which makes them unable to capture com-
plex high-order sequential patterns.

Recurrent neural networks (RNNs) are inherently de-
signed for modeling sequential data and many effective
RNN-based methods have been proposed for SBR. Hidasi
et al. [3] proposed the first RNN-based method called
GRU4Rec for SBR, which stacks multiple layers of Gated
Recurrent Unit (GRU) to model the complete item inter-
action sequence. Li et al. [8] proposed NARM that incor-
porates the attention mechanism into GRU to model the
user’s sequential behavior and main purpose in the active

session. ISLF [19] captures the user’s main intention with
a recurrent variational autoencoder and estimates the user’s
interests shift by combining both the sequential behavior
characteristics and item frequencies in the current session.

Convolutional neural networks (CNNs) are also explored
for SBR due to their abilities to extract sequential features.
Tuan and Phuong [20] proposed a 3D CNN model for SBR
that allows combining different content features such as
item descriptions and item categories with character-level
encoding for all features. Yuan et al. [6] proposed NextItNet
which uses dilated convolution to effectively model long-
range dependencies in sessions.

Both RNNs and CNNs are powerful sequential model-
ing tools, but they mainly focus on modeling consecutive
sequential patterns, making them less powerful in capturing
non-adjacent item transitions. Recently, graph neural net-
works (GNNs) have attracted much attention in the field
of SBR due to their capabilities to model complex item
transition patterns in sessions. Wu et al. [10] proposed SR-
GNN which converts a session into an unweighted directed
graph and employs a gated GNN (GGNN) to propagate item
embeddings along both directions of the edges in the session
graph. Following this work, Xu et al. [21] proposed GC-
SAN which improves the ability of SR-GNN in capturing
long-range dependencies by the self-attention mechanism.
Chen and Wong [7] proposed two GNN layers to solve the
information loss problems in GNN-based models for SBR.
Pan et al. [22] proposed SGNN-HN which contains a star
GNN to capture relations between items without direct con-
nections and a highway network with a gating mechanism
to alleviate the oversmoothing problem in GNNs.

Recently, it is shown that the global cross-session transi-
tion dynamics among items can improve item representation
learning and lead to better session recommendation perfor-
mance. Wang et al. [5] proposed GCE-GNN which con-
structs a global item graph by connecting items that co-occur
within a fixed-sized window. Xia et al. [13] proposed DHCN
which performs graph convolution on a hypergraph to obtain
global item representations. The hypergraph is equivalent to
a global item graph in which items are connected if they
are in the same session. Huang et al. [14] proposed MTD
which has a directed item graph constructed from the direct
transitions among items. However, these methods are unable
to distinguish the different importance levels of item co-
occurrences with different distances.

2.2. Contrastive Learning

Contrastive learning has been widely applied to various
deep learning fields as an effective framework for self-
supervised learning which can help with a variety of down-
stream tasks [23, 24, 25, 26, 27, 28, 29]. For the computer
vision tasks, the early methods such as CPC [23] and DIM
[24] were proposed to contrast the representations of the
different scales of the same image as the positive pairs.
Some follow-up works such as MoCo [25] and SimCLR
[26] considered the augmentations of the same image as pos-
itive pairs for contrastive learning. For the natural language



processing problems, Yan et al. [28] proposed ConSERT
which applies contrastive learning to solve the collapse issue
of BERT-derived sentence representations. Gao et al. [29]
proposed SimCSE which uses only the standard dropout
augmentation to produce positive pairs.

Contrastive learning has also shown great potential in
a variety of recommendation tasks. For the collaborative
filtering tasks, SGL [30] generates different views of nodes
in the user-item graph with node dropout, edge dropout, and
random walk. Yao et al. [31] proposed a data augmentation
method that exploits feature correlations and are applicable
to heterogeneous categorical features. For the sequential
recommendation problems, Zhou et al. [32] proposed to con-
trast the prediction and ground-truth of attribute-level, item-
level, and segment-level representations in the pretraining
stage. Xie et al. [33] proposed CL4SRec which is equipped
with three data augmentations at the discrete item level
and samples two augmentations to construct positive pairs.
Although these contrastive learning methods have achieved
decent improvements in the target recommendation tasks,
they are not suitable for session-based recommendation be-
cause their data augmentation strategies either cannot handle
sequential data or would lead to unreliable self-supervision
signals. DHCN [13] is the most relevant work to ours
which constructs a positive pair of session representations
by performing graph convolution on an item graph and
a session graph. However, the session graph uses Jaccard
similarity to measure the similarity between sessions, which
can enforce two sessions with different semantics to have
similar representations.

3. Methodology

In this section, first, we give a formal definition of
session-based recommendation in Section 3.1. Then, we
introduce our method to capture the item-level and session-
level inter-session relationships in Section 3.2 and Sec-
tion 3.3, respectively.

3.1. Problem Definition

Let I be the set of all unique items in the dataset
D and let N be the number of items. A session s =
[is,1, is,2, · · · , is,|s|] is a sequence of items interacted by an
anonymous user and sorted in chronological order, where
is,t ∈ I is the tth interacted item in session s and |s|
denotes the session length. The objective of a session-based
recommender system is to predict the next item is,|s|+1 of
session s by generating a probability distribution ŷs ∈ RN

over I, where ŷsi is the predicted probability that item i
is the next item of s. The top-K items with the largest
probabilities are recommended as the candidate items.

3.2. Capturing Item-level Inter-session Relation-
ships

In this subsection, we introduce how to capture item-
level inter-session relationships by FOG and FOGCN.

3.2.1. Constructing FOG. First, we build the FOG from
all historical sessions. The FOG, denoted by G = (V, E), is
a directed graph containing all items as nodes, i.e., V = I.
There are two edges with opposite directions between item
i and item j if they appear in the same session. To encode
the fine-grained co-occurrences between items, each edge
(i, j) is associated with a weight vector wij ∈ R2L, where
L is the maximum distance between any two items in any
session. The entry of wij is defined as follows:

wij [k] =
∑
s∈D

∑
1≤t,t+k≤|s|

1{is,t=i∧is,t+k=j} ,for 1 ≤ |k| ≤ |L|

(1)

where 1A is the indicator function of event A which eval-
uates to 1 if A is true and 0 otherwise. The index of wij

starts from 1 and a negative index k is the Python-style
notation that denotes the (−k)th last entry, i.e., wij [k] =
wij [2L+ k + 1], for −L ≤ k ≤ −1.

Note that wij encodes the ordered co-occurrences be-
tween item i and item j at all distances. Specifically, the
first L and the last L entries, count the numbers of forward
and backward transitions from item i to item j, respectively
(order information). The entry wij [k] denotes the number
of times that item i and item j has a relative distance of k
(distance information).

The edges are directed because wij ̸= wji. However,
the weight vectors of edges with opposite directions are
symmetric, i.e., wij = reverse(wji).

3.2.2. Computing Global Item Embeddings with
FOGCN. After constructing the global graph FOG, we
propagate the initial item embeddings E(0) ∈ RN×d on
FOG with a graph convolution network called FOGCN to
capture complex high-order inter-session co-occurrences.

Let E(l) ∈ RN×d be the item embedding matrix at layer
l, where d is the dimensionality of item embeddings. The
refined item embedding of item i at layer l, denoted by
h
(l)
i = E

(l)
i ∈ Rd, is computed as the weighted sum of the

neighboring item embeddings in the previous layer:

h
(l)
i =

∑
j∈N(i)

α
(l)
ij ⊙ h

(l−1)
j (2)

where N(i) is the set of item i’s neighbors, ⊙ denotes
element-wise multiplication. α

(l)
ij ∈ Rd is the importance

weight vector of the neighboring item embedding h
(l−1)
j ,

where α
(l)
ijk is the importance weight of the kth feature of

h
(l−1)
j .

The importance weight vector α(l)
ij is computed from the

edge weight vector wij as follows:

α
(l)
ij =

exp
(
P (l)wij

)
∑

k∈N(i) exp
(
P (l)wik

) (3)

where P (l) ∈ Rd×2L is a matrix of learnable parameters.
The entry P (l)

mn can be interpreted as the contribution of



the co-occurrences at a relative distance of n towards the
m-th feature in the item embeddings. Therefore, each layer
of FOGCN can automatically learn the importance of item
co-occurrences at different relative distances.

After propagating the item embeddings for LG steps, we
compute the final global item embeddings as the average of
item embeddings at all layers to capture both the low-order
and high-order item-level inter-session relationships:

Eg =
1

T + 1

LG∑
l=0

E(l) (4)

For each item i, its global embedding Eg
i can capture the

important co-occurrences involving i and up to LG other
items across up to LG sessions.

3.3. Capturing Session-level Inter-session Relation-
ships

In this subsection, we first analyze the procedure of
generating recommendations and show that the recommen-
dation task can be formulated as a clustering problem (Sec-
tion 3.3.1). Then, we propose to facilitate the recommen-
dation task by applying the contrastive learning framework,
which can improve session representation learning by di-
rectly capturing session-level inter-session relationships.

3.3.1. Recommendation as a Clustering Problem. We
break the recommendation procedure into two steps, namely
session embedding generation and probability generation.

Session Embedding Generation: Given the current ses-
sion s = {is,1, is,2, · · · , is,t} whose ground-truth next item
is is,t+1, where t is the length of s, the session embedding
generation step generates a fixed-sized vector representation
of s, denoted by hs ∈ Rd.

In this paper, to obtain hs, first, we map each item to
its global item embedding to obtain a session embedding
matrix Es ∈ Rt×d, where Es,t = Eg

is,t
. This is different

from the common approach adopted by the existing studies
[5, 8, 10, 13] that maps items to their initial item embeddings
E(0) because we found that the global item embeddings
contain richer information that are useful for the subsequent
sequence modeling.

Then, we refine the global item embeddings by a Trans-
former Tr [34] to model the sequential dependencies within
the session. Since Transformers need additional position
embeddings to encode the positional information of the
input embeddings, following the previous work [5, 13], we
add a learnable reverse position embedding to each item
embedding to indicate its position relative to the last item:

X
(0)
s,j = Es,j + P t+1−j , 1 ≤ j ≤ t (5)

where Es,j ∈ Rd is the item embedding at position j
and P t+1−j ∈ Rd is the corresponding reverse position
embedding with reverse position t+1− j. For example, the
first item embedding Es,1 has a reverse position embedding

P t. X(0)
s ∈ Rt×d is the initial input embedding matrix to

the Transformer.
Let LT be the number of layers in the Transformer

encoder, the last item embedding in the last layer is used as
the session embedding:

X(LT )
s = Tr

(
X(0)

s

)
(6)

hs = X
(LT )
s,t (7)

Probability Generation: The objective of this step is to
generate a probability distribution of the next item, denoted
by ŷs ∈ RN , over the entire item set. In this paper, we first
compute the score of item i being the next item of s as
follows:

zsi = hT
s E

g
i (8)

Then, the predicted probability distribution is computed
by a softmax operation:

ŷs = softmax(zs) (9)

Analysis: Suppose we create a cluster in a d-dimensional
space Md for each item and the center of the cluster
corresponding to item i is its embedding Eg

i , then the
recommendation task essentially tries to embed each session
into a point (i.e., session embedding) in Md which is most
probably assigned to the cluster corresponding to the correct
next item. Specifically, Equation (8) computes the distance
between hs and the cluster center of item i, and Equation (9)
normalizes the distances to obtain the probability of s be-
longing to each cluster.

Let ys ∈ RN be an one-hot vector denoting ground-
truth probability distribution, where ys

is,t+1
= 1, the learning

objective of the recommendation task is to minimize the
expected cross entropy between ys and ŷs:

Lrec = E
s∼D

[
−

N∑
i=1

ysi log ŷ
s
i

]
= − E

s∼D

[
log ŷsis,t+1

]
(10)

Thus, the recommendation task aims to maximize
ŷsis,t+1

, which depends on the distances between the session
embedding hs and all the cluster centers, meaning that
this learning objective only considers relationships between
sessions and items. To improve the clustering performance,
another effective approach is to directly capture the relation-
ships between sessions by minimizing the distances between
session embeddings in the same cluster and maximizing the
distances between session embeddings in different clusters,
which can be achieved by our contrastive session representa-
tion learning (CSRL) component described in Section 3.3.2.

3.3.2. Contrastive Session Representation Learning. To
directly capture the relationships between sessions with
contrastive learning, we consider the session embeddings
in the same cluster as different views of the same object
(i.e., the cluster). Specifically, given a session s, we sample
one positive session s+ from the same cluster and Kns

negative sessions Ns from other clusters. Then, we follow
InfoNCE [35] to maximize a lower bound of the the mutual



information between the session embeddings in the same
cluster:

Lcl(s) = − log
exp

(
hT
s hs+

)
exp

(
hT
s hs+

)
+
∑

s−∈Ns
exp

(
hT
s hs−

)
(11)

Due to the popularity bias problem [36], most of clusters
only contains a few sessions (i.e., the unpopular items
are the next items of only a few sessions), there are not
sufficient positive pairs of session embeddings to effectively
capture the relationships between sessions in these clusters.
Therefore, to address this problem and also to improve the
generalization ability of the model, we apply data augmen-
tation on the sampled sessions to generate more positive and
negative pairs.

Specifically, let hA
s be the embedding of session s

after applying augmentation operation A, we optimize the
following contrastive learning objective:

LA
cl(s) = − log

exp
(
hT
s h

A
s+

)
exp

(
hT
s h

A
s+

)
+
∑

s−∈Ns
exp

(
hT
s h

A
s−

)
(12)

where the embeddings of the sampled sessions are replaced
by the embeddings of the augmented sessions.

Note that the augmentation operation A should not
change the semantics of the session representation, i.e., after
applying the data augmentation operation A, the embedding
of the positive session hA

s+ should still be assigned to the
same cluster as the current session s. Otherwise, hs and hA

s+

do not form a positive pair and optimizing Equation (12) will
produce wrong learning signals.

Existing contrastive learning methods [28, 32] that oper-
ate on the discrete data levels (e.g., item masking, sequence
cropping, and reordering) do not satisfy this requirement.
For item masking, since sessions are usually very short
(less than 6 items), there may not be enough information
to correctly infer the next item. For sequence cropping and
reordering, the augmented session can become a totally
different session that have a different next item.

In this paper, given a session s, we propose to augment
the session at the item embedding level (i.e., the input
embeddings X(0)

s to the Transformer) with the following
three augmentation operations:

1) Corrupt: corrupt X(0)
s by a slight noise sampling from

a normal distribution N (0, σ2).
2) Dropout: perform dropout on X(0)

s with drop ratio r.
3) Insert: insert a learnable mask embedding m into X(0).

Suppose we insert m at position j, where 1 ≤ j ≤ t+1,
then the augmented input embedding will be {X(0)

s,1,

· · · ,X(0)
s,j−1,m,X

(0)
s,j , · · · ,X

(0)
s,t }

Let X(0)
A,s be the input embeddings altered by augmentation

operation A. It replaces X(0)
s as the input to the Transformer

encoder to obtained the augmented session embedding hA
s .

For Corrupt and Dropout, they will not change the
semantics of the resulted session embedding because we

can set σ and r to small values (in our experiments,
σ = r = 0.1). For Insert, it is easy for the session encoder
Tr to learn to ignore m. Therefore, the augmented session
embedding hA

s retain the same semantics as the original
session embedding hs, which can provide more session
pairs for the CSRL component to effectively capture the
relationships between sessions.

To allow Equation (12) to capture the relationships
between the original sessions, we also create an Identity
augmentation operation that does nothing on X(0)

s . Let A
be the set of all four augmentation operations, the overall
learning objective of our model is:

L = Lrec + β · Lcl = Lrec + β · E
s∼D,A∼A

[
LA
cl(s)

]
(13)

where β is a hyper-parameter controlling the magnitude of
the contrastive learning task.

4. Experiments

In this section, we first describe the experimental settings
and then analyze experimental results.

4.1. Datasets

We conducted our experiments on three real-world
benchmark datasets: Tmall1, RetailRocket2, and Diginet-
ica3, which are commonly used in the literature of SBR
[5, 8, 10, 13, 21]. For fair comparison, we follow the
same dataset preprocessing steps in the previous studies
[5, 10, 13]. Specifically, we filtered out sessions with length
1 and items with frequency less than 5. Then, the latest data
(e.g., the data of the last week in RetailRocket) was extracted
as the test set and all the previous data was used as the train-
ing set. Finally, we applied a data augmentation technique
to generate multiple labelled sequences from each session.
For example, we would generate a list of sequence-label
pairs ([s1], s2), ([s1, s2], s3), · · · , ([s1, s2, · · · , s|s|−1], s|s|)
from session s = [s1, s2, · · · , s|s|]. Some statistics of the
datasets after preprocessing are shown in Table 1.

TABLE 1. STATISTICS OF DATASETS USED IN THE EXPERIMENTS

Dataset #Training Sessions #Test sessions #Items Average Length

Tmall 351,268 25,898 40,728 6.69
RetailRocket 433,643 15,132 36,968 5.43

Diginetica 719,470 60,858 43,097 5.12

4.2. Baseline Methods and Evaluation Metrics

To show the advantages of our method, we used the
following representative baselines for SBR in our experi-
ments: (1) ItemKNN [17] is an item-based CF methods
which recommends items that are the most similar to the

1. https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2. https://www.kaggle.com/retailrocket/ecommerce-dataset
3. https://competitions.codalab.org/competitions/11161

https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://competitions.codalab.org/competitions/11161


TABLE 2. PERFORMANCE COMPARISONS ON THREE DATASETS

Model Tmall RetailRocket Diginetica

HR@10 MRR@10 HR@20 MRR@20 HR@10 MRR@10 HR@20 MRR@20 HR@10 MRR@10 HR@20 MRR@20

ItemKNN 7.34 3.41 9.47 3.56 23.83 11.20 29.27 11.58 25.07 10.77 35.75 11.57
FPMC 13.10 7.12 16.06 7.32 25.99 13.38 32.37 13.82 15.43 6.20 22.14 6.66

GRU4Rec 9.47 5.78 10.93 5.89 38.35 23.27 44.01 23.67 17.93 7.73 30.79 8.22
NARM 19.17 10.42 23.30 10.70 42.07 24.88 50.22 24.59 35.44 15.13 48.32 16.00
STAMP 22.63 13.12 26.47 13.36 42.95 24.61 50.96 25.17 33.98 14.26 46.64 15.13
SR-GNN 23.41 13.45 27.57 13.72 43.21 26.07 50.32 26.57 38.42 16.89 51.26 17.78

GCE-GNN 28.01 15.08 33.42 15.42 47.36 26.97 55.57 27.54 41.16 18.15 54.22 19.04
DHCN 26.22 14.60 31.42 15.05 46.15 26.85 53.66 27.30 40.21 17.59 53.66 18.51
FOCOL 28.51 15.73 33.71 16.04 49.80 30.18 57.83 30.96 41.23 18.20 54.08 19.11

last item, where cosine similarity is adopted to measure
the similarity between items. (2) FPMC [18] combines MF
and Markov-chain for personalized next-basket recommen-
dation. To adapt it for SBR, following [5, 8, 9], we ignored
the user latent representations when computing recommen-
dation scores. (3) GRU4Rec [3] models user sequences
with a multi-layered GRU and trains the model with a
session-parallel mini-batch setting with ranking-based loss
functions. (4) NARM [8] is an RNN-based SBR model that
incorporates the attention mechanism into GRU to model
users’ main purpose and sequential behavior. (5) STAMP
[9] is an attention-based model for SBR that captures users’
short-term interests by the self-attention of the last item.
(6) SR-GNN [10] employs GGNN to capture complex tran-
sition patterns among items in each session. (7) GCE-GNN
[5] learns session-level and global-level item representations
by graph attention networks and employs an attention mech-
anism with reversed position encoding to extract session
representations from two levels of item representations.
(8) DHCN [13] performs graph convolution on a hypergraph
channel and a line graph channel to capture high-order cor-
relations among items and integrate self-supervised learning
into SBR.

Following previous studies [5, 6, 7, 8, 9, 10], we adopted
the commonly used hit rate at K (HR@K) and mean
reciprocal rank at K (MRR@K) as the evaluation metrics
and reported the results for K = 10, 20 in our experiments.

4.3. Hyperparameter Setup

Following the existing methods [5, 8, 10, 13], we set
the embedding size d to 100, the batch size to 100, and the
L2 regularization to 10−5 for all models. For the baseline
models, if their datasets and evaluation settings were the
same as ours, we directly report their results in the original
papers. Otherwise, we ran their released code with their best
parameters setups reported in the original papers to obtain
the results. In our model, all parameters were initialized us-
ing a Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. The mini-batch Adam optimizer with a
learning rate of 0.001 was used to optimize our model. We
performed grid search to find the optimal hyperparameters
on a validation set, which was the last 10% of the training
set. The ranges for the hyperparameters were: {1, 2, · · · , 5}
for the number of FOGCN layers LG and the number of

Transformer layers LT , {0.001, 0.003, 0.01, · · · , 0.3, 1} for
the magnitude of the CSRL task β.

4.4. Performance Comparisons

Table 2 shows the experimental results of all the com-
pared methods and the best results are highlighted in bold-
face. From the results, we can have the following conclu-
sions:

The conventional methods ItemKNN and FPMC are
not competitive because they only use the last item for
prediction without considering the complete contextual in-
formation of the entire session. The neural network-based
methods have much better performance, showing the pow-
erful sequential modeling capability of deep learning mod-
els. NARM and STAMP achieve better performance than
GRU4Rec, because they use the attention mechanism to
dynamically select the important items for learning session
representations.

GNN-based methods generally perform much better than
the other kinds of neural network models, proving the power
of GNNs in capturing complex item transition patterns.
GCE-GNN and DHCN obtain better results than SR-GNN,
which proves that capturing inter-session relationships can
help the model more accurately infer users’ preferences
in SBR. DHCN is less performant than GCE-GNN. One
possible reason is that the global graph in GCE-GNN uses
item co-occurrences within a window while the hypergraph
in DHCN is equivalent to use all co-occurrences without
considering the relative distance, meaning that DHCN is
more easily affected by uncorrelated items.

The proposed model FOCOL outperforms all baselines
on all the datasets. Particularly, on Tmall and RetailRocket,
FOCOL beats the previous state-of-the-art method GCE-
GNN by a large margin, showing the effectiveness of con-
sidering the item-level inter-session relationships at a fine-
grained level and improving session representation using
contrastive learning. Although DHCN also has a contrastive
learning module capture the relationships between sessions,
it implicitly enforces sessions with large Jaccard similar-
ity to have similar representations, which could introduce
wrong signals for session representation learning. Note that
FOCOL achieves different performance improvements on
different datasets. One possible reason is that the sessions
in RetailRocket share the strongest correlation among three



datasets, so our method benefits more from capturing the
two levels of inter-session relationships on RetailRocket.

4.5. Ablation Study

In the subsection, we conduct ablation study to inves-
tigate the contribution of two components, FOGCN and
CSRL, to the performance of our model.

TABLE 3. COMPARISON OF DIFFERENT VARIANTS OF FOCOL WITH
FOGCN MODIFIED

Model Tmall RetailRocket Diginetica

HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

FOCOL-NG 31.32 15.01 54.67 30.48 49.76 17.93
FOCOL-SG 32.04 15.69 55.23 30.60 52.88 18.43

FOCOL 33.71 16.04 57.83 30.96 54.08 19.11

4.5.1. Effectiveness of FOGCN. To study the effectiveness
of the proposed FOGCN component, we create two variant
of our model: (1) FOCOL-NG is a model with the FOGCN
removed. We replace the global embedding Eg with the
initial embeddings E(0). (2) FOCOL-SG is a model which
uses a simple graph instead of a FOG. The weights of
co-occurrences at different distances are fixed to 1. The
results are shown in Table 3. From the results, we can
see that FOCOL-NG has the worse performance, which
means that capturing item-level inter-session relationships is
important to accurately infer user preferences. With a simple
graph that captures the item co-occurrences at a coarse level,
FOCOL-SG can already significantly outperforms FOCOL-
NG. However, FOCOL-SG still has much lower results than
our original model, showing the effectiveness of considering
item co-occurrences at a fine-grained level.

TABLE 4. COMPARISON OF DIFFERENT VARIANTS OF FOCOL WITH
CSRL MODIFIED

Model Tmall RetailRocket Diginetica

HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

FOCOL-NCL 32.44 15.29 55.76 28.03 53.10 18.35
FOCOL-NC 33.51 15.70 57.35 30.65 53.61 18.72
FOCOL-ND 33.57 15.79 57.46 30.72 53.74 18.81
FOCOL-NI 33.65 15.97 57.62 30.88 53.95 19.02

FOCOL-NId 33.22 15.63 56.95 30.54 53.46 18.62
FOCOL 33.71 16.04 57.83 30.96 54.08 19.11

4.5.2. Effectiveness of CSRL. To investigate the contribu-
tion of CSRL, we create five variants of our model by mod-
ifying the CSRL component: (1) FOCOL-NCL removes
the CSRL component. (2) FOCOL-NC, FOCOL-ND, FO-
COL-NI, and FOCOL-NId remove one of the augmenta-
tion operations from CSRL. For example, FOCOL-NC has
no Corrupt augmentation, and FOCL-NId has no Identity
augmentation. The results are shown in Table 4. We can
see that the variant FOCOL-NCL with CSRL completely
removed has the worse accuracy, proving that capturing
the session-level inter-session relationships is essential for
improving SBR performance. The variants with one of

the augmentation removed achieve better performance than
FOCOL-NCL and are just slightly worse than the original
model, suggesting than all augmentation operations can help
improve session representation learning but none of them
plays a pivotal role. Among these four variants, FOCOL-
NID has the lowest performance, meaning that the rela-
tionships among the original sessions are more informative.
FOCOL-NC and FOCOL-ND has similar performance and
FOCOL-NI is the best, which may be because the sessions
pairs generated by Corrupt and Dropout are more challeng-
ing than those generated by Insert.
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Figure 3. Hyperparameter study

4.6. Hyperparameter Study

In this subsection, we study the hyperparameters of our
model, including the magnitude of the CSRL loss β, the
number of layers in FOGCN LG, and the number of layers
in the Transformer session encoder LT . We fixed the other
hyperparameters to their default values (β = 0.03, LG =
3, LT = 2) when varying one of them. We can have the
following observations from the results shown in Figure 3.

For the magnitude of the CSRL loss, the best setting is
β = 0.03 for both Diginetica and RetailRocket. When the
value of β is in the range of [0.01, 0.1], the performance on
both datasets is stable. However, the performance quickly
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Figure 4. The importance weight w.r.t. the relative distance

decreases when the value becomes smaller or larger. This is
because a small value of β means the model cannot utilize
the learning signals from the CSRL task, while a large
value switches the main learning objective to discriminating
session representations, while is not fully aligned with the
recommendation objective.

For the number of FOGCN layers LG, the optimal value
is 3. This is because when LG is too small, FOGCN cannot
capture the useful high-order inter-session item dependen-
cies. When LG is too large, FOGCN suffers from the over-
smoothing problem that is commonly observed in previous
studies [5, 7, 13, 37].

For the number of layers in the Transformer encoder
LT , we can see its best value is 3 on both datasets. This
may be because most of the sessions have a short length,
meaning that 3 layers is enough to capture the sequential
dependencies in most sessions. When LT is too large, the
model could suffer from the overfitting problem.

4.7. Visualizing Learned Importance Weights

In this experiment, we show the importance of consid-
ering fine-grained co-occurrences by visualizing the learned
importance weights. Specifically, we trained a model with
one FOGCN layer, and computed a matrix P ∈ Rd×2L

where P i = softmax(P (0)
i ) such that

∑2L
j=1 P ij = 1,∀1 ≤

i ≤ d. Then, P ij can be interpreted as the importance of the
co-occurrences at relative distance j to the i-th feature. Fig-
ure 4 plots the importance weight w.r.t. the relative distance.
The blue line is the expectation and the light-blue region
denotes the range within one standard deviation, where
the expectation and standard deviation are computed over
the feature dimension. The importance weights at relative
distances larger than 10 or smaller than -10 are not shown
because they are negligible. From these plots, we can see
that the learned importance weights are different at different
relative distances on different datasets. Besides, on Tmall
and Diginetica, the positive relative distances have larger
weights than the negative ones, while on RetailRocket, the
positive and negative relative distances have similar weights.
Therefore, it is important to learn the importance weights
dynamically to capture the different influences of relative
distance and order.

5. Conclusion

Recent studies on SBR have shown that capturing inter-
session information can help infer user preferences more
accurately. However, existing methods do not consider the
fine-grained item-level inter-session relationships and are
prone to extracting wrong signals to learn user preferences
from the session-level inter-session relationships. To fill the
gap, we propose FOGCN which can encode the inter-session
item co-occurrences in a fine-grained level and automatically
learn the importance of ordered co-occurrences at different
distances. Furthermore, we view the SBR task as a cluster-
ing problem and directly capture the relationships among
sessions by contrastive learning. Our experimental results
show that the proposed model can outperform the state-of-
the-art methods and effectively capture both the item-level
and session-level inter-session relationships.
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