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Abstract

Corporations and institutions are often interested in
deriving marketing strategies from corporate data and
providing informed advice for their customers or
employees. For example, a financial institution may
derive marketing strategies for turning their reluctant
customers into active ones and a telecommunications
company may plan actions ito stop their valuable
customers from leaving. In data mining terms, these
advice and action plans are aimed at converting
individuals from an undesirable class 1o a desirable one,
or to help devising a direct-marketing plan in order to
increase the profit for the institution. In this paper, we
present an approach io use ‘role models’ for generating
such advice and plans. These role models are typical
cases that form a case base and can be used for
customer advice generation. For each new customer
seeking advice, a nearest-neighbor algorithm is used 10
find a cost-effective and highly probable plan for
switching a customer to the most desirable role models.
In this paper, we explore the tradegff among time, space
and quality of computation in this case-based reasoning
Jramework., We demonstrate the effectiveness of the
methods through empirical results.

Keywords: case base mining, Al contributions to data
mining {case-based reasoning), actionable data mining,
financial applications of data mining.

1. Introduction

Data mining has traditionally focused on studying
how to build statistical models from large databases.
These models can be used to classify a given customer
into a most probable class, Using these models,
managers in corporations and institutions can decide
whether to accept or reject a customer into a certain

class membership. In this work, we take one step further:

we not only use statistical models 10 make decisions on
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new cusiomers, we also produce advice for the failed
customers in the form of actions or plans. For example,
a cell-phone company may decide to reduce the monthly
fee for a subgroup of its customers who are both highly
valuable and likely to leave the company for its
competitors. Likewise, in a university scenario, instead
of rejecting a graduate-school applicant with only a “no”
answer, it helps to suggest steps that might be taken by
the applicant in the future to increase hisfher chance of
being admitted the next time around. Similarly, these
plans can be used to give advice to the customers who
fall short of a loan application and to corporate
managers on the strategics in marketing campaigns.

As an example, consider a customer-loan database on
customer information and past loan in Table 1. Suppose
that we are intercsted in providing advice for Steve (the
last row) who failed to apply for a bank loan. Obviously,
there are many candidate actions that one can advise
Steve to take in order to succeed in his next loan
application, These actions are designed based on other
successful applicants who serve as positive examples in
the same database. In this example, we have two such
positive cases: John and Mary. For Steve, we can
advise him to find another job with a salary close to 80K
and increase his car number from one to three; this will
make him look more like John. Alternatively, we can
advise Steve to take up a mortgage from the bank worth
at least 300K. This will make Steve look more like Mary.
In either situation, Steve might have a higher chance of
succeeding than before, but the actions come with
different costs. The prescribed actions for Steve are
shown in Table 2.

This example also intreduced a number of interesting
aspects for the problem. First, for each advisee such as
Steve, there are potentially many possible actions that
we can provide. Each action comes with an inherent
cost associated with it. For example, it may be more
costly for Steve to buy two more cars. Thus, the action
for buying cars may be so prohibitive that the advice
should not be given to Steve. Second, not all attributes
can be acted on; some attributes cannot be changed.



Table 1. An example customer database. The
last attribute is the class attribute.

Customer | Salary | Car | Mortgag Loan
s e Approved?
John 80K 3 None Y
Mary 40K 1 300K Y
Steve 40K 1 None N

Table 2. Prescribed alternative actions for
Steve,

Advice for Steve Salary Cars | Mortgage
Plan 1 40K-280K 123
Plan 2 0->300K

These correspond to ron-actionable attributes. For
example, it would be impossible to change the salary
of Steve to that of John by taking a simple action, or to
change the gender of a person. This impossibility can
be modeled through prohibited high cost measures.
Third, some attributes may not be relevant to the
problem at hand. For example, the address attribute
(not shown in the table) may be such an irrelevant
attribute. Finally, the actions are not guaranteed to
succeed 100% of the time; some actions may have
higher probability of success than others. Our task is to
choose high-urility actions that increase the probability
of success while reducing costs.

We formulate the above problem as a case-based
reasoning problem [13], where the key issue is to look
for actionable plans on a case-by-case basis. Our
approach is to first identify typical positive cases 10
form a small and highly representative case base, and
then use the case base as “role models” to formulate
the marketing actions that adapt each incoming
problem to its nearest neighbor in the case base. Our
focus in this paper is to identify the case bases
automatically, we leave the planning issues in our
future work.

More specifically, we first classify the training data
into two classes: the “good” or “positive” data set
containg data that belong to customers who have
already been accepted into the good class and the
“bad” or “negative” set for those who have not. Given
this labeled dataset, our second step is to perform an
analysis on the positive data to find out a number of
representative cases of customers that can be “role
models” for the rest. Finally, the negative cases are
converted to positive ones by formulating marketing
actions. Figure 1 (a) and (b) illustrate two distributions
of the positive and negative classes in a two-attribute
dataset. We will study the effect of the data
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distributions on our case-mining algorithms.
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Figure 1(b). A demonstration of mixed positive
class and negative class distributions.

Typically, real customer data are highly unbalanced
and quite large. For example, the 1998 KDDCUP
dataset [4] contains only 5% positive data and 95%
negative data. Given such a dataset, a naive
application of classification such as decision tree
would result in no useful information. In dealing with
the unbalanced data problem, our case-mining
algorithm will focus on the positive cases in the
selection of role models, thus avoiding overwhelming
the data distribution by negative cases. We consider
three case-mining approaches. The most naive one is
to simply use the original database as the case base.
While this model allows the creation of optimal
actions from the past data, this approach is highly
inefficient. The second approach constructs clusters
from the database, and takes the centroids of the
clusters as the potential cases for the case base. This
approach can be very efficient, but the quality of the
cases 1s still not optimized. This is because in creating
role models for the positive class, it is more desirable
to find cases that are “close” to the majority of the
negative instances. These cases are often located near
the “boundary” of the distributions of these classes. In
order to find these boundary cases, our third approach
is to apply a support-vector-machine (SVM) learning
algorithm for extracting the support vectors as cases.
These cases can give rise to more cost-effective plans.

In data mining area, researchers are interested in
building statistical models of the database for
classification and data analysis [2, 5, 17]. A typical
statistical model partitions the test data into different



classes according the trained model learned from the
training data. Some recent work has specifically
targeted the issue of marketing strategies in data
mining [14, 8]. A major difference between our work
and the majority of data mining work is that we de not
stop at classification of the data into different classes;
instead, we propose actions to switch customers to
more desirable classes. Another related area is case
based reasoning, in particular case-base maintenance
[6, 18] and case-transformation [12, 13]. In this area, a
new problem is solved by consulting a case base of
past solutions. The new solution is formed by deriving
the difference between a past solution and the new
problem. In this area, the problem of identifying
concise, high-quality case bases remains an open
question.

2. Mining Case Bases

We formulate the problem formally. Given a
database of customer records, we assume that each
customer record is labeled as either a positive or
negative class. Multiple class generalization is
possible but will be considered separately in future
work. In this section, we discuss three progressive
more sophisticated solutions, each having iis own
computational advantages. The three methods are,
respectively,  instance-based, cluster-based and
support-vector-based.

2.1. Instance-based Case-Base Mining

A first method to construct the case base is to use
the entire positive population of data as the case base.
Then for each negative instance we need to identify its
nearest neighbor among the positive data instances.
Thus the collection of all positive instances is taken as
the case base. This method is purely memory based,
and the leamning is delayed until model application
time. For this reason, it is also known as lazy
evaluation or instance-based learning [1]. An
advantage of this method is that for any given negative
instance, it is guaranteed to find its nearest positive
neighbor in terms of either the cost measure or utility.
Thus, we also call this algorithm the optimal algorithm,
because the customer-switching plan found will have
optimal quality. However, the instance-based approach
may suffer from computational inefficiency.

2.2. Cluster Centroid-based Case-Base Mining

A second idea is to compute clusters of positive
instances and extract the centroids. The case-base
mining algorithm thus constructed is described in
Table 3. Afier feature selection, we divide the database
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Table 3. Algorithm  Centroids-CBMine
{database DB, int K)

Steps Begin

1 casebase= emptyset;

2 DB = FeatureSelection(DBY;

3 Separate the DB into DB+ and DB-;

4 Clusters+ = ApplyKMedvids(DB+, KY;

3 for each cluster in Clusters+, do

6 C = findCentroid(cluster);

7 Insert(C, casebase);

8 end for;

9 Retumn casebase;

End

into a positive class database DB+ and a negative class
database DB-. The training database consists of the
positive instances of the original database, whereas the
testing data are the negative instances.

In the algorithm Centroids-CBMine in Table 3, the
input database is DB. There are two classes in this
database, where the positive class corresponds to
population of desired cases and the negative class the
uncenverted cases.

Step 2 of the algorithm performs feature extraction
by applying a feature filter to the database to remove
al attributes that are considered low in information
content or in classification power. In our
implementation, subroutine FeatureSelection filters
each attribute using an extended OddlLogRatio
algorithm [15] as the criterion for feature selection.
OddLogRatio is designed for dataset with a highly

unbalanced class distribution and asymmetric
misclassification costs, which are exactly the
characteristics of realistic dataset such as the

KDDCUP'98 dataset. Using this criterion for feature
selection on the KDDCUP’98 dataset, for example, we
can reduce the number of attributes from 481 to 25.
Subsequently, our case mining and planning activities
is done on the selected subset of attribuies. Using
feature selection, we can avoid unnecessary changes
on the “irrelevant” attributes, thus reducing overall
customer switching costs.

Step 3 of the algorithm separates the training
database into two partitions, a positive-class subset
and a negative-class subset. Step 4 of the algotithm
performs the K-medoids clustering on the
positive-class sub-database [10]. Other good clustering
algorithms can also be wuwsed here in place of
K-medoids. For example, the density-based learning
algorithm has been successfully applied to clustering
on very large and complex data [9]. Step 6 of the
ajgorithm finds centreids of the K clusters found in the
previous step. These centroids are the bases of the case
base constructed thus far, and are returned to the user.
Finally, Step 9 returns the case base as the output.



Once the case base 1s built, it can then be applied to
set of testing negative-class cases to see what the total
cost would be for converting all the negative cases to
positive ones. For each negative class case Cl in the
test data set, a one-nearest neighbor algorithm is
applied to the case base to find the most similar case
C2. The difference between C1 and C2 are used to
generate the switch plan.

Our notion of distance is based on a notion of cost
of switching an attribute from one value to the next.
For each attribute A and values v1 and v2 of A, there is
a cost function: cosi(A, vi, v2} which is a real value
denoting the cost of changing from vl to v2 on
attribute  A. In practice, such knowledge is not

available in the dataset, but comes from domain expert.

In our subsequent experiments, we set those values
manually according to the semantic of attribute. For
each nominal attribute, we have a cost matrix, each
element of which denotes the cost changing from one
value to the other. For each numeric attribute, we
define a math function.

Consider the following example of the cost matrix.
Suppose we have a nominal attribute which has three
distinet values. We use 0, 1 and 2 to denote these three
values. The cost matrix C is:

0 o

200 0 e
500 300 0©

In the cost matrix C, the value of C{1]){0] is $200.
That means the cost of changing from value 1 to value
0 is $200. All the elements in the diagonal are zero,
which means that the cost of changing a value to itself
is zero. The value of C[01[2] is infinite, which means
that changing value ¢ to value 2 is impossible or too
prohibitive. .

Finally, the cost of the model on an entire
population of test data is the sum of all costs for all
actions on each datum in the testing set. Assuming
that the- jth:adtribute for an ith customer is Aij s
Equation (1) shows the cost formula.

iDB| {

Cost.= Z Zcos t(A; v, vy)

=1 j=l

(I

2.3. SYM-based Case-Base Mining

The centroid-based case-mining method extracts
cases from the positive-class cluster centroids and
takes into account only the positive class distribution.
By considering the distribution of both the positive
and negative class clusters, we can do better. This idea
is as follows. Suppose Cl is the centroid of a
positive-class cluster, while C2 is the centroid of a
negative<class  cluster.  According to  the
Centroids-CBMine algorithm, C1 can be chosen as the
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corresponding positive case for the negative cases in
the C2-cluster. However, if a positive case C3 that lies
on the boundary of Cl cluster is nearer to the
C2-cluster cases and we take C3 as the case instead of
Cl1, the total cost of switching plans would be less.
This is the intuition behind the SVM-based case
mining.

The key issue then is to identify the positive cases
on the boundary between the positive and negative
cases, and select those cases as the final ones for the
switching-plan generation. The cases along the
boundary hyper-plane correspond to the support
vectors found by an SVM classifier [16, 7). These
cases are the instances that are closest to the maximum
margin hyper-plane in a hyperspace after an SVM
system has discovered the classifier.

By exploiting the above idea, we have a different
case-mining algerithm, SVM-CBMine. In the first step,
we perform SVM learning on the database to locate
the support vectors. Then we find the suppon vectors
and insert themn into the case base. This algorithm is
illustrated in Table 4.

Compared with the Centroids-CBMine algorithm,
the SVM-CBMine algorithm has several advantages.
First, because the cases are the support vectors
themselves, there is no need to specify the input
parameter K as in the Centroids-CBMine algorithm;
the parameter K is used to determine the number of
clusters to be generated in K-medoids. Second,
because the cases are themselves the boundary cases,
they are naturally better examples for the entire
negative-class members to switch to; the costs would
be lower.

Table 4. Algorithm SVM-CBMine (Database
DB, int K)

Steps Begin
1 casebase = Emptyset,
2 Vectors = SVM(DR),
3 for each positive support vector C in
Vectors do
4 Insert(C, casebase);
5 end for
6 Return casebase;
End

3. Switching Plan Generation

A straightforward plan-generation solution is to use
a nearest neighbor approach. The pian used to advise a
customer is one that is associated with the least cost.
In our subsequent experiments, we call this the
MinCost approach. While this approach is guaranteed



to generate a cost effective plan, it is not guaranteed to
generate a plan that will achieve its intended target all
the time. In reality, the positive and negative cases are
often distributed in a mixed manner. When executing a
customer-switching plan, it is likely that the customer
following the plan will land on a wrong target; it is
wrong because it corresponds to an “unreliable”
positive case whose neighborhood is dominated by
negative instances, rendering the switching low
probability of success. A more sensible method will
consider not only the cost of switching, but also the
probability of success of each switching. Together we
have a notion of the utility of a plan, both in terms of
success probability and costs [3, 11].

We can estimate the probability of success of
switching to a certain target to be the probability
density of positive instances around a target. More
formally, let pf+lz) be the probability density of an
instance ¢, cost(x, t) be the cost of switch from x to
target case ¢, and maxCost be the maximum value
among the different costs of switching from x to every
possible case y in the case base. The utility function
we use for ranking cases in a case base is defined in
Equation (2) below. The target case r with the
maximum rank is chosen as the role model for
switching-plan generation for customer x.

rankx,ny=p(+11) _Costx) (2)
max’as!

The algorithm for choosing the maximum utility
plan for negative instances is called MaxRank
algorithm. Once the role-model case is identified, the
difference between the negative and positive cases can
be taken and their differences are taken as
recommended actions for the negative cases.

4. Experimental Results

In this section, we present the experimental resuits
to test and compare the different algorithms we have
proposed. Our experiments are aimed at finding out
the tradeoff among the system execution time, which
is the model-building time plus the model-application
time on test cases, the size of the model {the number of
cases) and the total cost and utility of switching plans
for converting all negative examples into positive
ones.

4.1. Artificial Dataset

Our first test uses an artificial dataset generated on a
two-dimensional space (x, y}, using a Gaussian
distribution with different means and co-variance
matrix for the positive (+) and the negative (-) classes.
Our purpose is to demonstrate the effect of data
distribution and case base size on the switching-plan
quality and case mining efficiency. When the means of
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the two distributions are separated, we expect the class
boundaries are easy to identify by the SVYM-based
method (see Figure 1 (a)). When the distributions are
very close to each other, there will not be an
easy-to-find boundary between the positive and
negative classes: in this case the centroid-based
method will perform better. The cost of switching a
negative case to a positive one is defined as in this test
as the Euclidean distance on the (x, y) plane. In the
experiments with the artificial dataset, the cost matrix
has a uniform cost value.

The mean for the positive class distribution is fixed
10 be mean0=(7, 8), with a co-variance matrix [(0.6,
0.3), (0.3, 1.8)]. For the negative class, the location of
the mean moves from being far away from the mean0
to being close to it to explore the effect of data
distribution. In Artificial Data I, the mean for negative
class mean]=(3, 4). The co-variance matrix for the
negative class is defined as {{0.8, -0.5) (-0.5, 3.2)].
Figure 2 and Figure 3 show the test results comparing
the case bases of different sizes and the resulting cost
of switching plans. In Figure 2, we show the relative
cost, as compared to the optimal cost, of switching all
negative instances to positive cases for the
corresponding case base size, using the minimal cost
algerithm. In Figure 3, we show the same data for the
MaxRank algorithm, which selects plans for each
negative instance based on the utility formula (2). In
both figures, SVM stands for the SVM-CBMine result.
For example, SV=3 indicates that three support
vectors were found to populate the case base.
Parameter K indicates the number of clusters
generated by K-medoids algorithm for the
Centroids-CBMine system. “Optimal” indicates the
cost for building and using the model using ali positive
examples in the original training data as the cases in
the case base. As can be seen, the relative cost of
switching from negative to positive cases decreases
with the size of the case base. This is because as the
case-base size increases, the choice in possible role
models also increases.

To study the effect of different distribution of data, a
second distribution is generated for the situation when
the centers for the negative distribution are moved
closer to that of the positive distributions (see Figure
1(b)). The result shown in Figures 4 and 5 — Artificial
Data II with mean2=(7, 8), corresponds to the situation
when there is no clear boundary between the two
distributions.

As can be seen from the progression of the data
distribution, as the two classes are distributed farther
apart from each other (Figures 2, 3), the SVM-based
method is a clear winner. This is because it uses far
less time than the optimal method, and yet its total cost
is nearly the same as that of the optimal method. As
can be seen from the K-medoids based methed, as the
number K of clusters increases, ihe cost of switching
plans also decreases. However, the time it takes to



build and execute the model also increases with K
(Figure 6). On the other hand, as the two distributions
move close to ¢ach other such that there are no clear
boundaries, as in the case of Figure 4, the §VM-based
method selects nearly all the positive examples as
cases in the case base, rendering it useless. Thus, its
time expense is also very high (Figure 6). In this case,
the K-medoids-based method is preferred.

Figures 7 and 8 show the success probability P(+lt)
as a function of case base size. The MaxRank method
for case retrieval obtains cases with higher costs, but
much higher probability of success. For example,
when K=100, there are 100 cases in the case base, the
MaxRank method incurs a cost of 1583.5 as compared
to the cost of 1243 for MinCost, but has a probability
of success at 0.9 as compared to 0.3 for MinCost. It
is also interesting to note that the as K increases from
10 to 100, the average probabiiity of success decreases
for MinCost, but not for MaxRank (Figure 7). This is
because when the number of cases is large, it is more
likely that the low probability cases will be selected as
target cases for the plan generation, as compared with
smaller case bases. However, as can also be seen from
the figure, the MaxRank method for plan generation
suffers less from this drawback, since in target-case
selection, both the cost information and the probability
information are taken into consideration.

4.2. KDDCUP Datasets

Besides the above results, we also carried out
experiments on some more realistic datasets, since real
world dataset often has much more unbalanced
distribution than the artificial data. The attributes in
real data have their own semantics. Therefore, in the
subsequent experiments, we define the cost matrix and
functions for each aitribute in the dataset. In the tests,
we still use the case-base mining algorithm to provide
advice for each failed customer. However, if a
customer consulted all the role models in the case base
and cannot find a finite-cost switching plan, we
consider the customer a failed one. Only those advices
with finite costs are considered successful. We define a
SwitchingRare measure o be the proportion of
negative instances in test data for which there exists a
finite-cost role-model case in the case base. When the
case-base size is small, this SwitchingRate will be low
as well, since the majority of negative cases cannot be
switched to a positive one. The switching rate should
be the highest for the optimal case when the entire set
of positive instances serve as the case base.

Figures 9 — 12 show the test result of the algorithms
on the KDDCUP’98 dataset. The training dataset
consists of over 90,000 records for persons who were
approached to make donations to a certain charity. The
characteristic of this dataset s that it is highly
unbalanced and has 481 attributes. For this dataset, we
first performed the OddlLogRatio feature-selection
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algorithm on the attributes. This resulted in a total of
25 remaining attributes, for which we constructed a
cost matrix, The test result on this dataset is shown in
Figures 9to 12.

For the KDDCUP'98 data, the SVM based method
returned over one half of the entire positive instances
as the case base (SV=2645). Thus it does not really
save any time in the case base mining. [n contrast, the
Centroid-based method performed very well, resulting
in decreasing costs when K increases. As can be seen
from Figure 11, when the number of cases reaches 100,
the success rate for switching the negative cases
reaches nearly 80%. Thus, the cases selected are quite
representative of the positive instances, and the
probability of success for the case base is comparable
to that of the optimal case base.

5. Conclusions and Future Work

In this paper, we described solutions for mining case
bases for customer action recommendation. The
central issue of the problem lies in the discovery of
high-quality case bases from a large data set, a
case-mining problem. We proposed two solutions for
the problem. For the data distribution where the two
classes are clearly separated, the SVM-CBMine
algorithm, which is an $VM-based method, should be
used. When the data distributions are not separated
well by a boundary, the cluster-centroids based method
is recommended. Furthermore, we compared the
solutions where plan generation is done based on cost
alone and the solution where the probability of success
is also taken into account. It was shown that the
solution with uwtility consideration is superior. In
addition, the centroid-based method is shown to scale
much better than the 5VM-based method,
demonstrating a quality-speed tradecff.

In the future, we will continue to explore the
planning aspect of the problem, and apply the
approach to more business databases.
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Figure 6. Comparlson of CPU time for case- Figure 10. Relative cost vs. size of CB in
base mining for two different distributions MaxRank. (KDD Cup98 data.)
Mean1 and Mean2 in the artificial dataset tests
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Figure 7. Success Prob P(+It) vs. size of the Figure 11. SwitchingRate vs. Size of CB
CB. (Artificial data I, Mean 1 = [3, 4].) for KDD Cup98 data.
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Figure 8.Success Probability P(+It) vs. size

of CB. (Artificial data Il, Mean 2 = [7, 8].) Figure 12. Success Prob P{+It) vs. size of CB

for KDD Cup98 data.
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