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Abstract. We propose an integrated approach for solving both prob-
lems of finding the most popular k elements, and finding frequent ele-
ments in a data stream. Our technique is efficient and exact if the alpha-
bet under consideration is small. In the more practical large alphabet
case, our solution is space efficient and reports both top-k and frequent
elements with tight guarantees on errors. For general data distributions,
our top-k algorithm can return a set of k′ elements, where k′ ≈ k, which
are guaranteed to be the top-k′ elements; and we use minimal space
for calculating frequent elements. For realistic Zipfian data, our space
requirement for the frequent elements problem decreases dramatically
with the parameter of the distribution; and for top-k queries, we ensure
that only the top-k elements, in the correct order, are reported. Our
experiments show significant space reductions with no loss in accuracy.

1 Introduction

Recently, online monitoring of data streams has emerged as an important data
management problem. This new key research topic has its foundations and ap-
plications in many domains, including databases, data mining, algorithms, net-
working, theory and statistics. However, new challenges have emerged. Due to
their vast sizes, some stream types should be mined fast before being deleted
forever. Generally, the alphabet is too large to keep exact information for all
elements. Conventional database, and mining techniques, though effective with
stored data, are deemed impractical in this setting.

This work is primarily motivated by the setting of Internet advertising com-
missioners, who represent the middle persons between Internet publishers, and
Internet advertisers. The file systems are bombarded continuously by streams of
various types: advertisement rendering, clicks, sales, and leads; and each type is
handled differently. For instance, before rendering an advertisement for a user,
the clicks stream summary structure should be queried to determine what ad-
vertisements would suit the user’s profile. If the user’s profile indicates that
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(s)he is not a frequent “clicker”, then this user, most probably, will not click
any displayed advertisement. Thus, it can be more profitable to show Pay-Per-
Impression advertisements, which generate revenue on rendering them. On the
other hand, if the user’s profile was found to be one of the frequent profiles, then,
there is a good chance that this user will click some of the advertisements shown
and potentially generate a sale/lead transaction. In this case, Pay-Per-Click ad-
vertisements should be displayed. Choosing what advertisements to display en-
tails retrieving the top advertisement categories for this specific user profile.

From the above example we are motivated to solve two problems simultane-
ously. We would like to know if the user’s profile is frequent in the click stream,
and we need to identify the top advertisements for this specific profile. That is,
we need to solve both the frequent elements and the top-k problems.

The problems of finding frequent 1 and top-k elements are closely related, yet,
to the best of our knowledge, no integrated solution has been proposed. In this
paper, we propose an integrated approach for solving both problems of finding
the top-k elements, and finding frequent elements in a data stream. Our Space-
Saving algorithm reports both top-k and frequent elements with tight guarantees
on errors. For general data distributions, Space-Saving answers top-k queries by
returning a set of k′ elements, where k′ ≈ k, which are guaranteed to be the top-
k′ elements; and we use minimal space for calculating frequent elements. For
realistic Zipfian data, our space requirement for the frequent elements problem
decreases dramatically with the parameter of the distribution; and for top-k
queries, we ensure that only the top-k elements, in the correct order, are reported.

The rest of the paper is organized as follows. Section 2 highlights the related
work. In Section 3, we introduce our Space-Saving algorithm, and its associated
data structure, followed by a discussion of query processing in Section 4. We
comment on our experimental results in Section 5, and conclude in Section 6.

2 Background and Related Work

Formally, given an alphabet, A, a frequent element, Ei, is an element whose
frequency, or number of hits, Fi, in a stream S of a given size N , exceeds a
user specified support φN , where 0 ≤ φ ≤ 1; whereas the top-k elements are
the k elements with highest frequencies. Since the space requirements for exact
solutions of these problems are impractical [3], other relaxations of the original
problems were proposed. The FindCandidateTop(S, k, l) problem was proposed
in [3] to ask for l elements among which the top-k elements are concealed, with no
guarantees on the rank of the remaining (l−k) elements. The FindApproxTop(S,
k, ε) [3] is a more practical approximation for the top-k problem. The user asks
for a list of k elements such that every element, Ei, in the list has Fi > (1−ε)Fk,
where ε is a user-defined error, and F1 ≥ F2 ≥ . . . ≥ F|A|, such that Ek is the
element with kth rank. The Hot Items 2 problem is a special case of the frequent

1 The term “Heavy Hitters” was also used in [4].
2 The term “Hot Items” was coined later in [5].



elements problem, proposed in [13], that asks for k elements, each of which
has frequency more than N

k+1 . This extends the early work done in [2], and [8]
for identifying a majority element. The most popular variation of the frequent
elements problem, finding the ε-Deficient Frequent Elements [11], asks for all the
elements with fequency more than (φ − ε)N .

Several algorithms [3], [5], [6], [7], [9], [10], [11] have been proposed to handle
the top-k, the frequent elements problems, and their variations. These techniques
can be classified into counter-based, and sketch-based techniques.

Counter-based techniques keep an individual counter for each element
in the monitored set, a subset of A. The counter of a monitored element, ei, is
updated when ei occurs in the stream. If there is no counter kept for the observed
ID, it is either disregarded, or some algorithm-dependent action is taken.

For solving the ε-Deficient Frequent Elements, algorithms Sticky Sampling,
and Lossy Counting were proposed in [11]. The algorithms cut the stream into
rounds. Though simple and intuitive, they suffer from zeroing too many counters
at rounds’ boundaries, and thus, they free space before it is really needed. In
addition, answering a frequent elements query entails scanning all counters.

Demaine et al. proposed the Frequent algorithm to solve the Hot Items prob-
lem in [6]. Their algorithm, a re-discovery of the algorithm in [13], outputs a list
of k elements with no guarantee on which elements, if any, have frequency more
than N

k+1 . The same algorithm was proposed independently by Karp et al. in [10].
Frequent extends the early work done in [2], and [8] for finding a majority item,
using only one counter. Frequent [6] keeps k counters to monitor k elements. If
a monitored element is observed, its counter is incremented, else all counters are
decremented. In case any counter reaches 0, it is assigned the next observed ele-
ment. When the algorithm terminates, the monitored elements are the candidate
frequent elements. [6] proposed a lightweight data structure that can decrement
all counters in O(1) operations. The sampling algorithm Probabilistic-InPlace
[6], which is similar to Sticky Sampling [11], solves FindCandidateTop(S, k, m

2 ).
When queried, the algorithm returns the upper half of the counters, in the hope
that they are the correct top-k. Again, the algorithm deletes half the counters
at rounds’ boundaries, which is Ω(|distinct values of the deleted counters|). In
general, counter-based techniques exhibit fast per-item processing.

Sketch-based techniques do not monitor a subset of elements, rather pro-
vide, with less stringent guarantees, frequency estimation for all elements using
bit-maps of counters. Usually, each element is hashed into the space of counters
using a family of hash functions, and the hashed-to counters are updated for
every hit of this element. Those “representative” counters are then queried for
the element frequency with less accuracy, due to hashing collisions.

The CountSketch algorithm, proposed in [3], solves the FindApproxTop(S,
k, ε) problem, with success probability (1 − δ). Its bottleneck is estimating the
frequency of the element by finding the median of its representative counters.

The GroupTest algorithm, proposed in [5], answers queries about Hot Items,
with a constant probability of failure, δ. A novel algorithm, FindMajority, was
first devised to detect the majority element, assuming elements’ IDs to be



1 . . . |A|. Then GroupTest, a probabilistic generalization, was devised that em-
ploys several independent copies of FindMajority. GroupTest is generally accu-
rate. However, its space complexity is large, and it offers no information about
elements’ frequencies or relative order. The Multistage filters approach proposed
in [7], which was also independently proposed in [9], is very similar to GroupTest.

Sketch-based techniques monitor all elements. However, a hit entails expen-
sive calculations. They do not offer guarantees about relative order or estimated
frequencies, and their space usage are not bounded by the size of the alphabet.

3 Summarizing the Data Stream

The algorithms described in Section 2 handle individual problems. The main
difficulty in devising an integrated solution is that queries of one type cannot
serve as a pre-processing step for the other type of queries. For instance, the
frequent elements receiving 1% or more of the total hits might constitute the
top-100 elements, some of them, or none. In order to use frequent elements
queries to pre-process the stream for a top-k query, several frequent elements
queries have to be issued to reach a lower bound on the frequency of the kth

element; and in order to use top-k queries to pre-process the stream for a frequent
elements query, several top-k queries have to be issued to reach an upper bound
on the number of frequent elements. To offer an integrated solution, we have
generalized both problems to accurately estimate the frequencies of significant 3

elements, and store these frequencies in an always-sorted structure. We, then,
devise a generalized algorithm for the generalized problem.

3.1 The Space-Saving Algorithm

In this section, we propose our counter-based Space-Saving algorithm and its
associated Stream-Summary data structure. The underlying idea is to maintain
partial information of interest; i.e., we monitor only m elements. We update the
counters in a way that accurately estimates the frequencies of the significant
elements, and we use a lightweight data structure that keeps the elements sorted
by their estimated frequencies. In an ideal situation, any significant element,
Ei, with rank i, that has received Fi hits, should be accommodated in the ith

counter. However, due to errors in estimating the frequencies of the elements,
the order of the elements in the data structure might not reflect their exact
ranks. For this reason, we will denote the counter at the ith position in the data
structure counti. The counter counti estimates the frequency fi, of some element
ei. If the ith position in the data structure has the right element, i.e., the element
with the ith rank, Ei, then ei = Ei, and counti is an estimation of Fi.

The algorithm is straightforward. If we observe an element, e, that is moni-
tored, we just increment its counter. If e is not monitored, give it the benefit of

3 The significant elements are interesting elements that can be output in meaningful
queries about top-k or frequent elements.



doubt, and replace em, the element that currently has the least estimated hits,
min, with e. Assign countm the value min+ 1. For each monitored element ei,
we keep track of its over-estimation, εi, resulting from the initialization of its
counter when it was inserted into the list. That is, when starting to monitor ei,
set εi to the value of the evicted counter. The algorithm is depicted in Figure 1.

Algorithm: Space-Saving(m counters, stream S)
begin
for each element, e, in S{
If e is monitored,

increment the counter of e;
else{

let em be the element with least hits, min
Replace em with e;
Increment countm;
Assign εm the value min;

}
}// end for

end;

Fig. 1. The Space-Saving Algorithm

In general, the top elements among non-skewed data are of no great signifi-
cance. Hence, we concentrate on skewed datasets. The basic intuition is to make
use of the skewed property of the data, since we expect a minority of the ele-
ments, the more frequent ones, to get the majority of the hits. Frequent elements
will reside in the counters of bigger values, and will not be distorted by the in-
effective hits of the infrequent elements, and thus, will never be replaced out of
the monitored counters. Meanwhile, the numerous infrequent elements will be
striving to reside on the smaller counters, whose values will grow slower than
those of the larger counters. In addition, if the skew remains, but the popular el-
ements change overtime, the algorithm adapts automatically. The elements that
are growing more popular will gradually be pushed to the top of the list as they
receive more hits. If one of the previously popular elements lost its popularity,
it will receive less hits. Thus, its relative position will decline, as other counters
get incremented, and it might eventually get dropped from the list.

Even if the data is not skewed, the errors in the counters will be inversely
proportional to the number of counters, as shown later. Keeping only a moderate
number of counters will guarantee very small errors. This is because the more
counters we keep, the less it is probable to replace elements, and thus, the smaller
the over-estimation errors in counters’ values.

To implement this algorithm, we need a data structure that cheaply incre-
ments counters without violating their order, and that ensures constant time
retrieval. We propose the Stream-Summary data structure for these purposes.

In a Stream-Summary, all elements with the same counter value are linked
together in a linked list. They all point to a parent bucket. The value of the
parent bucket is the same as the counters’ value of all of its elements. Every



bucket points to exactly one element among its child list, and buckets are kept
in a doubly linked list, sorted by their values. Initially, all counters are empty, and
are attached to a single parent bucket with value 0. The elements can be stored
in a hash table for constant amortized access cost, or in an associative memory
for constant worst case access cost. The Stream-Summary can be sequentially
traversed as a sorted list, since the buckets’ list is sorted. In case it is feasible to
keep counters for all elements, Stream-Summary can be used to report both the
most and the least significant elements. Reporting the least significant elements
can be useful in some contexts, but it is beyond the scope of this paper.

The algorithm for counting elements’ hits using Stream-Summary is straight-
forward. When an element’s counter is updated, its bucket’s neighbor with the
larger value is checked. If it has a value equal to the new value of the element,
then the element is detached from its current list, and is inserted in the child list
of this neighbor. Otherwise, a new bucket with the correct value is created, and
is attached to the bucket list in the right position; and this element is attached
to this new bucket. The old bucket is deleted if it points to an empty child list.
The worst case scenario costs 10 pointer assignments, and one heap operation.

(a) Stream-
Summary,
S = X, Y

(b) Stream-
Summary,
S = X, Y, Y

(c) Stream-
Summary,
S =
X, Y, Y, Z

Fig. 2. Space-Saving updates to a Stream-Summary data structure as elements are
observed.

Example 1. Assuming m = 2, and A = {X, Y, Z}. The stream S = X, Y will
yield the Stream-Summary in Figure 2(a), after the two counters accommodate
the observed elements. When another Y arrives, a new bucket is created with
value 2, and Y gets attached to it, as shown in Figure 2(b). When Z arrives, the
element with the minimum counter, X , is replaced by Z. Z has εZ = 1, since
that was the evicted counter. The final Stream-Summary is shown in Figure 2(c).

Stream-Summary is motivated by the work done in [6]. However, to look up
a value of a counter using the data structure in [6], it takes O(m), while Stream-
Summary looks values up in Θ(1), for online queries about specific elements.



3.2 Properties of the Space-Saving Algorithm

To prove the space bounds in Section 4, we analyze some properties of Space-
Saving, which will help us establish our space bounds. For space limitations, all
proofs are omitted, and the reader is referred to the full version [12].

The strength behind our simple algorithm is that we keep the information
until the space is absolutely needed, and we do not initialize counters in batches
like other counter-based algorithms. This is what allowed us to prove these prop-
erties about the proposed algorithm.

A pivotal factor in our analysis is the value ofmin. The value ofmin is highly
dynamic since it is dependent on the permutation of elements in S. We give an
illustrative example. If m = 2, and N = 4. S = X, Z, Y, Y yields min = 1, while
S = X, Y, Y, Z yields min = 2. Although it would be very useful to quantify
min, we do not want to involve the order in which hits were received in our
analysis, because predicating the analysis on all possible stream permutations
will be intractable. Thus, we establish an upper bound on min.

Lemma 1. The minimum counter value, min, is less than or equal to �N
m	.

We assume that the number of distinct elements in S to be more than m.
Thus, all m counters are occupied. Otherwise, all counts are exact. We are inter-
ested in min since it represents an upper bound on the over-estimation in any
counter in Stream-Summary. Moreover, any element ei, with frequency fi > min,
is guaranteed to be monitored, as shown next.

Theorem 1. An element ei with fi > min, must exist in the Stream-Summary.

We can infer an interesting general rule about the over-estimation of elements’
counters. For any element Ei, with rank i ≤ m, the frequency Fi, is no more
than counti, the counter occupying the ith position in the Stream-Summary.

Theorem 2. Whether or not Ei occupies the ith position, counti ≥ Fi.

4 Processing Queries

In this section, we discuss query processing using the Stream-Summary data
structure. We also analyze the space requirements for both the general case,
where no data distribution is assumed, and the more interesting Zipfian case.

4.1 Frequent Elements

In order to answer queries about the frequent elements, we sequentially tra-
verse Stream-Summary as a sorted list until an element with frequency less than
the user support is reached. Thus, we report frequent elements in Θ(|frequent
elements|). If for each reported element ei, counti − εi > φN , then the algo-
rithm guarantees that all, and only the frequent elements are reported.
This guarantee is conveyed through the boolean parameter guaranteed. The
number of counters, m, should be specified by the user according to the data
properties, the required error rate and/or the available memory on the server.
The QueryFrequent algorithm is given in Figure 3.



Algorithm: QueryFrequent(m counters, support φ)
begin
Bool guaranteed = true;
Integer i = 1;
while (counti > φN AND i ≤ m){

output ei;
If ((counti − εi) < φN)
guaranteed = false;

i++;
}// end while
return( guaranteed )

end;

Fig. 3. Reporting Frequent Elements

The General Case. We will analyze the space requirements for the general
case of the data distribution.

Theorem 3. Assuming no specific data distribution, or user-supplied support,
to find all frequent elements with error ε, Space-Saving uses a number of coun-
ters that is bounded by min(|A|, 1

ε ). Any element, ei, with frequency fi > εN is
guaranteed to be in the Stream-Summary.

Zipf Distribution Analysis. Assuming Zipfian data [14], with parameter α,

Fi = N
iαζ(α) , where ζ(α) =

|A|∑
i=1

1
iα converges to a small constant inversely propor-

tional to α, except for α ≤ 1. For instance, ζ(1) ≈ ln(1.78|A|). We assume α ≥ 1,
to ensure that the data is worth analyzing. As noted before, we do not expect
the popular elements to be of great importance if the data is weakly skewed.

Theorem 4. Assuming Zipfian data with parameter α, to calculate the frequent
elements with error rate ε, Space-Saving uses only min(|A|, ( 1

ε

) 1
α , 1

ε ) counters.
This is regardless of the stream permutation.

Having established the bounds of Space-Saving for both the general, and the
Zipf distributions, we compare them to other algorithms. We also comment on
some practical issues, that can not be directly inferred from the bounds.

Comparison with Similar Work. The above bounds are better than those
guaranteed in [11]. Sticky Sampling has a bound of 2

ε log(
1

φδ ). Lossy Counting
has a bound of 1

ε log(εN). Furthermore, Space-Saving has a better bound than
GroupTest [5], whose bound is O( 1

φ log(
1
δφ ) log(|A|)), which is less scalable than

ours. For example, for N = 106, |A| = 104, φ = 10−1, ε = 10−2, and δ = 10−1,
we need 100 counters, Sticky Sampling needs 700 counters, Lossy Counting needs
1000 counters, and GroupTest needs C ∗ 930 counters, where C ≥ 1.

Frequent [6] has a similar bound in the general case. Usingm counters, the el-
ements’ under-estimation error is bounded by N−1

m . Although this is close to the



theoretical under-estimation error bound, as proved in [1], there is no straightfor-
ward feasible extension of the algorithm to track the under-estimation error for
each counter. In addition, every observation of a non-monitored element increases
the errors for all the monitored elements, since their counters get decremented.
Therefore, elements of higher frequency are more error prone, and thus, it is still
difficult to guess the frequent elements, which is not the case for Space-Saving.
Even more, the structure proposed in [6] is built and queried in a way that
does not allow the user to specify an error threshold, ε. Thus, the algorithm has
only one parameter, the support φ, which increases the number of false positives
dramatically, as will be clear from the experimental results in Section 5.

The number of counters used in GroupTest [5] depends on the failure prob-
ability, δ, as well as the support, φ. Thus, it does not suffer from the single-
threshold drawback of Frequent. However, it does not output frequencies at all,
and reveals nothing about the relative order of the elements. In addition, its
assumption that elememts’ IDs are 1 . . . |A| can only be enforced by building
an indexed lookup table that maps every ID to a unique number in the range
1 . . . |A|. Thus, in practice , GroupTest needs O(|A|) space, which is infeasible
in most cases. Meanwhile, we only require the m IDs to fit in memory.

For the Zipfian case, we make no comparison to other works, since we are
not aware of a similar analysis. For the numerical example given above, if α = 2,
we would need only 10 counters, instead of 100, to guarantee the same error.

4.2 Top-k Elements

For the top-k elements, the algorithm can output the first k elements. An ele-
ment, ei, is guaranteed to be among the top-k if its guaranteed number of
hits, counti − εi, exceeds countk+1, the over-estimated number of hits for the
element in position k + 1. We call the results to have guaranteed top-k if by
looking at the results only, we can tell that the reported top-k elements are cor-
rect. Space-Saving reports a guaranteed top-k if ∀i≤k, counti − εi ≥ countk+1.
That is, all the reported k elements are guaranteed to be among the top-k.

All guaranteed top-i subsets, for all i, can be reported in Θ(m), by iterating
on all the counters 1 . . .m − 1. At each iteration, i, the min∀j≤i

(countj − εj)
is compared to counti+1. The first i elements are guaranteed to be the top-i
elements if this minimum is no smaller than counti+1. The algorithm guarantees
the top-m if in addition to this condition, εm = 0; which is only true if the
number of distinct elements in the stream is at most m.

Similarly, we call the top-k to have guaranteed order if ∀i≤k, counti−εi ≥
counti+1. That is, in addition to having guaranteed top-k, the order of elements
among the top-k elements are guaranteed to hold, if the guaranteed hits for every
element in the top-k are more than the over-estimated hits of the next element.
Thus, the order is guaranteed if the algorithm guarantees the top-i, ∀i≤k.

This is the first algorithm that can give guarantees about its output. For
top-k queries, we can guarantee which reported elements are among the top-k.
Even if we cannot guarantee all the top-k elements, we can guarantee top-k′



elements, where k′ ≈ k. For the case of Zipfian data, we guarantee that k′ = k,
as shown later in the section. The algorithm QueryTop-k is given in Figure 4.

Algorithm: QueryTop-k(m counters, Integer k)
begin
Bool order = true;
Bool guaranteed = false;
Integer min-guar-freq = ∞;
for i = 1 . . . k{
output ei;
If ((counti − εi) < min-guar-freq)

min-guar-freq = (counti − εi);
If ((counti − εi) < counti+1)

order = false;
}// end for
If (countk+1 ≤ min-guar-freq){
guaranteed = true;

}else{
output ek+1;
for i = k + 2 . . . m{

If ((counti−1 − εi−1) < min-guar-freq)
min-guar-freq = (counti−1 − εi−1);

If (counti ≤ min-guar-freq){
guaranteed = true;
break;

}
output ei;

}
}
return( guaranteed, order )

end;

Fig. 4. Reporting Top-k

The algorithm consists of two loops. The first loop outputs the top-k can-
didates. At each iteration the order of the elements reported so far is checked.
If the order is violated, order is set to false. At the end of the loop, the top-k
candidates are checked to be the guaranteed top-k, by checking that all of these
candidates have guaranteed hits that exceed the overestimated counter of the
k + 1 element, countk+1. If this does not hold, the second loop is executed to
search for the next k′, where k′ ≈ k, such that the top-k′ are guaranteed.

The algorithm can also be implemented in a way that only outputs the first
k elements, or that outputs k′ elements, such that k′ is the closest possible to
k, regardless of whether k′ is greater than k, or vice versa. Throughout the rest
of the paper, we assume that the algorithm outputs only the first k elements.
Next, we look at the space requirements for solving this problem.

The General Case. We start by considering data which is not as skewed as Zipf
of parameter 1. We deal with skewed data later. We also restrict the discussion



to the relaxed version, FindApproxTop(S, k, ε) [3], which is finding a list of k
elements, each of which has frequency more than (1− ε)Fk.

Theorem 5. Regardless of the data distribution, to solve the FindApproxTop(S,
k, ε) problem, Space-Saving uses min(|A|, N

εFk
) counters. Any element with fre-

quency more than (1− ε)Fk is guaranteed to be monitored.

For the general case, we were not able to solve the exact problem, and we
only considered a relaxed version, since it is widely accepted that solving the
exact problem requires Θ(|A|) space [3].

Zipf Distribution Analysis. To answer exact top-k queries, ε can be auto-
matically set less than Fk − Fk+1. Thus, we guarantee correctness, and order.

Theorem 6. Assuming the data is Zipfian with parameter α > 1, to calculate
the exact top-k, Space-Saving uses min(|A|,O(( k

α

) 1
α k)) counters. When α = 1,

the space complexity is min(|A|,O(k2 log(|A|))). This is regardless of the stream
permutation. Also, the order among the top-k elements is preserved.

To the best of our knowledge, this is the first work to look at the space bounds
for solving the exact problem, in the case of Zipfian data, with guaranteed results.
Having established the bounds of Space-Saving for both the general, and the Zipf
distributions, we compare these bounds to other algorithms.

Comparison with Similar Work. These bounds are better than the bounds
guaranteed by the best known algorithm, CountSketch [3], for a large range of
practical values of the parameters |A|, ε, and k. CountSketch solves the relaxed
version of the problem, FindApproxTop(S, k, ε), with failure probability δ, using

space of O(log(N
δ )(k+

1
(εFk)2

|A|∑
i=k+1

Fi
2)), with a large constant hidden in the big-

O notation, according to [3], and [5]. The bound of Space-Saving for the relaxed
problem is N

εFk
, with a 0-failure probability. For instance, for N = 106, |A| = 104,

k = 100, and ε = δ = 10−1, and a uniformly distributed data, we require 103

counters, while CountSketch needs C ∗ 2.3 ∗ 107 counters, where C � 1, which
is more than the entire stream. In addition, Space-Saving guarantees that any
element, ei, whose fi > (1− ε)Fk belongs to the Stream-Summary, and does not
simply output a random k selection of these elements.

In case of a non-Zipf distribution, or a weakly skewed Zipf distribution with
α < 1, for all i ≥ k, we will assume that Fi ≥ N

ζ(1)∗ 1
i . This assumption is justified.

Since we are assuming a non-skewed distribution, the top few elements have a
less significant share in the stream than in the case of Zipf(1), and thus, less
frequent elements will have a larger share. Using this assumption, we rewrite the
bound of Space-Saving as O(k∗log(N)

ε ); while the bound in [3] can be rewritten

as O(log(N
δ ) ∗ (k + k2

ε2

(
1

k+1 − 1

|A|

)
)) ≈ O( k

ε2 log(
N
δ )). Even more, depending



on the data distribution, Space-Saving can guarantee the reported top-k, or a
subset of them, to be correct; while CountSketch does not offer any guarantees.

We can assume that field experts know whether the data is skewed enough
to be considered Zipf(1) or not. Even if this is not applicable, we can start by
analyzing a sample from the data, and then re-size the structure accordingly.

In the case of Zipf Distribution, the bound of [3] is O(k log(N
δ )). For α > 1,

the bound of Space-Saving is O(
(

k
α

) 1
α k). Only when α = 1, the space complexity

is O(k2 log(|A|)), and thus, Space-Saving is better for cases of skewed data, long
streams/windows, and has a 0-failure probability. In addition, we preserve the
order of the top-k elements. For example, for N = 106, |A| = 104, k = 10, α = 2,
and δ = 10−1 our space requirements are only 66 counters, while [3] needs C∗230
counters, where C � 1.

5 Experimental Results

(a) Run Time for Frequent Elements (100,000 
Hits) on Synthetic Data
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(b) Precision for Frequent Elements (100,000 
Hits) on Synthetic Data
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(c) Recall for Frequent Elements (100,000 Hits) 
on Synthetic Data
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(d) Space Used for Frequent Elements (100,000 
Hits) on Synthetic Data
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Fig. 5. Performance Comparison for the Frequent Elements Problem Using Synthetic
Zipfian Data

We conducted a set of experiments, using both real and synthetic data. For
space constraints, we summarize our synthetic data results here. The real data
experimental results agree with those presented here, and the reader is referred
to [12] for a full analysis on both the synthetic and real data experimental
results. We generated several synthetic Zipfian datasets with the zipf parameter,
α, varying from 0, which is uniform, to 3, which is highly skewed, on a fixed



interval of 1
2 . The size of each dataset, N , is 107 hits. This set of experiments

measure how the algorithms adapt to, and make use of data skew.

The algorithms were run on a Pentium IV 2.66 GHz, with 1.0 GB RAM. The
stream was input and processed by each algorithm, and then a query was issued,
and we recorded the recall, the number of correct elements found as a percentage
of the number of actual correct elements; and the precision, the number of correct
elements found as a percentage of the entire output [5]. We also measured the
run time and space used by each algorithm, which indicates the capability to
deal with high-speed streams, and to reside on servers with limited memories.

For the frequent elements problem, we compared our results with those of
GroupTest [5], and Frequent [6]. For GroupTest, and Frequent, we used the C
code available on the web-site of the first author of [5]. Space-Saving, GroupTest,
and Frequent were queried for the frequent elements with support, φ, of 10−2.
We set ε, the error, to be one hundredth of φ, the required support; and δ, the
failing probability, to be 0.01. Although Frequent ran up to four times faster than
Space-Saving, as clear from Figure 5(a), its results were not competitive in terms
of precision. Since it is not possible to specify an ε parameter for the algorithm,
its precision was very low in all the runs. When the Zipf parameter was 0.0,
and 0.5, the algorithm reported 28, and 19 elements, respectively, and actually
there were no elements satisfying the support. For the rest of the experiments in
Figure 5(b), the precision achieved by Frequent ranged from 0.053 to 0.216. The
space used ranged from one fifth to five times the space of Space-Saving, as shown
in Figure 5(d). It is interesting to note that as the data became more skewed,
the space advantage of Space-Saving increased, while Frequent was not able to
exploit the data skew to reduce its space requirements. Compared to GroupTest,
from Figure 5(a), Space-Saving ran 1.5 to 2 times faster than GroupTest. The
precision of the proposed algorithm was always 1; while GroupTest precision
depended on α, with a precision of 0.83 when α = 1, as sketched in Figure 5(b).
The recalls of both algorithms were constant at 1, as clear from Figure 5(c). The
advantage of Space-Saving is clear in Figure 5(d), which shows that Space-Saving
achieved a reduction in the space used by a factor ranging from 2 up to 60.

For the top-k problem, we implemented Probabilistic-InPlace [6], andCountS-
ketch [3]. The Space-Saving, CountSketch, and Probabilistic-InPlace algorithms
were used to identify the top-100 elements. For CountSketch, we set the proba-
bility of failure, δ, to 0.01. Both the Space-Saving, and the Probabilistic-InPlace
were allowed the same number of counters; and thus, their run time and space
usages were comparable, as clear from Figure 6(a), and Figure 6(d), respectively.
The precision of Probabilistic-InPlace increased from 0.02 to 0.36 as the skew
increased; and finally reached 1, when α ≥ 2.5, as indicated in Figure 6(b).
On the contrary, from Figure 6(c), the recall of Probabilistic-InPlace was very
high throughout the entire range of α. The precision and recall of Space-Saving
were constant at 1. From Figure 6(a), the time reductions of Space-Saving over
CountSketch ranged from a factor of 30, to 82. Although we used a hidden fac-
tor of 16, as indicated earlier, CountSketch failed to attain a recall and precision
of 1, for all the experiments. CountSketch had a very low precision and recall



(a) Run Time for Top-100 on Synthetic Data
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(b) Precision for Top-100 on Synthetic Data
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(c) Recall for Top-100 on Synthetic Data
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(d) Space Used for Top-100 on Synthetic Data
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Fig. 6. Performance Comparison for the Top-k Problem Using Synthetic Zipfian Data

for uniform data. From Figure 6(b), and Figure 6(c), the precision and recall
of CountSketch did not reach 1 except for α ≥ 2.5. The space reductions of
Space-Saving ranged from a factor of 5, to 117, as manifested in Figure 6(d).
The performance gap increased with the data skew.

6 Discussion

This paper has devised an integrated approach for solving an interesting family
of problems in data streams. The Stream-Summary data structure was proposed,
and utilized by the Space-Saving algorithm to guarantee strict error bounds for
approximate counts of elements, using very limited space. We showed that Space-
Saving can handle both the frequent elements and top-k problems because it
efficiently estimates the elements’ frequencies. The memory requirements were
analyzed with special attention to the case of skewed data. We validated the
theoretical analysis by experimental evaluation.

This is the first algorithm, to the best of our knowledge, that guarantees
the order of the top-k elements. Even when it cannot guarantee the top-k, the
algorithm outputs guaranteed top-k′ elements, where k′ ≈ k.

In practice, if the alphabet is too large, like in the case of IP addresses, only a
subset of this alphabet is observed in the stream, and not all the 232 addresses.
Our space bounds are actually a function of the number of distinct elements
observed in the stream. However, in our analysis, we have assumed that the
entire alphabet is observed in the stream, which is the worst case for Space-
Saving. Yet, our space bounds are still better than those of other algorithms.



The main practical strengths of Space-Saving is that it can use whatever
space is available on the server to estimate the elements’ frequencies, and pro-
vide guarantees on its results whenever possible. Even when analysts are not
sure about the appropriate parameters, the algorithm can run in the available
memory, and the results can be analyzed for further adaptation. It is interesting
that running the algorithm on the available space ensures that more important
elements are less susceptible to noise.
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