
Pipelining Bottom-up Data Flow Analysis

Qingkai Shi
The Hong Kong University of Science and Technology

Hong Kong, China

qshiaa@cse.ust.hk

Charles Zhang
The Hong Kong University of Science and Technology

Hong Kong, China

charlesz@cse.ust.hk

ABSTRACT

Bottom-up program analysis has been traditionally easy to par-

allelize because functions without caller-callee relations can be

analyzed independently. However, such function-level parallelism

is significantly limited by the calling dependence - functions with

caller-callee relations have to be analyzed sequentially because

the analysis of a function depends on the analysis results, a.k.a.,

function summaries, of its callees.We observe that the calling depen-

dence can be relaxed in many cases and, as a result, the parallelism

can be improved. In this paper, we present Coyote, a framework of

bottom-up data flow analysis, in which the analysis task of each

function is elaborately partitioned into multiple sub-tasks to gener-

ate pipelineable function summaries. These sub-tasks are pipelined

and run in parallel, even though the calling dependence exists. We

formalize our idea under the IFDS/IDE framework and have im-

plemented an application to checking null-dereference bugs and

taint issues in C/C++ programs. We evaluate Coyote on a series

of standard benchmark programs and open-source software sys-

tems, which demonstrates significant speedup over a conventional

parallel design.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

Compositional program analysis, modular program analysis, bottom-

up analysis, data flow analysis, IFDS/IDE.

ACM Reference Format:

Qingkai Shi and Charles Zhang. 2020. Pipelining Bottom-up Data Flow

Analysis. In 42nd International Conference on Software Engineering (ICSE

’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3377811.3380425

1 INTRODUCTION

Bottom-up analyses work by processing the call graph of a program

upwards from the leaves – before analyzing a function, all its callee

functions are analyzed and summarized as function summaries [4, 8,

9, 11, 15, 16, 54, 63, 64]. These analyses have two key strengths: the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380425

f

h

Call Graph
time

f

h

g

g

Figure 1: Conventional parallel design of bottom-up pro-

gram analysis. Each rectangle represents the analysis task

for a function.

time

f0

h0

f1

h1

f2

h2

g0 g1 g2

Figure 2: The analysis task of each function is partitioned

into multiple sub-tasks. All sub-tasks are pipelined.

function summaries they compute are highly reusable and they are

easy to parallelize because the analyses of functions are decoupled.

While almost all existing bottom-up analyses take advantage of

such function-level parallelization, there is little progress in improv-

ing its parallelism. As reported by recent studies, it still needs to

take a few hours, even tens of hours, to precisely analyze large-scale

software. For example, it takes 6 to 11 hours for Saturn [64] and

Calysto [4] to analyze programs of 685KLoC [4]. It takes about 5

hours for Pinpoint [54] to analyze about 8 million lines of code.

With regard to the performance issues, McPeak et al. [35] pointed

out that the parallelism often drops off at runtime and, thus, the

CPU resources are usually not well utilized. Specifically, this is

because the parallelism is significantly limited by the calling depen-

dence – functions with caller-callee relations have to be analyzed

sequentially because the analysis of a caller function depends on the

analysis results, i.e., function summaries, of its callee functions. To

illustrate this phenomenon, let us consider the call graph in Figure 1

where the function f calls the functions, g and h. In a conventional

bottom-up analysis, only functions without caller-callee relations,

e.g., the function g and the function h, can be analyzed in parallel.

The analysis of the function f cannot start until the analyses of the

functions, g and h, complete. Otherwise, when analyzing a call site

of the function, g or h, in the function f, we may miss some effects

of the callees due to the incomplete analysis.1

1This is different from a top-down method that can let the analysis of the function f
run first but stop to wait for the analysis results of the function g when analyzing a
call statement calling the function g.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi and Charles Zhang

In this paper, we present Coyote, a framework of bottom-up

data flow analysis that breaks the limits of function boundaries,

so that functions having calling dependence can be analyzed in

parallel. As a result, we can achieve much higher parallelism than

the conventional parallel design of bottom-up analysis. Our key

insight is that many analysis tasks of a caller function only depend

on partial analysis results of its callee functions. Thus, the analysis

of the caller function can start before the analyses of its callee

functions complete. Therefore, our basic idea is to partition the

analysis task of a function into multiple sub-tasks, so that we can

pipeline the sub-tasks to generate function summaries. The key to

the partition is a soundness criterion, which requires a sub-task

only depends on the summaries produced by the sub-tasks finished

in the callees. Violating this criterion will cause the analysis to

neglect certain function effects and make the analysis unsound.

To illustrate, assume that the analysis task of each function in

Figure 1, e.g., the function f, is partitioned into three sub-tasks,

f0, f1, and f2, each of which generates one kind of function sum-

maries. These sub-tasks satisfy the constraints that the sub-task

fi only depends on the function summaries produced by the sub-

task gj and the sub-task hj (j ≤ i). As a result, these sub-tasks can
be pipelined as illustrated in Figure 2, where the analysis of the

function f starts immediately after the sub-tasks g0 and h0 finish.

Clearly, the parallelism in Figure 2 is much higher than that in

Figure 1, providing a significant speedup over the conventional

parallel design of bottom-up analysis.

In this paper, we formalize our idea under the IFDS/IDE frame-

work for a wide range of data flow problems known as the inter-

procedural finite distributive subset or inter-procedural distributive

environment problems [45, 50]. In both problems, the data flow

functions are required to be distributive over the merge operator.

Although this is a limitation in some cases, the IFDS/IDE frame-

work has been widely used for many practical problems such as

secure information flow [3, 23, 42], typestate [19, 39], alias sets [40],

specification inference [55], and shape analysis [47, 65]. Given any

of those IFDS/IDE problems, conventional solutions compute func-

tion summaries either in a bottom-up fashion (e.g., [49, 67]) or in a

top-down manner (e.g., [45, 50]), depending on their specific design

goals. In this paper, we focus on the bottom-up solutions and aim to

improve their performance via the pipeline parallelization strategy.

We implemented Coyote to path-sensitively check null derefer-

ences and taint issues in C/C++ programs. Our evaluation of Coyote

is based on standard benchmark programs and many large-scale

software systems, which demonstrates that the calling dependence

significantly limits the parallelism of bottom-up data flow analy-

sis. By relaxing this dependence, our pipeline strategy achieves

2×-3× speedup over the conventional parallel design of bottom-
up analysis. Such speedup is significant enough to make many

overly lengthy analyses useful in practice. In summary, the main

contributions of this paper include the following:

• We propose the design of pipelineable function summaries,

which enables the pipeline parallelization strategy for bottom-

up data flow analysis.

• We formally prove the correctness of our approach and apply

it to a null analysis and a taint analysis to show its general-

izability.

id: S.S f: S.{a} g: S. if a S : (S {b})
else (S – {b})

0 a b

0 a b

.

.

..

. .

0 a b

0 a b

.

.

..

. .

0 a b

0 a b

.

.

..

. .

Figure 3: Data flow functions and their representation in the

exploded super-graph [45].

• We conduct a systematic evaluation to demonstrate that our

approach can achieve much higher parallelism and, thus,

runs faster than the state of the arts.

2 BACKGROUND AND OVERVIEW

In this section, we introduce the background of the IFDS/IDE frame-

work (Section 2.1) and provide an example to illustrate how we

improve the parallelism of a bottom-up analysis by partitioning the

analysis of a function (Section 2.2).

2.1 The IFDS/IDE Framework

The IFDS/IDE framework aims to solve a wide range of data flow

problems known as Inter-procedural Finite Distributive Subset or

Inter-procedural Distributive Environment problems [45, 50]. Its

basic idea is to transform a data flow problem to a graph reachability

problem on the exploded super-graph, which is built based on the

inter-procedural control flow graph of a program.

The IFDS Framework. In the IFDS framework, every vertex

(si ,d) in the exploded super-graph stands for a statically decidable
data flow fact, or simply, fact, d at a program point si . Every edge
models the data flow functions between data flow facts. In the

paper, to ease the explanation, we use si to denote the program
point at Line i in the code. For example, in an analysis to check
null dereference, the vertex (si ,d) could denote that the variable d
is a null pointer at Line i . As for the edges or data flow functions,

Figure 3 illustrates three examples that show how the commonly-

used data flow functions are represented as edges in the exploded

super-graph. The vertices at the top are the data flow facts before a

program point and the vertices at the bottom represent the facts

after the program point.

The first data flow function id is the identity function which

maps each data flow fact before a program point to itself. It indicates

that the statement at the program point has no impacts on the data

flow analysis.

The special vertex for the fact 0 is associated with every program

point in the program. It denotes a tautology, a data flow fact that

always holds. An edge from the fact 0 to a non-0 fact indicates

that the non-0 fact is freshly created. For example, in the second

function in Figure 3, the fact a is created, which is represented by

an edge from the fact 0 to the fact a. At the same time, since a is the

only fact after the data flow function, there is no edge connecting

the fact b before and after the program point.

Pipelining Bottom-up Data Flow Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

14. bool y = …;
15.

16. int* bar(int* a) {
17.

18. int* b = null;
19.

20. …
21.

22. int* c = y ? a : b;
23.

24. return c;
25.

26. }

1. …
2.

3. int* foo() {
4.

5. int* p = bar(null);
6.

7. int* q = p;
8.

9. int* r = q;
10.

11. return r;
12.

13. }

. . . .

. . . .

. . . .

. . . .

. . . .

0 q r p

. . . .

. . . .

. . . .

. . . .

. . . .

0 b c a

normal flow function call flow function return flow function

to callers

Figure 4: An example of the exploded super-graph for a null-dereference analysis.

The third data flow function is a typical function that models

the assignment b = a. In the exploded super-graph, the variable a

has the same value as before. Thus, there is an edge from the data

flow fact a to itself. The variable b gets the value from the variable

a, which is modeled by the edge from the fact a to the fact b.

It is noteworthy that the data flow facts are not limited to simple

values like the local variables in the examples of the paper. For

example, in alias analysis, the facts can be sets of access paths [59].

In typestate analysis, the facts can be the combination of different

typestates [39].

Figure 4 illustrates the exploded super-graph for a data flow

analysis that tracks the propagation of null pointers. Since Line 18

assigns a null pointer to the variable b, we have the edge from the

vertex (s17, 0) to the vertex (s19, b), meaning that we have the data
flow fact b = null at Line 19. Since Line 19 does not change the

value of the variable a, we have the edge from the vertex (s17, a)
to the vertex (s19, a), which means the data flow fact about the

variable a does not change.
Assuming that smain is the program entry point, the IFDS frame-

work aims to find paths, or determine the reachability relations,

between the vertex (smain, 0) and the vertices of interests. Each of
such paths represents that some data flow fact holds at a program

point. For instance, the path from the vertex (s4, 0) to the vertex
(s12, r) in Figure 4 implies that the fact r = null holds at Line 12.
The IFDS method is efficient because it computes function sum-

maries only once for each function. Each summary is a path on the

exploded super-graph connecting a pair of vertices at the entry and

the exit of a function. The path from the vertex (s17, a) to the vertex
(s25, c) in Figure 4 is such a summary of the function bar. When

analyzing the callers of the function bar, e.g., the function foo, we

can directly jump from the vertex (s4, 0) to the vertex (s6,p) using
the summary without analyzing the function bar again.

The IDE Framework. The IDE framework is a generalization

of the IFDS framework [50]. Similar to the IFDS framework, it also

works as a graph traversal on an exploded super-graph. There are

three major differences. First, each vertex on the exploded super-

graph is no longer associated with a simple data flow fact d, but an

environment mapping a fact d to a value v from a separate value

domain, denoted as {d �→ v}. Second, due to the first difference, the
data flow functions, i.e., the edges on the exploded super-graph,

transform an environment {d �→ v} to the other {d′ �→ v′}. The
third important difference is that each edge on the exploded super-

graph is labeled with an environment transform function, which

makes IDE no longer only a simple graph reachability problem.

Instead, it has to find the paths between two vertices of interests

and, meanwhile, compose the environment transform functions

labeled on the edges along the paths. These differences widen the

class of problems that can be expressed in the IFDS framework.

In this paper, for simplicity, we describe our work under the IFDS

framework. This does not lose the generality for the IDE problems

because, intuitively, both problems are solved by a graph traversal

on the exploded super-graph.

2.2 Coyote in a Nutshell

Let us briefly explain our approach using the code and its corre-

sponding exploded super-graph in Figure 4, where the analysis

aims to track the propagation of null pointers.

Bottom-up Analysis. For the example in Figure 4, a conven-

tional bottom-up analysis firstly analyzes the function bar and

produces function summaries to summarize its behavior. With the

function summaries in hand, the function foo then is analyzed.

Using the symbol� to denote a path between two vertices, a

common IFDS/IDE solution will generate the following two intra-

procedural paths as the summaries of the function bar:

• The path (s17, a) � (s25, c) summarizes the function behav-
ior that a null pointer created in a caller of the function bar,

i.e., a = null, may be returned back to the caller.
• The path (s17, 0) � (s25, c) summarizes the function behav-
ior that a null pointer created in the function bar may be

returned to the caller functions.

Note that we do not need to summarize the path (s17, 0) �
(s25, 0) for the function bar, because the fact 0 is a tautology and

always holds.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi and Charles Zhang

(s17, 0) (s25, c)

time

(s17, a) (s25, c)

(s4, 0) (s17, a) (s25, c)
(s6, p) (s10, r)

(s4, 0) (s17, 0) (s25, c)
(s6, p) (s10, r)

analyzing the function bar

analyzing the function foo

foo1 foo2

bar0 bar1

Figure 5: The pipeline parallelization strategy.

Next, we analyze the function foo by a graph traversal from the

vertex (s4, 0), which aims to track the propagation of null pointers
and produce function summaries of the function foo. During the

graph traversal, when the call flow functions (i.e., the dashed edges)

are visited, we apply the summaries of the function bar and produce

two summaries of the function foo as following (�·�bar are the
summaries of the function bar):

• The path (s4, 0) � �(s17, a) � (s25, c)�bar � (s6,p) �
(s12, r) summarizes the function behavior that a null pointer
in the function foo will be returned to its callers.

• The path (s4, 0) � �(s17, 0) � (s25, c)�bar � (s6,p) �
(s12, r) summarizes the function behavior that a null pointer
in the callees of the function foo will be returned to the

callers of the function foo.

Our Approach. As discussed before, in a conventional bottom-

up analysis, the analysis of a caller function needs to wait for the

analysis of its callees to complete. Differently, Coyote aims to im-

prove the parallelism by starting the analysis of the function foo

before completing the analysis of the function bar. To this end, Coy-

ote partitions the analysis of each function f into three parts based

on where a data flow fact is created. Such a partition categorizes

the function summaries into three groups, f0, f1, and f2, which we

refer to as the pipelineable summaries:

• f0 summarizes the behavior that some data flow facts cre-

ated in the caller functions will be propagated back to the

callers through the current function. The first summary of

the function bar is an example.

• f1 summarizes the behavior that some data flow facts created

in the current function will be propagated back to the caller

functions. The second summary of the function bar and the

first summary of the function foo are two examples.

• f2 summarizes the behavior that some data flow facts created

in the callees are propagated to the current function and will

continue to be propagated to the caller functions. The second

summary of the function foo is an example.

According to the partitionmethod, the summaries of the function

foo is partitioned into two sets, foo1 and foo2, just as illustrated

in Figure 5. Since the function foo does not have any function

parameters, the set foo0 is empty and, thus, omitted. Similarly, the

summaries of the function bar is partitioned into two sets, bar0 and

bar1. Since the function bar does not have any callees, the set bar2
is empty and, thus, omitted. As detailed later, the above partition is

sound because it satisfies the constraint that summaries in the set

fooi only depends on the summaries in the set barj (j ≤ i). Thus,
we can safely pipeline the analyses of the function foo and the

function bar - we can start analyzing the function foo immediately

after summaries in the set bar0 are generated.

In the remainder of this paper, under the IFDS framework, we

formally present how to partition the analysis of a function to

generate pipelineable function summaries, so that the parallelism

of bottom-up analysis can be improved in a sound manner.

3 COYOTE: PIPELINED BOTTOM-UP
ANALYSIS

To explain our method in detail, we first define the basic notations

and terminologies in Section 3.1 and then explain the criteria that

guide our partition method in Section 3.2. Based on the criteria, we

present the technical details of our pipeline parallelization strategy

from Section 3.3 to Section 3.5.

3.1 Preliminaries

To clearly present our approach, we introduce the following nota-

tions and terminologies.

Program Model. Given an IFDS problem, a program is mod-

eled as an exploded super graph G that consists of a set of intra-

procedural graphs {Gf,Gg,Gh, . . . } of the functions {f, g, h, . . . }.
Given a function f, its local graph Gf is a tuple (Lf, ef,xf,Df,Ef):

• Lf is the set of program locations in the function.

• ef,xf ∈ Lf are the entry and exit points of the function.
• Df is the set of data flow facts in the function.

• Lf × Df is the set of vertices of the graph.

• Ef ⊆ (Lf × Df) × (Lf × Df) is the edge set (see Figure 3).

As illustrated in Figure 4, the local graphs of different functions are

connected by call and return flow functions, respectively.

Function Summaries. For any function f, its function sum-

maries are a set of paths between data flow facts at the entry point

and data flow facts at its exit point [45], denoted as Sf = {(ef , a) �
(xf , b) : a, b ∈ Df }. Apparently, we can generate these summaries
by traversing the graph Gf from every vertex at the function entry.

Owing to function calls in a program, the summaries of a function

often depend on the summaries of its callees. We say a summary set

S depends on the other summary set S ′ if and only if there exists a
path in the set S that subsumes a path in the set S ′. As illustrated
in Section 2.2, the summaries of the function foo depend on the

summaries of the function bar.

Summary Dependence Graph. To describe the dependence

between summary sets, we define the summary dependence graph,

where a vertex is a set of function summaries and a directed edge

indicates the source summary set depends on the destination sum-

mary set.

The summary dependence graph is built based on the call graph.

Conventionally, vertices of the summary dependence graph are

the summary sets {Sf, Sg, Sh . . . }, and an edge from the summary

Pipelining Bottom-up Data Flow Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

set Sf to the summary set Sg exists if and only if the function f

calls the function g. A bottom-up analysis works by processing

the summary dependence graph upwards from the leaves. It starts

generating summaries in a summary set if it does not depend on

other summary sets or the summary sets it depends on have been

generated. Summary sets that do not have dependence relations

can be generated in parallel.

Problem Definition. In this paper, we aim to find a partition

for the summary set of each function, say Π(Sf) = {S0f , S1f , S2f , . . . },2
such that a vertex of the summary dependence graph is no longer

a complete summary set Sf but a subset S
i
f
(i ≥ 0). Meanwhile,

to improve the parallelism, the bottom-up analysis based on the

dependence graph should be able to generate summaries for a pair

of caller and callee functions at the same time. In detail, the partition

needs to satisfy the criteria discussed in the next subsection.

3.2 Partition Criteria

Given a pair of functions where the function f calls the function g,

we use the set Ω(Sf , Sg) ⊆ Π(Sf) ×Π(Sg) to denote the dependence
relations between summary sets. Generally, an effective partition

method must meet the following criteria to improve the parallelism

of a bottom-up analysis.

The Effectiveness Criterion. This criterion concerns whether

the dependence between summary sets in the conventional bottom-

up analysis is actually relaxed, so that the parallelism can be im-

proved. We say the partition is effective if and only if |Ω(Sf , Sg) | <
|Π(Sf) × Π(Sg) |. Intuitively, this means that some summaries in
the caller function do not depend on all summaries in callee func-

tions. Thus, the dependence relation in the conventional bottom-up

analysis is relaxed.

The Soundness Criterion. This criterion concerns the correct-

ness after the dependence between summary sets is relaxed. We say

the partition is sound if and only if the following condition is sat-

isfied: if the set Si
f
depends on the set S

j
g, then (Si

f
, S

j
g) ∈ Ω(Sf , Sg).

Violating this criterion will cause the analysis to neglect certain

function summaries and make the analysis unsound.

The Efficiency Criterion. This criterion concerns how many

computational resources we need to consume in order to determine

how to partition a summary set. Since summaries in the summary

sets, Sf and Sg, are unknown before an analysis completes, the exact
dependence relations between summaries in the two sets are also

undiscovered. This fact makes it difficult to perform a fine-grained

partition, unless the analysis has been completed and we have

known what summaries are generated for each function.

As a trade-off, conventional bottom-up analysis does not parti-

tion the summary sets (or equivalently, Π(Sf) = {Sf } and Π(Sg) =
{Sg}). It conservatively utilizes the observation that all summaries
in the set Sf may depend on certain summaries in the set Sg, i.e.,
Ω(Sf , Sg) = {(Sf , Sg)}. Such a conservative method satisfies the

soundness criterion and does not partition the summary sets. How-

ever, apparently, it does not meet the effectiveness criterion because

|Ω(Sf , Sg) | = |Π(Sf) × Π(Sg) | = 1.

2A set partition needs to satisfy ∪i≥0S if = Sf and ∀i, j ≥ 0 : S if ∩ S jf = ∅.

3.3 Pipelineable Summary-Set Partition

Generally, it is challenging to partition a summary set satisfying

the above criteria because the exact dependence between sum-

maries are unknown before the summaries are generated. We now

present a coarse-grained partition method that requires few pre-

computations, and thus, meets the efficiency criterion. Meanwhile,

it also meets the effectiveness and soundness criteria and, thus, can

soundly improve the parallelism of a bottom-up analysis. We also

establish a few lemmas to prove the correctness of our approach.

Intuitively, given a summary set Sf , we partition it according to
where a data flow fact is created: in a caller of the function f, in

the current function f, and in a callee of the function f. Formally,

Π(Sf) = {S0f , S1f , S2f }, where
S0f = {(ef , a) � (xf , b) : a � 0}

S1f = {(ef , 0) � (eg, a) � (xf , b) : f = g ∨ a � 0}
S2f = {(ef , 0) � (eg, 0) � (xf , b) : f � g}

By definition, there is no edge from a non-0 data flow fact to

the fact 0 on the exploded super-graph. An edge from the fact 0

to a non-0 fact means that the non-0 fact is freshly created [45].

Thus, any summary path in the set S0
f
does not go through the

fact 0, meaning that the data flow fact is created in a caller of the

function f. On the other hand, since a summary path in the set S1
f

or the set S2
f
starts with the fact 0, it means that the non-0 data

flow fact on the summary path must be created in the function f or

a callee of the function f. Specifically, since a summary path in the

set S1
f
does not go through the fact 0 in callee functions, the non-0

data flow fact on the summary path is created in the function f.

Similarly, the non-0 data flow fact on a path from the set S2
f
must

be created in a callee of the function f.

The following lemma states that generating summaries in the

sets, S0
f
, S1

f
, and S2

f
, does not miss any summary in the set Sf and,

meanwhile, does not repetitively generate a summary in the set Sf .

Lemma 3.1.
⋃
i≥0 Sif = Sf and ∀i, j ≥ 0 : Sif ∩ S

j

f
= ∅.

Proof. This follows the definitions of the sets S0
f
, S1

f
, and S2

f
. �

Next, we study whether such a partition method follows the

effectiveness and soundness criteria. The key to the problem is to

compute the set Ω(Sf , Sg) of dependence relations between a pair

of summary sets, Si
f
and S

j
g, given any pair of caller-callee functions,

f and g.

Lemma 3.2. The sets S0
f
, S1

f
, and S2

f
depend on the set S0g .

Proof. This follows the fact that any summary path in a caller

function may go through a callee’s summary path and the set S0g is
a part of the callee’s summaries. �

Lemma 3.3. The set S2
f
depends on the sets S1g and S

2
g .

Proof. By definition, a summary path in the set S2
f
needs to go

through the vertex (eg, 0). Given the function g, summary paths

in both the set S1g and the set S
2
g start with the vertex (eg, 0). Thus,

the set S2
f
depends on the sets S1g and S

2
g . �

To demonstrate that the above lemmas do not miss any depen-

dence relations, we establish the following two lemmas.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi and Charles Zhang

S 0f S1f S2f

S 0g S1g S2g

Figure 6: The summary dependence graph for a caller-callee

function pair, f and g.

Lemma 3.4. The set S0
f
does not depend on the sets S1g and S

2
g .

Proof. This follows the fact that a non-0 data flow fact cannot

be connected back to the fact 0 [45], but a summary path in the

sets S1g and S
2
g must start with the fact 0. �

Lemma 3.5. The set S1
f
does not depend on the sets S1g and S

2
g .

Proof. By definition, a summary path in the set S1
f
does not go

through the fact 0 in a callee function. However, a summary path

in the sets S1g and S2g must start with the fact 0. Thus, the set S
1
f

does not depend on the sets S1g and S
2
g . �

Putting Lemma 3.2 to Lemma 3.5 together, we have the depen-

dence set Ω(Sf , Sg) = {(S0f , S0g), (S1f , S0g), (S2f , S0g), (S2f , S1g), (S2f , S2g)},
which does not miss any dependence relation between the set Si

f

and the set S
j
g. Thus, the partition method satisfies the soundness

criterion. Meanwhile, |Ω(Sf , Sg) | = 5 < |Π(Sf) × Π(Sg) | = 9. Thus,
the effectiveness criterion is satisfied, meaning that the dependence

between the summary sets is relaxed and, based on the partition,

the parallelism of a bottom-up analysis can be improved.

Figure 6 illustrates the summary dependence graph for a pair

of caller-callee functions, f and g. Apparently, based on the graph,

when the summaries in the set S0g are generated, a bottom-up anal-

ysis does not need to wait for summaries in the sets S1g and S
2
g , but

can immediately start generating summaries in the sets S0
f
and S1

f
.

3.4 Pipeline Scheduling

As illustrated in Figure 6, given a caller-callee function pair, f and

g, we have analyzed the dependence relations between the set Si
f

and the set S
j
g and shown that the relaxed dependence provides

an opportunity to improve the parallelism of a bottom-up analysis.

However, we observe that a key problem here is that there are no

dependence relations between the sets Si
f
and S

j

f
for a function f,

and scheduling the summary-generation tasks for Si
f
and S

j

f
in a

random order significantly affects the parallelism.

Figure 7(a) illustrates the worst scheduling method when only

one thread is available for each function, respectively. In the sched-

uling method, the sets S0
f
and S0g have the lowest scheduling priority

compared to other summary sets. Since all summary sets of the

function f depend on the set S0g , they have to wait for all summary
sets of the function g to generate, which is essentially the same as

a conventional bottom-up analysis.

Thus, tomaximize the parallel performance, given any function g,

we need to determine the scheduling priority of the sets S0g , S
1
g , and

time

S 1g S2g S0g

S 1f S2f S0f

time

S 0g S2g S1g

S 0f S2f S1f

time

S 0g S1g S2g

S 0f S1f S2f

(a)

(b)

(c)

Figure 7: Different scheduling methods when one thread

available for each function.

S2g . First, as shown in Figure 6, since more summary sets depend

on the set S0g than the sets S1g and S2g , scheduling the summary-

generation task for the set S0g in a higher priority will release more
tasks for other summary sets.

Figures 7(b) and 7(c) illustrate the two possible scheduling meth-

ods when for any function g, the set S0g is in the highest priority. In

Figure 7(b), the set S2g has a higher priority than the set S
1
g . Since

the set S2
f
depends on the sets S0g , S

1
g , and S

2
g , it has to wait for all

summaries of the function g to generate, leading to a sub-optimal

scheduling method. In contrast, Figure 7(c) illustrates the best case

where the summary-generation tasks are adequately pipelined.

To conclude, the scheduling priority for any given function g

should be S0g > S1g > S2g , so that the parallelism of a bottom-up

analysis can be effectively improved when a limited number of

idle threads are available. Such prioritization does not affect the

parallelism when there are enough idle threads available.

3.5 ϵ-Bounded Partition and Scheduling
Ideally, the aforementioned partition method evenly partitions a

summary set so that the analysis tasks for generating summaries are

adequately pipelined, as shown in Figure 7(c). However, in practice,

it is usually not the case but works as Figure 8(a), where the sets S0g
and S1g are much larger than other summary sets.

Apparently, if there are extra threads available andwe can further

partition the summary sets S0g and S
1
g into two subsets, the analysis

performance then will be improved by generating summaries in the

subsets in parallel, just as illustrated in Figure 8(b). Unfortunately,

before a bottom-up analysis finishes, we cannot know the actual

size of each summary set and, thus, cannot evenly partition a set. As

an alternative, what we can do is to approximate an even partition.

Pipelining Bottom-up Data Flow Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

time

S 0g S1g S2g

S 0f S1f S2f

time

S 0g S1g S2g

S 0f S1f S2f

S 0g S1g

(a)

(b)

Figure 8: Bounded partition and its scheduling method.

Considering that the analysis task of summary generation is

actually to perform a graph traversal from a vertex, we try to further

partition a summary set Si
f
based on the number of starting vertices

of the graph traversal. To this end, we introduce a client-defined

constant ϵ ,3 so that, after the approximately even partition, the

graph traversal for generating function summaries in a summary

set starts from no more than ϵ vertices.
For example, to generate summaries in the set S0

f
, the analysis

needs to traverse the graph Gf from each non-0 data flow fact at

the function entry. Suppose the function f has four non-0 data flow

facts, {w, x, y, z} and ϵ = 2. Then, the set S0
f
is further partitioned

into two subsets {(ef , a) � (xf , b) : a ∈ {w,x}} and {(ef , a) �
(xf , b) : a ∈ {y, z}}. After the partition, the graph traversal for both
summary sets starts from two vertices.

Similar partition can be performed on the sets S1
f
and S2

f
but

the following explanation needs to be considered. By definition, it

seems difficult to further partition sets S1
f
and S2

f
based on the above

method, because all summary paths in them start with a single

vertex (ef , 0). The key is that, since the fact 0 is a tautology and
vertices with the fact 0 are always reachable from each other [45],

the graph traversal to generate summaries in the sets S1
f
and S2

f
are

not necessary to start from the vertex (ef , 0). For instance, since
the set S1

f
contains the summary paths where data flow facts are

created in the function f, we can traverse the graph Gf from every

vertex that has an immediate predecessor (s ∈ Lf , 0).
4 Similarly,

considering that the set S2
f
contains the summary paths where data

flow facts are created in a callee of the function f, we can traverse

the graphGf from every vertex that has an incoming edge from the

callees. With multiple starting vertices for the graph traversal, we

then can partition the sets S1
f
and S2

f
similarly as the set S0

f
.

It is noteworthy that such a bounded partition aims to parallelize

the analysis in a single function and, thus, is applicable to both

our pipelining approach and the conventional bottom-up approach.

Nevertheless, it is particularly useful to improve the pipeline ap-

proach as discussed above.

3We use ϵ = 5 in our implementation.
4Recall that an edge from the fact 0 to a non-0 data flow fact means the non-0 fact is
freshly created.

Master Process Cycle

Thread Process
Cycles

Queue of Tasks

New Task
to Generate
Summaries

Completed Task

Thread Pool

Summary Dep. Graph

Figure 9: Pipelining bottom-up data flow analysis using a

thread pool.

4 IMPLEMENTATION

We have implemented Coyote on top of LLVM5 to path-sensitively

analyze C/C++ programs. This section discusses the implementa-

tion details. In the evaluation, for a fair comparison, except for the

parallel strategy we study in the paper, all other implementation

details are the same in both Coyote and the baseline approaches.

4.1 Parallelization

As illustrated in Figure 9, we implement a thread pool to drive our

pipeline parallelization strategy. In the figure, the master process

cycle maintains the summary dependence graph for all functions.

Each vertex in the graph represents a task to generate certain func-

tion summaries. Whenever all of the dependent tasks have been

completed, it pushes the current task, referred to as the active task,

into a queue and waits for an idle thread to consume it. When a

task is completed, the master process cycle is notified so that it can

continue to find more active tasks on the dependence graph.

In our implementation, instead of randomly scheduling the tasks

in the thread pool, we also seek to design a systematic scheduling

method so that we can well-utilize CPU resources. However, it

is known that generating an optimal schedule to parallelize the

computations in a dependence graph is a variant of precedent-

constraint scheduling, which is NP-complete [30]. Therefore, we

employ a greedy critical path scheduler [35]. A critical path is the

longest remaining path from a vertex to the root vertex on the

dependence graph. We then replace the task queue in Figure 9 with

a priority queue and prioritize tasks based on the length of critical

paths. It is noteworthy that this heuristic scheduling method does

not conflict with the pipeline scheduler presented in Section 3.4.

The pipeline scheduler prioritizes the analysis tasks in the same

function, while the critical-path scheduler only prioritizes the tasks

from different functions.

4.2 Taint Analysis

To demonstrate that our approach is applicable to a broad range

of data flow analysis, in addition to the null analysis discussed in

the paper, we also implement a taint analysis to check two kinds

of taint issues. First, we check relative path traversal, which allows

5LLVM: https://llvm.org/.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi and Charles Zhang

an attacker to access files outside of a restricted directory.6 It is

modeled as a path on the exploded super-graph from an external

input to a file operation. A typical example is a path from a user

input input=gets(...) to a file operation fopen(...). Second, we check

transmission of private resources, which may leak private data to

attackers.7 It is modeled as a path on the exploded super-graph from

sensitive data to I/O operations. A typical example is a path from the

password password=getpass(...) to an I/O operation sendmsg(...).

4.3 Pointers and Path-Sensitivity

The null analysis and the taint analysis in Coyote require highly

precise pointer information so that they can determine how data

flow facts propagate through pointer (load and store) operations. To

resolve the pointer relations, we follow the previous work [54] to

perform a path-sensitive points-to analysis. The points-to analysis

is efficient because it does not exhaustively solve path conditions

but records the conditions on the graph edges. When traversing the

graph for an analysis, we collect and solve conditions on a path in a

demand-driven manner. In Coyote, we use Z3 [13] as the constraint

solver to determine path feasibility. According to our experience

and many existing works [4, 15, 54, 64], path-sensitivity is a critical

factor to make an analysis practical and make the evaluation closer

to a real application scenario. For instance, a path-insensitive null

analysis reports >90% false positives and, thus, is impractical.

After building the exploded super-graph with the points-to anal-

ysis, we simplify the graph via a program slicing procedure, which

removes irrelevant edges and vertices, thereby improving the perfor-

mance of the subsequent null and taint analyses. This simplification

process is almost linear to the graph size and, thus, is very fast [46].

As an example, Figure 10(a) is a program where a null pointer is

propagated to the variable c through the store and load operations
at Line 5 and Line 9. We use the points-to analysis to identify the

propagation and build the exploded super-graph as illustrated in

Figure 10(b). In this graph, the condition of the propagationy and¬y
are labeled on the edges. Figure 10(c) illustrates the simplified form

of the original graph, where unnecessary edges like (s10, ob) �
(s12, ob) and unnecessary vertices like (s8, ob) are removed.

4.4 Soundness

Our implementation of Coyote is soundy [32], meaning that it

handles most language features in a sound manner while we also

make some well-identified unsound choices following the previous

work [4, 10, 54, 58, 64]. Note that Coyote aims to find as many bugs

as possible rather than rigorously verifying the correctness of a

program. In this context, the unsound choices have limited negative

impacts as demonstrated in the previous works. In our implementa-

tion, like the previous work [24], we use a flow-insensitive pointer

analysis [56] to resolve function pointers. We unroll each cycle

twice on both the call graph and the control flow graph [4]. Follow-

ing the work of Saturn [64], a representative static bug detection

tool, we do not model inline assembly and library utilities such as

std::vector, std::set, and std::map from the C++ standard template

library.

6CWE-23: https://cwe.mitre.org/data/definitions/23.html.
7CWE-402: https://cwe.mitre.org/data/definitions/402.html.

1. bool y = …;
2.

3. int* bar(int** a, int** b) {
4.

5. *b = null;
6.

7. …
8.

9. int* c = y ? *a : *b;
10.

11. *c = 1;
12.

13. }

. .
.

.
. .

0 ob c oa

. . . .

. . . .

. . . .

. . . .

. . . .

0 ob c oa

yy yy

(a) (b) (c)

Figure 10: (a) A code snippet. (b) The exploded super-graph

built based on a points-to analysis. (c) The simplified graph.

oa and ob represent the memory object pointed to by a and b,
respectively. y and ¬y on the edges are the path conditions.

5 EVALUATION

We now present the experimental setup and the experimental re-

sults to demonstrate the effectiveness of our new parallel data flow

analysis. We also discuss the factors affecting the evaluation results

at the end of this section.

5.1 Experimental Setup

Our goal is to study the scalability of Coyote, a pipeline paral-

lelization strategy for bottom-up data flow analysis. We did this

by measuring the CPU utilization rates and the speedup over a

conventional parallel implementation. More specifically, a conven-

tional parallel implementation only analyzes functions without

calling dependence in parallel, just as illustrated in Figure 1. To

precisely measure and study the scalability of our approach, we

introduce an artificial throttle that allows us to switch between

our pipeline strategy and the conventional parallel strategy. In this

manner, we can guarantee that, except for the parallel strategies,

all other implementation details discussed in Section 4 are the same

for both our approach and the baseline approach. For instance, both

approaches accept the same exploded super-graph as the input. Par-

ticularly, as discussed in Section 3.5, since the ϵ-bounded partition
aims to parallelize the analysis in a single function, it is adopted in

both our approach and the baseline approach for a fair comparison.

Therefore, the speedup of our approach demonstrated in this sec-

tion is achieved by the pipeline strategy, i.e., the key contribution

of this paper, in isolation. Like the previous work [1], we did not

compare our implementation with other tools like Saturn [64] and

Calysto [4]. This is because the comparison results will not make

any sense due to a lot of different implementation details that may

affect the runtime performance.

Our evaluation of Coyotewas over the standard SPEC CINT2000

benchmarks,8 which is commonly used in the literature on static

analysis [54, 58]. We also include eight industrial-sized open-source

C/C++ projects such as Python, OpenSSL, and MySQL. These real-

world subjects are the monthly trending projects on Github that

we are able to set up. Table 1 lists the evaluation subjects. The size

8SPEC CINT2000 benchmarks: https://www.spec.org/cpu2000/CINT2000/.

Pipelining Bottom-up Data Flow Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Subjects for evaluation.

Origin ID Program Size (KLoC) # Functions

SPEC

CINT2000

1 mcf 2 26

2 bzip2 3 74

3 gzip 6 89

4 parser 8 324

5 vpr 11 272

6 crafty 13 108

7 twolf 18 191

8 eon 22 3,367

9 gap 36 843

10 vortex 49 923

11 perlbmk 73 1,069

12 gcc 135 2,220

Open

Source

13 bftpd 5 260

14 shadowsocks 32 574

15 webassembly 75 7,842

16 redis 101 1,527

17 python 434 3,619

18 icu 537 27,046

19 openssl 791 11,759

20 mysql 2,030 79,263

Total 4,381 Avg. 7,070

of these subjects is more than four million lines of code in total,

ranging from a few thousand to two million lines of code. The

number of functions of these subjects ranges from tens to nearly

eighty thousand functions, with about seven thousand on average.

We ran our experiments on a server with eighty “Intel(R) Xeon(R)

CPU E5-2698 v4 @ 2.20GHz” processors and 256GB of memory

running Ubuntu-16.04. We set our initial number of threads to

be twenty and added twenty for every subsequent run until the

maximum number of available processors, i.e., eighty. All the ex-

periments were run with the resource limitation of twelve hours.

5.2 Study of the Null Analysis

We first present the experimental results of the null analysis in

detail, followed by a brief discussion on the taint analysis in the

next subsection.

5.2.1 Speedup. Table 2 lists the comparison results of the con-

ventional parallel mechanism (Conv) and our pipeline strategy

(Pipeline) for the bottom-up program analysis. Each row of the

table represents the results of a benchmark program, including the

time cost in seconds and the speedup for these two kinds of parallel

mechanisms. The speedup is calculated as the ratio of the time

taken by Coyote to that of the conventional parallel approach with

the same number of threads.

We observe that the speedup achieved with 20 threads is 1.5×
on average. However, as the number of threads is increased to 80,

the observed speedup also increases, up to 3× faster. Using several
typical examples, Figure 11 illustrates the relation between the

number of threads and the speedup. The growing curves show that

the speedup increases with the growth of the number of threads,

demonstrating that we can always achieve speedup and have higher

parallelism than the conventional parallel approach.

1.0

1.5

2.0

2.5

3.0

3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

ID = 2
ID = 3
ID = 6
ID = 7
ID = 13

20 40 60 80

Thread

Sp
ee

du
p

Figure 11: Speedup vs. The number of threads.

It is noteworthy that such 2×-3× speedup is significant enough to
make many overly lengthy analyses useful in practice. For example,

originally, it takes more than 10 hours to analyze MySQL (ID =

20, Size = 2 MLoC, typical size in industry). The time cost cannot

satisfy the industrial requirement of finishing analysis in 5 to 10

hours [35]. With the pipeline strategy, it saves more than 6 hours,

making the bug finding task acceptable in the industrial setting.

5.2.2 CPU Utilization Rate. The speedup over the conventional

parallel design is due to the higher parallelism achieved by the

pipeline strategy. To quantify this effect, we profile the CPU utiliza-

tion rates for both the conventional parallel design and the pipeline

method. Figure 12 demonstrates the CPU utilization rates against

the elapsed running time. Due to the page limit, we only show sev-

eral typical ones for some of the programs running with 80 threads.

In the figure, the solid line represents the CPU utilization rate of

our pipeline method while the dashed line represents that of the

conventional parallel design.

We can observe that, for each project, in the initial phase of

the analysis, the CPU utilization rates for both parallel designs are

similar, almost occupying all available CPUs. This is because the

call graph of a program is usually a tree-like data structure. In the

bottom half of the call graph, it usually has enough independent

functions that we can analyze in parallel. Thus, both parallel designs

can sufficiently utilize the CPUs.

Our pipeline strategy unleashes its power in the remaining part

of the analysis, where it apparently has much higher CPU utiliza-

tion rates, thus finishing the analysis much earlier. This is because

the top half of a call graph is much denser, where there are more

calling relations than the bottom half. Since the conventional paral-

lel design cannot analyze functions with calling relations in parallel,

it cannot sufficiently utilize the CPUs. In contrast, our approach

splits the analysis of a function into multiple parts and allows us to

analyze functions with calling relations in parallel, thus being able

to utilize more CPUs.

5.3 Study of the Taint Analysis

In order to demonstrate that our approach is generalizable to other

analyses, we also conducted an experiment to see whether the

pipeline approach can improve the scalability of taint analysis.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi and Charles Zhang

Table 2: Running time (seconds) and the speedup over the conventional parallel design of bottom-up analysis.

ID
Thread = 20 # Thread = 40 # Thread = 60 # Thread = 80

Conv Pipeline Speedup Conv Pipeline Speedup Conv Pipeline Speedup Conv Pipeline Speedup

1 60 28 2.1× 60 24 2.5× 60 20 3.0× 60 20 3.0×
2 108 64 1.7× 96 40 2.4× 96 36 2.7× 96 32 3.0×
3 168 76 2.2× 168 61 2.8× 168 56 3.0× 168 56 3.0×
4 252 215 1.2× 168 120 1.4× 132 92 1.4× 132 72 1.8×
5 264 192 1.4× 180 116 1.6× 156 88 1.8× 144 76 1.9×
6 192 104 1.8× 168 76 2.2× 168 64 2.6× 168 60 2.8×
7 168 132 1.3× 133 80 1.7× 121 64 1.9× 122 56 2.2×
8 2568 2148 1.2× 1620 1192 1.4× 1296 865 1.5× 1128 708 1.6×
9 1728 860 2.0× 1524 648 2.4× 1500 576 2.6× 1476 545 2.7×
10 843 648 1.3× 698 374 1.9× 674 280 2.4× 662 252 2.6×
11 1530 913 1.7× 1325 604 2.2× 1232 528 2.3× 1217 500 2.4×
12 1978 1573 1.3× 1486 926 1.6× 1306 729 1.8× 1235 613 2.0×
13 156 109 1.4× 132 68 1.9× 132 52 2.5× 132 44 3.0×
14 876 468 1.9× 780 340 2.3× 768 296 2.6× 768 288 2.7×
15 2940 1990 1.5× 2292 1248 1.8× 2076 1012 2.1× 1980 908 2.2×
16 1332 1060 1.3× 984 628 1.6× 900 488 1.8× 864 416 2.1×
17 5162 3022 1.7× 4276 2036 2.1× 4035 1738 2.3× 3895 1605 2.4×
18 7.8hr 5.5hr 1.4× 5.8hr 3.4hr 1.7× 5.2hr 2.6hr 2.0× 4.9hr 2.3hr 2.1×
19 2.8hr 2.2hr 1.2× 1.9hr 1.2hr 1.6× 1.7hr 0.9hr 1.9× 1.6hr 0.8hr 2.0×
20 Time Out 9.6hr - Time Out 7.8hr - Time Out 6.4hr - 11.8hr 5.6hr 2.1×

bftpd

icu

time

time

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)
C

PU
 U

ti
liz

at
io

n
R

at
e

(%
)

webassembly

openssl

time

time

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)
C

PU
 U

ti
liz

at
io

n
R

at
e

(%
)

python

mysql

time

time

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)
C

PU
 U

ti
liz

at
io

n
R

at
e

(%
)

Figure 12: CPU utilization rate vs. The elapsed time. The solid lines represent the CPU utilization rate of our pipeline method

while the dashed lines represent that of the conventional parallel design.

Since the result of taint analysis are quite similar to that of the null

analysis, we briefly summarize the experimental results in Table 3,

where the results of our largest benchmark program, MySQL, are

presented. The results demonstrate that, with the increase of the

number of available threads, the speedup of our approach over

the conventional approach also grows to >2× in analyzing both
the relative path traversal (RPT) bug or the transmission of private

resources (TPR) bug.

5.4 Discussion

There are two main factors affecting the evaluation results: the

density of the call graph and the number of available threads.

As discussed above, when the call graph is very sparse, the

advantage of our approach is not very obvious. For instance, if

functions are all independent on each other, all functions can be run

in parallel. Thus, both approaches can always sufficiently utilize the

available threads and, thus, have similar time efficiency. In practice,

as demonstrated in our evaluation, the call graph is usually tree-like.

Pipelining Bottom-up Data Flow Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Results of the taint analysis on MySQL.

Taint Issues
Thread = 20 # Thread = 40 # Thread = 60 # Thread = 80

Conv Pipeline Speedup Conv Pipeline Speedup Conv Pipeline Speedup Conv Pipeline Speedup

RPT Time Out 10.2hr - Time Out 8.7hr - Time Out 7.1hr - 10.9hr 4.7hr 2.3×
TPR 9.3hr 6.6hr 1.4× 8.1hr 5.0hr 1.6× 7.4hr 3.9hr 1.9× 6.1hr 2.8hr 2.2×

Thus, our approach can present its power in the second half of the

analysis and achieves up to 3× speedup in practice.
The number of threads is also a key factor affecting the ob-

served speedup of our approach. For instance, if we only have one

thread available, although our approach can provide more indepen-

dent tasks, these tasks cannot be run in parallel. Thus, both of our

approach and the conventional one will emit similar results. As

illustrated by the evaluation, our approach can work better when

we have more available threads. In the cloud era, we can expect

that we have unlimited CPU resources and, thus, can expect more

benefits from our approach in practice.

6 RELATEDWORK

Parallel and distributed algorithms for data flow analysis is an

active area of research. In this section, we survey existing parallel

or distributed techniques and compare them with Coyote.

In order to utilize the modular structure of a program to paral-

lelize the analyses in different functions, developers usually imple-

ment a data flow analysis in a top-down fashion or a bottom-up

manner. Albarghouthi et al. [1] presented a generic framework to

distribute top-down algorithms using a map-reduce strategy. Par-

allel worklist approaches, a kind of top-down analysis, also can

address the IFDS/IDE problems. They operate by processing the

elements on an analysis worklist in parallel [14, 21, 48]. These ap-

proaches are different from ours because this paper focuses on

bottom-up analysis. In our opinion, the top-down approach and the

bottom-up approach are two separate schools of methodologies to

implement program analysis. Bottom-up approaches analyze each

function only once and generate summaries reusable at all calling

contexts. Top-down approaches generate summaries that are spe-

cific to individual calling contexts and, thus, may need to repeat

analyzing a function. For analyses that need high precision like

path-sensitivity, repetitively analyzing a function is costly. Thus,

we may expect better performance from bottom-up analysis when

high precision is required.

Compared to top-down analysis, bottom-up analysis has been

traditionally easier to parallelize. Existing static analyses, such as

Saturn [64], Calysto [4], Pinpoint [54], and Infer [8], have utilized

the function-level parallelization to improve their scalability. How-

ever, none of them presented any techniques to further improve its

parallelism. McPeak et al. [35] pointed out that the CPU utilization

rate may drop in the dense part of the call graph where the paral-

lelism is significantly limited by the calling dependence. Although

they presented an optimized scheduling method to mitigate the

performance issue, the calling dependence was not relaxed and

the function-level parallelism was not improved. We believe that

their scheduling method is complementary to Coyote and their

combination has the potential for the greater scalability.

In contrast to top-down and bottom-up approaches, partition-

based approaches [6, 12, 17, 22, 26, 29, 33, 38] do not utilize the

modular structure of a program but partition the state space and

distribute the state-space search to several threads or processors.

Another category of data flow analyses (e.g., [2, 7, 25]) are modeled

as Datalog queries rather than the graph reachability queries in

the IFDS/IDE framework. They can benefit from parallel Datalog

engines to improve the scalability [20, 27, 28, 34, 51–53, 61, 62, 66].

Recently, some other parallel techniques have been proposed.

Many of them focus on pointer analysis [18, 31, 37, 41, 44, 57]

rather than general data flow analysis. Mendez-Lojo et al. [36]

proposed a GPU-based implementation for inclusion-based pointer

analysis. EigenCFA [43] is a GPU-based flow analysis for higher-

order programs. Graspan [60] and Grapple [68] turn sophisticated

code analysis into big data analytics. They utilize recent advances

on solid-state disks to parallelize and scale program analysis. These

techniques are not designed for compositional data flow analysis

and, thus, are different from our approach.

In addition to automatic techniques, Ball et al. [5] used manually

created harnesses to specify independent device driver entry points

so that an embarrassingly parallel workload can be created.

7 CONCLUSION

We have presented Coyote, a pipeline parallelization strategy that

enables to perform bottom-up data flow analysis in a faster way. The

pipeline strategy relaxes the calling dependence, which convention-

ally limits the parallelism of bottom-up analysis. The evaluation of

our approach demonstrates higher CPU utilization rates and signif-

icant speedup over a conventional parallel design. In the multi-core

era, we believe that improving the parallelism is an important ap-

proach to scaling static program analysis.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for

their insightful comments. This work is partially funded by an

MSRA grant, as well as Hong Kong GRF16230716, GRF16206517,

ITS/215/16FP, and ITS/440/18FP grants.

REFERENCES
[1] Aws Albarghouthi, Rahul Kumar, Aditya V Nori, and Sriram K Rajamani. 2012.

Parallelizing top-down interprocedural analyses. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’12). ACM, 217–228.

[2] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. 2015. Combining
type-analysis with points-to analysis for analyzing Java library source-code. In
Proceedings of the 4th ACM SIGPLAN International Workshop on State Of the Art
in Program Analysis (SOAP ’15). ACM, 13–18.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM, 259–269.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi and Charles Zhang

[4] Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and precise extended
static checking. In Proceedings of the 30th International Conference on Software
Engineering (ICSE ’08). IEEE, 211–220.

[5] Thomas Ball, Vladimir Levin, and Sriram K Rajamani. 2011. A decade of software
model checking with SLAM. Commun. ACM 54, 7 (2011), 68–76.

[6] Jiri Barnat, Lubos Brim, and Jitka Stříbrná. 2001. Distributed LTL model-checking
in SPIN. In International SPIN Workshop on Model Checking of Software. Springer,
200–216.

[7] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’09). ACM, 243–262.

[8] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011.
Compositional shape analysis by means of bi-abduction. J. ACM 58, 6 (2011),
26:1–26:66.

[9] Sagar Chaki, Edmund M Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2004.
Modular verification of software components in C. IEEE Transactions on Software
Engineering 30, 6 (2004), 388–402.

[10] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory
leak detection using guarded value-flow analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, 480–491.

[11] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. 2013. BLITZ: Compositional
bounded model checking for real-world programs. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’13).
IEEE, 136–146.

[12] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George
Candea. 2010. Cloud9: A software testing service. ACM SIGOPS Operating
Systems Review 43, 4 (2010), 5–10.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[14] Kyle Dewey, Vineeth Kashyap, and Ben Hardekopf. 2015. A parallel abstract
interpreter for JavaScript. In 2015 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’15). IEEE, 34–45.

[15] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable
path-sensitive analysis. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’08). ACM, 270–280.

[16] Isil Dillig, Thomas Dillig, Alex Aiken, andMooly Sagiv. 2011. Precise and compact
modular procedure summaries for heap manipulating programs. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’11). ACM, 567–577.

[17] Matthew B Dwyer, Sebastian Elbaum, Suzette Person, and Rahul Purandare. 2007.
Parallel randomized state-space search. In Proceedings of the 29th International
Conference on Software Engineering (ICSE ’07). IEEE, 3–12.

[18] Marcus Edvinsson, Jonas Lundberg, and Welf Löwe. 2011. Parallel points-to
analysis for multi-core machines. In Proceedings of the 6th International Conference
on High Performance and Embedded Architectures and Compilers. ACM, 45–54.

[19] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2008.
Effective typestate verification in the presence of aliasing. ACM Transactions on
Software Engineering and Methodology (TOSEM) 17, 2 (2008), 9.

[20] Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. 1990. A Framework for the
Parallel Processing of Datalog Queries. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’90). ACM, 143–152.

[21] Diego Garbervetsky, Edgardo Zoppi, and Benjamin Livshits. 2017. Toward full
elasticity in distributed static analysis: the case of callgraph analysis. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering (FSE
’17). ACM, 442–453.

[22] Orna Grumberg, Tamir Heyman, Nili Ifergan, and Assaf Schuster. 2005. Achieving
speedups in distributed symbolic reachability analysis through asynchronous
computation. In Advanced Research Working Conference on Correct Hardware
Design and Verification Methods. Springer, 129–145.

[23] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the world wide web from vulnerable JavaScript. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis
(ISSTA ’11). ACM, 177–187.

[24] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions
of lines of code. In Code Generation and Optimization (CGO), 2011 9th Annual
IEEE/ACM International Symposium on. IEEE, 289–298.

[25] Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan,
Bernhard Scholz, and Yi Lu. 2017. An efficient tunable selective points-to anal-
ysis for large codebases. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis (SOAP ’17). ACM, 13–18.

[26] Gerard J Holzmann and Dragan Bosnacki. 2007. The design of a multicore
extension of the SPIN model checker. IEEE Transactions on Software Engineering
33, 10 (2007), 659–674.

[27] G. Hulin. 1989. Parallel Processing of Recursive Queries in Distributed Archi-
tectures. In Proceedings of the 15th International Conference on Very Large Data

Bases (VLDB ’89). Morgan Kaufmann Publishers Inc., 87–96.
[28] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019. A spe-

cialized B-tree for concurrent datalog evaluation. In Proceedings of the 24th Sym-
posium on Principles and Practice of Parallel Programming (PPoPP ’19). ACM,
327–339.

[29] Yong-fong Lee and Barbara G Ryder. 1992. A comprehensive approach to par-
allel data flow analysis. In Proceedings of the 6th International Conference on
Supercomputing. ACM, 236–247.

[30] Jan Karel Lenstra and AHG Rinnooy Kan. 1978. Complexity of scheduling under
precedence constraints. Operations Research 26, 1 (1978), 22–35.

[31] Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. 2019. Rethinking Incremen-
tal and Parallel Pointer Analysis. ACM Transactions on Programming Languages
and Systems (TOPLAS) 41, 1 (2019), 6.

[32] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[33] Nuno P Lopes and Andrey Rybalchenko. 2011. Distributed and predictable soft-
ware model checking. In International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 340–355.

[34] Carlos Alberto Martínez-Angeles, Inês Dutra, Vítor Santos Costa, and Jorge
Buenabad-Chávez. 2013. A datalog engine for gpus. In Declarative Programming
and Knowledge Management. Springer, 152–168.

[35] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. 2013. Scal-
able and incremental software bug detection. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE ’13). ACM, 554–564.

[36] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. 2012. A GPU imple-
mentation of inclusion-based points-to analysis. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’12). ACM, 107–116.

[37] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. 2010. Parallel
inclusion-based points-to analysis. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’10). ACM, 428–443.

[38] David Monniaux. 2005. The parallel implementation of the Astrée static analyzer.
In Asian Symposium on Programming Languages and Systems. Springer, 86–96.

[39] Nomair A Naeem and Ondrej Lhotak. 2008. Typestate-like analysis of multiple
interacting objects. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-
oriented Programming Systems Languages and Applications (OOPSLA ’08). ACM,
347–366.

[40] Nomair A Naeem and Ondrej Lhoták. 2009. Efficient alias set analysis using SSA
form. In Proceedings of the 2009 International Symposium on Memory Management
(ISMM ’09). ACM, 79–88.

[41] Vaivaswatha Nagaraj and R Govindarajan. 2013. Parallel flow-sensitive pointer
analysis by graph-rewriting. In Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques. IEEE, 19–28.

[42] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective inter-component communica-
tion mapping in android: An essential step towards holistic security analysis. In
Presented as part of the 22nd USENIX Security Symposium (USENIX Security ’13).
USENIX Association, 543–558.

[43] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. 2011.
EigenCFA: Accelerating flow analysis with GPUs. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’11). ACM, 511–522.

[44] Sandeep Putta and Rupesh Nasre. 2012. Parallel replication-based points-to
analysis. In International Conference on Compiler Construction (CC ’12). Springer,
61–80.

[45] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’95). ACM,
49–61.

[46] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding
up slicing. In Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE ’94). ACM, 11–20.

[47] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. 2005. Interprocedural shape
analysis for cutpoint-free programs. In International Static Analysis Symposium.
Springer, 284–302.

[48] Jonathan Rodriguez and Ondřej Lhoták. 2011. Actor-based parallel dataflow
analysis. In International Conference on Compiler Construction (CC ’11). Springer,
179–197.

[49] Atanas Rountev, Mariana Sharp, and Guoqing Xu. 2008. IDE dataflow analysis
in the presence of large object-oriented libraries. In International Conference on
Compiler Construction (CC ’08). Springer, 53–68.

[50] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical Computer
Science 167, 1 (1996), 131–170.

Pipelining Bottom-up Data Flow Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[51] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast
large-scale program analysis in datalog. In International Conference on Compiler
Construction (CC ’16). ACM, 196–206.

[52] Jürgen Seib and Georg Lausen. 1991. Parallelizing Datalog programs by gen-
eralized pivoting. In Proceedings of the tenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 241–251.

[53] Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. 2012. Optimizing
large-scale Semi-Naïve datalog evaluation in hadoop. In International Datalog 2.0
Workshop. Springer, 165–176.

[54] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: Fast and precise sparse value flow analysis for million lines
of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’18). ACM, 693–706.

[55] Sharon Shoham, Eran Yahav, Stephen J Fink, and Marco Pistoia. 2008. Static
specification mining using automata-based abstractions. IEEE Transactions on
Software Engineering 34, 5 (2008), 651–666.

[56] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 32–41.

[57] Yu Su, Ding Ye, and Jingling Xue. 2014. Parallel pointer analysis with CFL-
reachability. In 2014 43rd International Conference on Parallel Processing. IEEE,
451–460.

[58] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
40, 2 (2014), 107–122.

[59] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. 2013. Andromeda: Accurate and scalable security analysis of web
applications. In International Conference on Fundamental Approaches to Software
Engineering. Springer, 210–225.

[60] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.
2017. Graspan: A single-machine disk-based graph system for interprocedural

static analyses of large-scale systems code. ACM SIGOPS Operating Systems
Review 51, 2 (2017), 389–404.

[61] Ouri Wolfson and Aya Ozeri. 1990. A New Paradigm for Parallel and Distributed
Rule-processing. In Proceedings of the 1990 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’90). ACM, 133–142.

[62] Ouri Wolfson and Avi Silberschatz. 1988. Distributed Processing of Logic Pro-
grams. In Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’88). ACM, 329–336.

[63] Yichen Xie and Alex Aiken. 2005. Context- and path-sensitive memory leak
detection. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’05). ACM, 115–125.

[64] Yichen Xie and Alex Aiken. 2005. Scalable error detection using Boolean satisfia-
bility. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’05). ACM, 351–363.

[65] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter O’Hearn. 2008. Scalable shape analysis for systems code. In
International Conference on Computer Aided Verification. Springer, 385–398.

[66] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. 2017. Scaling up the
performance of more powerful Datalog systems on multicore machines. The
VLDB Journal - The International Journal on Very Large Data Bases 26, 2 (2017),
229–248.

[67] Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating precise and
concise procedure summaries. In Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM,
221–234.

[68] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,
Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. 2019. Grapple: A graph
system for static finite-state property checking of large-scale systems code. In
Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). ACM, 38.

