
Lecture 8: Kruskal’s MST Algorithm
CLRS Chapter 23

Main Topics of This Lecture

� Kruskal’s algorithm
Another, but different, greedy MST algorithm

� Introduction to UNION-FIND data structure.
Used in Kruskal’s algorithm
Will see implementation in next lecture.

1

Idea of Kruskal’s Algorithm

The Kruskal’s Algorithm is based directly on the generic
algorithm. Unlike Prim’s algorithm, we make a differ-
ent choices of cuts.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not cre-
ate a cycle.

Observe that unlike Prim’s algorithm, which only grows
one tree, Kruskal’s algorithm grows a collection of trees
(a forest).

Continue until the forest ’merge to’ a single tree.
(Why is a single tree created?)

This is a minimum spanning tree
(we must prove this).

2

Outline by Example

a b

c

de

a b

c

de

original graph

edge weight

3 5

7

10

12

9

2

{d, c} 2
{a, e} 3
{a, d} 5
{e, d} 7
{b, c} 9
{a, b} 10
{b, d} 12

E

forest MST

Forest (V, A)

A={ }

3

Outline of Kruskal’s Algorithm

Step 0: Set
� � �

and � � �
, the set of all edges.

Step 1: Choose an edge � in � of minimum weight,
and check whether adding � to

�
creates a cycle.

� If “yes”, remove � from � .

� If “no”, move � from � to
�

.

Step 2: If � � �
, stop and output the minimal span-

ning tree ���
	 � � . Otherwise go to Step 1.

Remark: Will see later, after each step, ���
	 � � is a
subgraph of a MST.

4

Outline of Kruskal’s Algorithm

Implementation Questions:

� How does algorithm choose edge � � � with min-
imum weight?

� How does algorithm check whether adding � to
�

creates a cycle?

5

How to Choose the Edge of Least Weight

Question:
How does algorithm choose edge � � � with mini-
mum weight?

Answer: Start by sorting edges in
�

in order of in-
creasing weight.
Walk through the edges in this order.
(Once edge � causes a cycle it will always cause a cycle so it

can be thrown away.)

6

How to Check for Cycles

Observation: At each step of the outlined algorithm,
���
	 � � is acyclic so it is a forest.

If � and � are in the same tree, then adding edge� � 	���� to
�

creates a cycle.

If � and � are not in the same tree, then adding edge� � 	���� to
�

does not create a cycle.

Question: How to test whether � and � are in the
same tree?

High-Level Answer: Use a disjoint-set data structure
Vertices in a tree are considered to be in same set.
Test if Find-Set(�) = Find-Set(�)?

Low -Level Answer:
The UNION-FIND data structure implements this:

7

The UNION-FIND Data Structure

UNION-FIND supports three operations on collections
of disjoint sets: Let � be the size of the universe.

Create-Set(�):
� ��� �

Create a set containing the single element � .

Find-Set(�):
� �����	� �

�
Find the set containing the element � .

Union(� 	��):
� �����	� �

�
Merge the sets respectively containing � and �
into a common set.

For now we treat UNION-FIND as a black box.
Will see implementation in next lecture.

8

Kruskal’s Algorithm: the Details

Sort
�

in increasing order by weight � ;
� � � � �

���	�
� � � �

/* After sorting � � �����
	����	������������������������������������� ��������!�#" */

� � � � ;
for (each � in �) CREATE-SET(�);

� � � � � �

for �%$ � ���&$ 	 �'$ � from 1 to
� � �

do
� � � � �

���	�
� � � �

if (FIND-SET(� $) != FIND-SET(� $))(
add

� � $ 	�� $ � to
�

;
UNION(� $ 	 � $);)

return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s

algorithm has running time *,+.-/�0-21!3546-!�0- 7 .

9

Why Kruskal’s Algorithm is correct?

Let
�

be the edge set which has been selected by
Kruskal’s Algorithm, and ��� 	 � � be the edge to be added
next. It suffices to show there is a cut which respects�

, and ��� 	�� � is the light edge crossing that cut.

1. Let
� � � ��� � 	 � � �

denote the tree of the forest
�

that contains � . Consider the cut ��� � 	�� � � � �
.

2. Observe that there is no edge in
�

crosses this
cut, so the cut respects

�
.

3. Since adding ��� 	 � � to
� �

does not induce a cy-
cle, ��� 	�� � crosses the cut. Moreover, since ��� 	�� �
is currently the smallest edge, ��� 	 � � is the light
edge crossing the cut. This completes the cor-
rectness proof of Kruskal’s Algorithm.

10

Why Kruskal’s Algorithm is correct?

G=(V, E)

A’=(V’, E’)

cut (V’, V−V’)

v

u

A

11

