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Bitmap Indices

• Bitmap indices are a special type of index designed 
for efficient querying on multiple keys

• Records in a relation are assumed to be numbered 
sequentially from, say, 0

– Given a number n it must be easy to retrieve record n

• Applicable on attributes that take on a relatively small 
number of distinct values

– E.g. gender, country, state, …

– E.g. income-level (income broken up into a small number of  
levels such as 0-9999, 10000-19999, 20000-50000, 50000-
infinity)

• A bitmap is simply an array of bits
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Bitmap Indices (Cont.)

• In its simplest form a bitmap index on an attribute has a 
bitmap for each value of the attribute

– Bitmap has as many bits as records

– In a bitmap for value v, the bit for a record is 1 if the record has the 
value v for the attribute, and is 0 otherwise
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Bitmap Indices (Cont.)

• Bitmap indices are useful for queries on multiple 
attributes 

– not particularly useful for single attribute queries

• Queries are answered using bitmap operations

– Intersection (and)

– Union (or)

– Complementation (not) 

• Each operation takes two bitmaps of the same size and 
applies the operation on corresponding bits to get the 
result bitmap

– Males with income level L1:   10010 AND 10100 = 10000

• Can then retrieve required tuples.

• Counting number of matching tuples is even faster (especially useful 
for aggregation queries)
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Bitmap Indices (Cont.)

• Bitmap indices generally very small compared with 
relation size

• Deletion needs to be handled properly

– Existence bitmap to note if there is a valid record at a record 
location

– Needed for complementation

• not(A=v):      (NOT bitmap-A-v) AND ExistenceBitmap

• Should keep bitmaps for all values, even null values

– To correctly handle SQL null semantics for  NOT(A=v):

• intersect above result with  (NOT bitmap-A-Null)
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Multi-dimensional Range Search

• SELECT stu_id FROM scores WHERE maths 
in [80,90] & chem in [80,90]

• If we have an index on maths: 
– First retrieve all tuples satisfying maths in 

[80,90] 

– Check each such tuple about chemistry

• Problem: Many tuples satisfying maths in 
[80,90] do not satisfy chem in [80,90] but 
need to be checked anyway

• If we have a B+-tree on <maths, chem> 
we cannot efficiently process the query 
WHERE maths in [80,90] & chem = 80 
(fetch many records that satisfy the first 
but not the second condition).

• if we have two indexes on maths and 
chem, we can do pointer intersection 
(before retrieving the actual records)

maths

chem

80 90

80

90

40

60

useful

unuseful
but scanned
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Grid Files

• Structure used to speed the processing of general 
multiple search-key queries involving one or more 
comparison operators.

• The grid file has a single grid array and one linear scale 
for each search-key attribute.  The grid array has 
number of dimensions equal to number of search-key 
attributes.

• Multiple cells of grid array can point to same bucket

• To find the bucket for a search-key value, locate the 
row and column of its cell using the linear scales and 
follow pointer
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Example Grid File for account



9

Queries on a Grid File

• A grid file on two attributes A and B can handle 
queries of all following forms with reasonable 
efficiency

– (a1  A  a2)

– (b1  B  b2)

– (a1  A  a2  b1  B  b2),.

• E.g., to answer (a1  A  a2  b1  B  b2), use 
linear scales to find corresponding candidate grid 
array cells, and look up all the buckets pointed to 
from those cells.
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Grid Files (Cont.)

• During insertion, if a bucket becomes full, new bucket 
can be created if more than one cell points to it. 

– Idea similar to extendible hashing, but on multiple dimensions

– If only one cell points to it, either an overflow bucket must be 
created or the grid size must be increased

• Linear scales must be chosen to uniformly distribute 
records across cells. 

– Otherwise there will be too many overflow buckets.

• Periodic re-organization to increase grid size will help.

– But reorganization can be very expensive.

• Space overhead of grid array can be high.



R-trees 

A height balanced tree similar to B+-tree . Currently, the most popular 

multidimensional index (included in Oracle and several commercial DBMS).

For indexing multiple attributes of relational records or spatial objects.

Objects/records are grouped in nodes (disk pages/blocks) according to spatial 

proximity.

Minimum node utilization m is variable, usually 40% of maximum capacity b. 

For typical page sizes (e.g., 4Kbytes or more), m and b are in the order of 

hundreds.

Each entry is a pair (MBR, ptr), that contains:

• a pointer ptr to an indexed object or a lower level node

• the minimum bounding rectangle (MBR) of the pointed object or node



R-Tree 
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Quadratic R-tree split algorithm
1. Apply PickSeeds to choose two entries to be the first elements of the groups. 

Assign each to a group

2. If all entries have been assigned, stop. If one group has so few entries that all 
the rest must be assigned to it, assign them and stop

3. Invoke Algorithm PickNext to choose the next entry to assign. Add it to the 
group whose MBR will have to be enlarged least to accommodate it. Resolve ties 
by adding the entry to the group with smaller MBR, then to the one with fewer 
entries, then to either

4. Go to 2

• PickSeeds

1. For each pair of entries E1 and E2, compose a rectangle J including E1 and E2. 
Calculate d = area(J) - area(E1) - area(E2)

2. Choose the pair with the largest d (d is the dead space that contains nothing)

• PickNext

1. For each entry E not yet in a group, calculate d1=the area increase required in 
the covering rectangle of Group 1 to include E. Calculate d2 similarly for Group 2

2. Choose any entry with the maximum difference between d1 and d2



Split Example (maximum capacity 10, minimum 4)
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Nodes after split
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R-tree insertion
1. Invoke ChooseSubtree to find an appropriate node N, which to place the new 

object
2. If N has < b entries, add object in N (no overflow)
3. If N is already full, Split N and propagate split upwards
4. Adjust all covering rectangles in the insertion path such that they are the MBRs 

enclosing their children rectangles

• Algorithm ChooseSubtree
1. Set N to be the root
2. If N is a leaf, return N
3. else choose the entry of N that incurs the minimum MBR increase. Resolve ties 

by choosing the entry with the with the smallest MBR
4. Set N to be the childnode pointed to by the pointer of the chosen entry and 

goto 2

5. Deletion: Find the object to be deleted using a top down search of the R-tree 
and delete it.  If there is an underflow (i.e., after deletion the node contains 
< m entries), delete and re-insert all the objects in the node (there is no re-
distribution or merging like the B+-tree).



Example of ChooseSubtree
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Bulk-loaded R-trees

• For static objects: Sort objects according to geometric criterion (e.g., x-
coordinates, Hilbert value) and insert objects in nodes according to the 
sorted order (i.e., first b objects go to the first leaf node and so on).  

• Much faster than individual insertions. Trees are packed (i.e., nodes are full)

•

(a) California 

roads

(b) Node MBRs of 

R* -tree

(c) Sorting on x-

coordinate 

(d) Sorting on 

Hilbert value



R-tree, Range Query
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Range Query
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Nearest Neighbor (NN) Query

• Given a query location q, find the nearest object.

• Depth First and Best-First Search using R-trees 

• Our goal: avoid visiting nodes that cannot contain results

q

a



Basic Pruning Metric: MINDIST

• Minimum distance between q and an MBR.

• mindist(E1,q) is a lower bound of d(o,q) for every object o in E1.

• If we have found a candidate NN p, we can prune every MBR whose 
mindist > d(p, q).

E1

p

q
mindist(E1,q)



Depth-First (DF) NN Algorithm
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DF Search – Visit E1
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DF Search – Find Candidate NN a

First Candidate NN: 

a with distance 
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Backtrack to Root and Visit E2

Backtrack to E1 and Root

Then visit E2
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DF Search – Find Actual NN i
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Optimality
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• Question: Which is the minimal set of nodes that must be visited by any 
NN algorithm?

• Answer: The set of nodes whose MINDIST is smaller than or equal to 
the distance between q and its NN (e.g., E1, E2, E6). 



Best-First (BF) NN Algorithm (Optimal)

• Keep a heap H of index entries and objects, ordered 
by MINDIST.

• Initially, H contains the root.

• While H  

– Extract the element with minimum MINDIST

• If it is an index entry, insert its children into H.

• If it is an object, return it as NN.

• End while



BF Search – Visit root
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BF Search – Visit E1
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BF Search – Visit E2
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BF Search – Visit E6
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DF Search – Find Actual NN i
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Discussion about NN Queries

• Both DF and BF can be easily adapted to (i) extended 
(instead of point) objects and (ii) retrieval of k (>1) 
NN. 

• BF is incremental; i.e., it can report the NN in 
increasing order of distance without a given value of 
k.

– Example: find the 10 closest cities to HK with population 
more than 1 million. We may have to retrieve many (>>10) 
cities around Hong Kong in order to answer the query. 
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Basic Steps in Query Processing

• Parsing and translation
– Query is checked for syntax, relations are verified and query is 

translated into relational algebra.

• Evaluation
– The query-execution engine takes a query-evaluation plan, executes 

that plan, and returns the answers to the query.
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Basic Steps in Query Processing : Optimization

• A relational algebra expression may have many 
equivalent expressions

– E.g., balance2500(balance(account)) is equivalent to 

balance(balance2500(account))

• Each relational algebra operation can be evaluated using 
one of several different algorithms

– Correspondingly, a relational-algebra expression can be 
evaluated in many ways. 

• Annotated expression specifying detailed evaluation 
strategy is called an evaluation-plan.

– E.g., can use an index on balance to find accounts with balance 
< 2500,

– or can perform complete relation scan and discard accounts with 
balance  2500
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Basic Steps: Optimization (Cont.)

• Query Optimization: Amongst all equivalent evaluation plans choose 
the one with the (expected) lowest cost. 
– Cost is estimated using statistical information from the

database catalog, e.g. number of tuples in each relation, size of tuples, etc.

• For simplicity we just use number of page transfers from disk as the 
cost measure
– We ignore the difference in cost between sequential and random I/O for 

simplicity. We also ignore CPU costs for simplicity

• Costs depends on the size of the buffer in main memory
– Having more memory reduces need for disk access
– Amount of real memory available to buffer depends on other concurrent OS 

processes, and hard to determine 
– We often use worst case estimates, assuming only the minimum amount of 

memory needed for the operation is available

• Real systems take CPU cost into account, differentiate between 
sequential and random I/O, and take buffer size into account

• We do not include cost of writing the final output to disk
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Selection Operation

• File scan – search algorithms that locate and retrieve 
records that fulfill a selection condition.

• Algorithm A1 (linear search).  Scan each page and test all 
records to see whether they satisfy the selection condition.

– Cost estimate (number of disk pages scanned) = br  

• br denotes number of pages containing records from relation r

– If selection is on a key attribute, cost = (br /2) 

• stop on finding record

– Linear search can be applied regardless of 

• selection condition or

• ordering of records in the file, or 

• availability of indices
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Selection Operation (Cont.)

• A2 (binary search).  Applicable if selection is an 
equality comparison on the attribute on which file 
is ordered. 

– Assume that the pages of a relation are stored 
contiguously 

– Cost estimate (number of disk pages to be scanned):

• log2(br) — cost of locating the first tuple by a binary 
search on the pages

• Plus number of pages containing records that satisfy 
selection condition 
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Selections Using Indices

• A3 (primary index on candidate key, equality).  Retrieve a single 
record that satisfies the corresponding equality condition  
– Cost = HTi + 1  (HTi is the height of the tree index - if hash index HTi = 

1 or HTi = 1.2 if we assume that there exist overflow buckets)

• A4 (primary index on nonkey, equality) Retrieve multiple records. 
– Records will be on consecutive pages 

– Cost = HTi + number of pages containing retrieved records

• A5 (equality on search-key of secondary index).
– Retrieve a single record if the search-key is a candidate key

• Cost = HTi + 1

– Retrieve multiple records if search-key is not a candidate key
• Cost =  HTi + number of records retrieved 

– Can be very expensive!

• each record may be on a different page  

– one page access for each retrieved record
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Selections Involving Comparisons

Can implement selections of the form AV (r) or A  V(r) by using

– a linear file scan or binary search,

– or by using indices in the following ways:

• A6 (primary index, comparison). (Relation is sorted on A)
• For A  V(r) use index to find first tuple  v and scan relation 

sequentially  from there

• For AV (r) just scan relation sequentially till first tuple > v; do not use 
index

• A7 (secondary index, comparison). 
• For A  V(r) use index to find first index entry  v and scan index 

sequentially  from there, to find pointers to records.

• For AV (r) just scan leaf pages of index finding pointers to records, till 
first entry > v

• In either case, retrieve records that are pointed to

– requires an I/O for each record

– Linear file scan may be cheaper if many records are 
to be fetched!
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Implementation of Complex Selections

Conjunction:  1 2. . . n(r)  

• A8 (conjunctive selection using one index).  

– Select a combination of i and algorithms A1 through A7 that results 

in the least cost for i (r).

– Test other conditions on tuple after fetching it into memory buffer.

• A9 (conjunctive selection using multiple-key index).  

– Use appropriate composite (multiple-key) index if available.

• A10 (conjunctive selection by intersection of identifiers).

– Requires indices with record pointers. 

– Use corresponding index for each condition, and take intersection of 
all the obtained sets of record pointers. 

– Then fetch records from file

– If some conditions do not have appropriate indices, apply test in 
memory.

– NOTE: In some cases we do index only scan.
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Algorithms for Complex Selections

Disjunction:1 2 . . . n (r). 

• A11 (disjunctive selection by union of identifiers). 
– Applicable if all conditions have available indices.  

• Otherwise use linear scan.

– Use corresponding index for each condition, and take union of all 
the obtained sets of record pointers. 

– Then fetch records from file
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External Sorting (disk-resident files)

• Merging Sorted Files with 3 pages of main memory buffer
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External Sorting (disk-resident files)

(1,…)

(5,…)

(7,…)

(11,…)

sorted file 1 sorted file 2 merged file

(2,…)

(4,…)

(6,…)

(9,…)

(1,…)

(2,…)

(4,…)

(5,…) write page

to disk

(6,…)

(7,…)

(9,…)

bring next page of file 2

(10,…)

(14,…)

(17,…)

(18,…)

(10,…) write page

to disk

(11,…)

bring next page of file 1

(12,…)

(15,…)

(20,…)

(21,…)



47

External Sorting (disk-resident files)

Continuing the previous example: 

Question: I assumed that each file is already sorted. If the file is not 
sorted, how do I sort it (using only my 3 buffer pages?)

Answer: Each file in the example is only 2 pages. Therefore, I can 
bring the entire file in memory, and sort it using any main-memory 
algorithm. 

Question: The previous example assumes two separate files. How do I 
apply this idea to sort a single file? 

Answer: You can split the file in two parts and merge them as if they 
were separate files.

Question: Can I do better if I have M>3 main memory pages. 

Answer: Yes, instead of 2 you can merge up to M-1 files (because you 
need 1 page for writing the output). 
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External Sort-Merge

Let M denote memory size (in pages).

• Create sorted runs.  Let i be 0 initially.
Repeatedly the following till the end of the relation:

(a)  Read M pages of relation into memory
(b)  Sort the in-memory pages
(c)  Write sorted data to run Ri; increment i.

Let the final value of i be N

• Merge the runs (N-way merge). We assume (for now) that N < M. 
Use N pages of memory to buffer input runs, and 1 page to buffer output. 

Read the first page of each run into its buffer page

repeat
Select the first record (in sort order) among all buffer pages

Write the record to the output buffer.  If the output buffer is full write it to disk.

Delete the record from its input buffer page.
If the buffer page becomes empty then

read the next page (if any) of the run into the buffer. 

until all input buffer pages are empty:
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External Sort-Merge (Cont.)

• If i  M, several merge passes are required.

In each pass, contiguous groups of M - 1 runs are 
merged. 

A pass reduces the number of runs by a factor of M -
1, and creates runs longer by the same factor. 

• E.g.  If M=11, and there are 90 runs, one pass 
reduces the number of runs to 9, each 10 times the 
size of the initial runs

Repeated passes are performed till all runs have 
been merged into one.

Total cost = br(2logM-1(br/M)+1)

• where br is the file size in pages


