
Conquering the Extensional Scalability Problem for Value-Flow
Analysis Frameworks

Qingkai Shi
The Hong Kong University of Science and Technology

Hong Kong, China

qshiaa@cse.ust.hk

Rongxin Wu
Xiamen University

Xiamen, China

wurongxin@xmu.edu.cn

Gang Fan
The Hong Kong University of Science and Technology

Hong Kong, China

gfan@cse.ust.hk

Charles Zhang
The Hong Kong University of Science and Technology

Hong Kong, China

charlesz@cse.ust.hk

ABSTRACT

Modern static analyzers often need to simultaneously check a few

dozen or even hundreds of value-flow properties, causing serious

scalability issues when high precision is required. A major factor

to this deficiency, as we observe, is that the core static analysis en-

gine is oblivious of the mutual synergy among the properties being

checked, thus inevitably losing many optimization opportunities.

Our work is to leverage the inter-property awareness and to capture

redundancies and inconsistencies when many properties are consid-

ered at the same time. We have evaluated our approach by checking

twenty value-flow properties in standard benchmark programs and

ten real-world software systems. The results demonstrate that our

approach is more than 8× faster than existing ones but consumes
only 1/7 of the memory. Such substantial improvement in analysis

efficiency is not achieved by sacrificing the effectiveness: at the

time of writing, thirty-nine bugs found by our approach have been

fixed by developers and four of them have been assigned CVE IDs

due to their security impact.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

Static bug finding, demand-driven analysis, compositional program

analysis, value-flow analysis.

ACM Reference Format:

Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. 2020. Conquering

the Extensional Scalability Problem for Value-Flow Analysis Frameworks.

In 42nd International Conference on Software Engineering (ICSE ’20), May

23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3377811.3380346

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380346

1 INTRODUCTION

Value-flow analysis [12, 30, 38, 41], which tracks how values are

stored and loaded in a program, underpins the inspection of a

very broad category of software properties, such as memory safety

(e.g., null dereference, double free, etc.), resource usage (e.g., mem-

ory leak, file usage, etc.), and security properties (e.g., the use of

tainted data). In addition, there are a large and growing number

of domain-specific value-flow properties. For instance, mobile soft-

ware requires that the personal information cannot be passed to

an untrusted code [2], and, in web applications, tainted database

queries are not allowed to be executed [43]. Fortify,1 a commercial

static code analyzer, checks nearly ten thousand value-flow prop-

erties from hundreds of unique categories. Value-flow properties

exhibit a very high degree of versatility, which poses great chal-

lenges to the effectiveness of general-purpose program analyzers.

Faced with such a massive number of properties and the need of

extension, existing approaches, such as Fortify, CSA,2 and Infer,3

provide a customizable framework together with a set of property

interfaces that enable the quick customization for new properties.

For instance, CSA uses a symbolic-execution engine such that, at

every statement, it invokes the callback functions registered for

the properties. These callback functions are overwritten by the

property-checker writers to collect the symbolic-execution results,

such as the symbolic memory and the path conditions, so that we

can judge the presence of any property violation at the statement.

Despite the existence of many CSA-like frameworks, when high

precision like path-sensitivity is required, existing static analyzers

still cannot scale well with respect to a large number of properties

to check, which we refer to as the extensional scalability issue. For

example, our evaluation shows that CSA cannot path-sensitively

check twenty properties for many programs in ten hours. Pin-

point [38], another recent analyzer, exhausted 256GB of memory

for only eight properties.

We observe that a major factor for the extensional scalability

issue is that, in the conventional extension mechanisms, such as

that of CSA, the core static analysis engine is oblivious to the

properties being checked. Although the property obliviousness

gives the maximum flexibility and extensibility to the framework,

1Fortify Static Analyzer: https://microfocus.com/products/static-code-analysis-sast/.
2Clang Static Analyzer: https://clang-analyzer.llvm.org/.
3Infer Static Analyzer: http://fbinfer.com/.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang

it also prevents the core engine from utilizing the property-specific

analysis results for optimization. This scalability issue is slightly

alleviated by a class of approaches that are property-aware and

demand-driven [5, 25, 28]. These techniques are scalable with re-

spect to a small number of properties because the core engine can

skip certain program statements by understanding what statements

are relevant or irrelevant to the properties. However, in these ap-

proaches, the semantics of properties are also opaque to each other.

As a result, when the number of properties grows very large, the

performance of the demand-driven approaches will quickly dete-

riorate because property-irrelevant program statements become

fewer and fewer, such as in the case of Pinpoint. To the best of

our knowledge, the number of literature specifically addressing the

extensional scalability issue is very limited. Readers can refer to

Section 7 for a detailed discussion.

In this work, we advocate an inter-property-aware design to re-

lax the property-property and the property-engine opaqueness so

that the core static analysis engine can exploit the mutual synergy

among different properties for optimization. To check a value-flow

property, instead of conforming to conventional callback interfaces,

property-checker writers of our framework need to explicitly de-

clare a simple property specification, which picks out source and

sink values, respectively, as well as the predicate over these values

for the satisfaction of the property. For instance, for a null deference

property, our property model only requires the checker writers to

indicate where a null pointer may be created and where the null

dereference may happen using pattern expressions, as well as a

simple predicate that constrains the propagation of the null pointer.

Surprisingly, given a set of properties specified in our property

model, our static analyzer can automatically understand the over-

laps and inconsistencies of the properties to check. Based on the

understanding, before analyzing a program, we can make dedi-

cated analysis plans so that, at runtime, the analyzer can share the

analysis results on path-reachability and path-feasibility among

different properties for optimization. The optimization allows us to

significantly reduce redundant graph traversals and unnecessary

invocations of the SMT solver, two critical performance bottlenecks

of conventional approaches. We provide some examples in Section 2

to illustrate our approach.

We have implemented our approach, named Catapult, which

is a new demand-driven and compositional static analyzer with

the precision of path-sensitivity. Like a conventional compositional

analysis [45], our implementation allows us to concurrently ana-

lyze functions that do not have calling relations. In Catapult, we

have included all C/C++ value-flow properties that CSA checks by

default. In the evaluation, we compared Catapult to three state-of-

the-art bug-finding tools, Pinpoint, CSA, and Infer, using a standard

benchmark and ten popular industrial-sized software systems. The

experimental results demonstrate that Catapult is more than 8×
faster than Pinpoint but consumes only 1/7 of the memory. It is as

efficient as CSA and Infer in terms of both time and memory cost

but is much more precise. Such promising scalability of Catapult

is not achieved by sacrificing the capability of bug finding. In our

experiments, although the benchmark software systems have been

checked by numerous free and commercial tools, Catapult is still

(a) path overlapping

check for
free-global-pointer

bugs

check for
memory-leak

bugs

a=malloc()

c= (a, b)

*c=1

b

X

// global pointer// heap pointer

(b) path contradiction

a=malloc()

b=a

free(b) *b=1

check for
memory-leak

bugs

check for
null-dereference

bugsX
a≠0 a=0

// heap pointer or null

Figure 1: Path overlapping and contradiction among differ-

ent properties. Each edge represents a value flow.

able to detect many previously-unknown bugs, in which thirty-

nine have been fixed by the developers and four have been assigned

CVE IDs. In summary, we make the following contributions:

• An inter-property-aware design for checking value-flow

properties, which mitigates the extensional scalability issue.

• A series of cross-property optimization rules that can be

made use of for general value-flow analysis frameworks.

• A detailed implementation and a systematic evaluation that

demonstrates our high scalability, precision, and recall.

2 OVERVIEW

The key factor that allows us to conquer the extensional scalability

problem is the exploitation of the mutual synergy among different

properties. In this section, we first use two simple examples to

illustrate this mutual synergy and then provide a running example

used in the whole paper.

2.1 Mutual Synergy

We observe that the mutual synergy among different properties are

primarily in the forms of path overlapping and path contradiction.

In Figure 1a, to check the memory-leak bug, we need to track

value flows from the newly-created heap pointer a to check if the
pointer will be freed.4 To check the free-global-pointer bug, we

track value flows from the global variable b to check if it will be
freed.5 As illustrated in the figure, the value-flow paths to search

for these two bugs overlap from the vertex c=ϕ(a,b) to the vertex
*c=1. Being aware of the overlap, when traversing the graph from

the vertex a=malloc() for the memory-leak bug, we record that the

vertex c=ϕ(a,b) cannot reach any “free” operation. Therefore, when
checking the free-global-pointer bug, we can use this recorded

information to immediately stop the graph traversal at the vertex

c=ϕ(a,b), thereby avoiding redundant graph traversals.
In Figure 1b, to check the memory-leak bug, we track value flows

from the newly-created pointer a to where it is freed. To check the
null-dereference bug, considering that the function malloc may

return a null pointer when the memory allocation fails, we track

the value flows from the same pointer a to where it is dereferenced.
The two properties have an inconsistent constraint: the former

requires a�0 for a to be a valid heap pointer while the latter requires

4In the paper, we say a pointer p is “freed” if it is used in the function call free(p). We
will detail how to use the value-flow information to check bugs later.
5Freeing a pointer pointing to non-heap memory (e.g., memory allocated by global
variables) is buggy. See details in https://cwe.mitre.org/data/definitions/590.html.

Conquering the Extensional Scalability Problem for Value-Flow Analysis Frameworks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

property
specifications

graph traversal
plan

optimization
plan bug reportsengine of graph

traversal
plan maker

core engine

key novelty: a plan maker is inserted in a conventional design

Figure 2: The workflow of our approach.

1. char* g = "";
2. void main() {
3. char* a;
4. if (1) {
5. p = malloc(…); a = p; // heap pointer or null
6. } else {
7. a = g; // nonheappointer
8. }
9. if (2) { b = a; free(b); }
10.
11. if (3) { c = a; *c = 1; }
12.
13. if (4) { d = a; free(d); }
14. }

d

p

a

free(d)

g
// nonheap pointer// may be null

free(b)

b

*c = 1

c

1

4 2 3

1

Figure 3: An example to illustrate our method.

a=0 for a to be a null pointer. Being aware of this inconsistency,
when traversing the graph for checking the null-dereference bug,

we check and record if the path condition γ of the path from the

vertex a=malloc() to the vertex b=a conflicts with the null pointer

condition a=0. If the path condition γ is satisfiable but conflicts

with the null pointer condition a=0, i.e., the conjunction γ∧a=0 is
unsatisfiable, we can conclude that the conjunction γ∧a�0 must
be satisfiable without an expensive constraint-solving procedure

when checking the memory-leak bug.

2.2 A Running Example

Figure 3 shows a running example using the value-flow graph

where we check the null-deference and the free-global-pointer bugs

following the workflow illustrated in Figure 2. Given a program, we

first follow the previous work [12, 38, 42] to build the value-flow

graph in order to check the two properties with the precision of

path-sensitivity. Here, path-sensitivity means that when searching

paths on the value-flow graph, we invoke an SMT solver to solve

path conditions and other property-specific constraints to prune

infeasible paths.

The Property Specifications. The users of our framework

need to declaratively specify the value-flow properties, which con-

sists of the simple descriptions of the sources, the sinks, and the

predicates for triggering the bug. For instance, the specifications of

the aforementioned two properties are described by the following

two quadruples, respectively:

prop null-deref := (v = malloc(_); _ = ∗v, ∗v = _;v = 0; never)
prop free-glob-ptr := (glob; free(v); true; never)

Separated by the semicolons, the first and second components

denote the descriptors of the source and the sink, respectively,

specified using pattern expressions to represent the values used or

defined in some program statements. The “don’t-care” values are

written as underscores. In the running example, the source values

of the properties null-deref and free-glob-ptr are the return pointer

of the function malloc and the global pointer g, respectively. The

sink value of the property null-deref is the dereferenced value c at
the statement *c=1. The sink values of the property free-glob-ptr

are the freed values at the statements free(b) and free(d).

The third component is a property-specific constraint, repre-

senting the triggering condition of the bug. In our example, the

constraint of the property null-deref is v = 0, meaning that the

value on a value-flow path should be a null pointer. The constraint

of the property free-glob-ptr is true, meaning that the value on a

value-flow path is unconstrained.

The built-in predicate “never” means that value-flow paths be-

tween the specified sources and sinks should never be feasible.

Otherwise, a bug exists.

The Core Static Analysis Engine. Given these declarative

specifications, our core engine automatically makes analysis plans

before the analysis begins, including both the graph traversal plan

and the optimization plan. In the example, we make the following

optimization plans: (1) checking the property free-glob-ptr before

the property null-deref ; (2) when traversing the graph for the prop-

erty free-glob-ptr, we record the vertices that cannot reach any sink

vertex of the property null-deref. The graph traversal plan in the

example is trivial, which is to perform a depth-first search on the

value-flow graph from every source vertex of the two properties.

In Figure 3, when traversing the value-flow graph from the global

pointer g to check the property free-glob-ptr, the core engine visits

all vertices except the vertex p to look for “free” operations. Accord-
ing to the optimization plan, during the graph traversal, we record

that the vertices b and d cannot reach any dereference operation.

To check the property null-deref, we traverse the value-flow

graph from the vertex p. When visiting the vertexb and the vertexd ,
since the previously-recorded information tells us that they cannot

reach any sink vertices, we prune the subsequent paths from the

two vertices.

It is noteworthy that if we check the property null-deref before

the property free-glob-ptr, we only can prune one path from the

vertex c for the property free-glob-ptr based on the results of the

property null-deref (see Section 4.2.1). We will further explain the

rationale of our analysis plans in the following sections.

3 VALUE-FLOW PROPERTIES

This section provides a specificationmodel for value-flow properties

with the following two motivations. First, we observe that many

property-specific constraints play a significant role in performance

optimization. The specific constraints of one property can be used

to optimize checking of not just the property itself, but also of other

properties being checked together.

Second, despite many studies on value-flow analysis [12, 30, 38,

41, 42], we still have a lack of general and extensible specification

models that can maximize the opportunities of sharing analysis

results across the processes of checking different properties. Some

of the existing studies only focus on checking a specific property

(e.g., memory leak [42]), while others adopt different specifications

to check the same value-flow property (e.g., double free [12, 38]).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang

Table 1: Pattern expressions used in the specification.

p ::= :: patterns
| p1, p2, · · · :: pattern list
| v0 = sig(v1, v2, · · ·) :: call
| v0 = ∗v1 :: load
| ∗v0 = v1 :: store
| v0 = v1 :: assign
| glob :: globals

v ::= :: symbol
| sig :: character string
| _ :: uninterested value

Examples:
v = malloc(_) ret values of any state-

ment calling malloc;
_ = send(_, v, _, _) the 2nd arg of any sta-

tement calling send;
_ = ∗v dereferenced values at

every load statement;

Preliminaries. In a similar style to existing approaches [29, 38,

42], we assume that the code of a program is in static single assign-

ment (SSA) form, where every variable has only one definition [17].

Also, we say the value of a variable a flows to a variable b (or b is
data-dependent on a) if a is assigned to b directly (via assignments,

such as b=a) or indirectly (via pointer dereferences, such as *p=a;

q=p; b=*q). Thus, a value-flow graph can be defined as a directed

graph where the vertices are values in the program and the edges

represent the value-flow relations. A path is called value-flow path

if it is a path on the value-flow graph.

Property Specification. As defined below, we model a value-

flow property as an aggregation of value-flow paths.

Definition 3.1 (Value-Flow Property). A value-flow property, x , is
a quadruple: prop x := (src; sink; psc; agg), where

• src and sink are two pattern expressions (Table 1) that specify

the sources and the sinks of the value-flow paths to track.

• psc is a first-order logic formula, representing the property-

specific constraint that every value on the value-flow path

needs to satisfy.

• agg ∈ {never, never-sim,must, · · · } is an extensible predi-

cate that determines how to aggregate value-flow paths to

check the specified property.

In practice, we can use the quadruple to specify a wide range of

value-flow properties. As discussed below, we put the properties

into three categories, which are checked by aggregating a single,

two, or more value-flow paths, respectively.

Single-Path Properties.We can check many program proper-

ties using a single value-flow path, such as the properties, null-deref

and free-glob-ptr, defined in Section 2.2, as well as a broad range

of taint issues that propagate a tainted object to a program point

consuming the object [21].

Double-Path Properties. A wide range of bugs happen in a

program execution because two program statements (e.g., two state-

ments calling the function free) consecutively operate on the same

value (e.g., a heap pointer). Typical examples include the use-after-

free bug, a general form of the double-free bug, as well as the ones

that operate on expired resources such as a closed file descriptor

or a closed network socket. We check them using two value-flow

paths from the same source value. As an example, the specification

for checking the double-free bugs can be specified as

prop double-free := (v = malloc(_); free(v);v � 0; never-sim)

In the specification, the property-specific constraint v � 0 re-

quires the initial value (or equivalently, all values) on the value-flow

path is a valid heap pointer. This is because v = 0 means the func-
tion malloc fails to allocate memory and returns a null pointer. In

this case, the “free” operation is harmless. The aggregate predicate

“never-sim” means that two value-flow paths from the same pointer

should never occur simultaneously. In other words, there is no

control-flow path that goes through two different “free” operations

on the same heap pointer. Otherwise, a double-free bug exists.

In Figure 3, for the two value-flow paths from the vertex p to the
two “free” operations, we can check the constraint (γ1 ∧γ2) ∧ (γ1 ∧
γ4) ∧ (p � 0) to find double-free bugs. Here, (γ1 ∧γ2) and (γ1 ∧γ4)
are the path conditions of the two paths, respectively.

All-Path Properties. Many bugs happen because we do not

properly handle a value in all programpaths. For instance, amemory-

leak bug happens if there exists a feasible program path where we

do not free a heap pointer. Other typical examples include many

types of resource leaks such as the file descriptor leak and the

socket leak. We check them by aggregating all value-flow paths

from the same source value. As an example, we write the following

specification for checking memory leaks:

prop mem-leak := (v = malloc(_); free(v);v � 0;must)

Compared to the property double-free, the only difference in the

specification is the aggregate predicate. The aggregate predicate

“must” means that the value-flow path from a heap pointer must be

able to reach a “free” operation. Otherwise, a memory leak exists

in the program.

In Figure 3, for the value-flow paths from the vertex p to the

two “free” operations, we can check the disjunction of their path

conditions, i.e., ¬((γ1 ∧γ2) ∨ (γ1 ∧γ4)) ∧γ1 ∧ (p � 0), to determine
if a memory leak exists. Here, (γ1 ∧ γ2) and (γ1 ∧ γ4) are the path
conditions of these two paths, respectively. The additional γ1 is the
condition on which the heap pointer is created.

4 INTER-PROPERTY-AWARE ANALYSIS

Given a number of value-flow properties specified as the quadru-

ples (src; sink; psc; agg), our inter-property-aware static analyzer
searches the value-flow paths and checks bugs based on the path

conditions, the property-specific constraint psc, and the predicate

agg. In this paper, we concentrate on how to exploit the mutual syn-

ergy arising from the interactions of different properties to improve

the searching efficiency of value-flow paths.

4.1 A Naïve Static Analyzer

For multiple value-flow properties, a naïve static analyzer checks

them independently in a demand-driven manner. As illustrated

by Algorithm 1, for each value-flow property, the static analyzer

traverses the value-flow graph from each of the source vertices. At

each step of the graph traversal, we check if the property-specific

Conquering the Extensional Scalability Problem for Value-Flow Analysis Frameworks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Input: the value-flow graph of a progam to check

Input: a set of value-flow properties to check

Output: paths between sources and sinks for each property

foreach property in the input property set do

foreach source v in its source set do

while visit v ′ in the depth-first search from v do

if psc cannot be satisfied then

stop the search from v ′;
end

end

end

end
Algorithm 1: The naïve static analyzer.

constraint psc is satisfiable with respect to the current path condi-

tion. If it is not satisfiable, we can stop the graph traversal along

the current path. This path-pruning process is illustrated in the

shaded part of Algorithm 1, which is a critical factor to improve

the performance.

The key optimization opportunities come from the observation

that the properties to check usually introduce overlaps and incon-

sistencies during the graph traversal, which cannot be exploited if

they are independently checked as in the naïve approach.

4.2 Optimized Intra-procedural Analysis

As summarized in Table 2, given the property specifications, our

inter-property-aware static analysis engine carries out two types

of optimizations when traversing the value-flow graph: the first

aiming at pruning paths and the second focusing on sharing paths

when multiple properties are being checked. Each row of the table

is a rule describing the specific precondition, the corresponding

optimization, as well as its benefit. For the clarity of the discussion,

we explain the rules in the context of processing a single-procedure

program, followed by the discussion on the inter-procedural analy-

sis in the next subsection.

4.2.1 Optimization Plan. Given the property specifications, we

adopt Rules 1 – 4 in Table 2 to facilitate the path pruning.

Ordering the Properties (Rule 1). Given a set of properties

with different source values, we need to determine the order in

which they are checked. While we leave the finding of the per-

fect order that guarantees the optimal optimization to our future

work, we observe that a random order can significantly affect the

effectiveness of the path pruning and must be circumvented.

Let us consider the example in Figure 3 again. In Section 2.2, we

have explained that if the property free-glob-ptr is checked before

the property null-deref, we can prune the two paths from the vertex

b and the vertex d when checking the latter. However, if we flip

the checking order, only one path from the vertex c can be pruned.
This is because, when checking the property null-deref, the core

engine records that the vertex c cannot reach any sinks specified
by the property free-glob-ptr.

Intuitively, what causes the fluctuation in the number of prunable

paths is that the number of the “free” operations is more than the

dereference operations in the value-flow graph. That is, the more

sink vertices we have in the value-flow graph, the fewer paths we

can prune for the property. Inspired by this intuition, the order of

checking the properties is arranged according to the number of

sink vertices. That is, the more sink vertices a property has in the

value-flow graph, the earlier we check this property.

Recording Sink-Reachability (Rule 2). Given a set of prop-

erties {prop1, prop2, · · · }, when checking the property propi by

traversing the value-flow graph, we record if each visited vertex

may reach a sink vertex of the property propj (j � i). With the

recorded information, when checking the property propj (j � i)
and visiting a vertex that cannot reach any of its sinks, we prune

the paths from the vertex. Section 2.2 illustrates the method.

Recording theCheckingResults of Property-SpecificCon-

straints (Rules 3& 4).Given a set of properties {prop1, prop2, · · · },
when we check the property propi by traversing the value-flow

graph, we record the path segments, i.e., a set of edges, that con-

flict with the property-specific constraint pscj of the property

propj (j � i). When checking the property propj (j � i), we prune
the paths that include the path segments.

Let us consider the running example in Figure 3 again. When

traversing the graph from the vertex g to check the property free-

glob-ptr, the core engine records that the condition of the edge from

the vertex a to the vertex c , i.e., a � 0, conflicts with the property-
specific constraint of the property null-deref, i.e., a = 0. With this

information, when checking the property null-deref, we can prune

the subsequent path after the vertex c .
Thanks to the advances in the area of clause learning [6], we are

able to efficiently compute some reusable facts when using SMT

solvers to check path conditions and property-specific constraints.

Specifically, we compute two reusable facts when a property-specific

constraint psci conflicts with the current path condition pc.

When pc ∧ psci is unsatisfiable, we record the unsatisfiable

core [22], which is a set of Boolean predicates in the path condition

pc, e.g., {γ1,γ2, · · · }, such that γ1 ∧ γ2 ∧ · · · ∧ psci = false. Since

the path condition pc is the conjunction of the edge constraint on

the value-flow path, each predicate γi corresponds to the condition
of an edge ϵi on the value-flow graph. Thus, we can record an

edge set E = {ϵ1, ϵ2, · · · }, which conflicts with the property-specific
constraint psci . When checking the other property with the same

property-specific constraint, if a value-flow path contains these

recorded edges, we can prune the remaining paths.

In addition to the unsatisfiable cores, we also can record the

interpolation constraints [14], which are even reusable for prop-

erties with a different property-specific constraint. In the above

example, assume that the property-specific constraint psci is a = 0
and the predicate set {γ1,γ2, · · · } is {a + b > 3,b < 0}. In the con-
straint solving phase, an SMT solver can refute the satisfiability of

(a + b > 3) ∧ (b < 0) ∧ (a = 0) by finding an interpolant γ ′ such
that (a + b > 3) ∧ (b < 0) ⇒ γ ′ but γ ′ ⇒ ¬(a = 0). In the example,
the interpolant γ ′ is a > 3, which provides a detailed explanation

why the γ set conflicts with the property-specific constraint a = 0.
In addition, the interpolant also indicates that the γ set conflicts

with many other constraints such as a < 0 and a < 3. Thus, given

a property whose specific constraint conflicts with the interpola-

tion constraint, it is sufficient to conclude that any value-flow path

passing through the edge set E can be pruned.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang

Table 2: Rules of making analysis plans for a pair of properties.

Optimization Plans

prop x := (src1; sink1; psc1; agg1) and prop y := (src2; sink2; psc2; agg2), src1 � src2

ID Rule Name Precondition Plan Benefit

1 property ordering #sink1 > #sink2 check x before y more chances to prune paths

2

result recording

check x before y record vertices that cannot reach sink2 prune paths at a vertex

3 check x before y, psc1 = psc2 record unsat cores that conflict with psc2 prune paths if going through

4 check x before y, psc1 � psc2 record interpolants that conflict with psc2 a set of edges

Graph Traversal Plans

prop x := (src1; sink1; psc1; agg1) and prop y := (src2; sink2; psc2; agg2), src1 = src2

ID Rule Name Precondition Plan Benefit

5 traversal merging - search from src1 for both properties sharing path conditions

6

psc-check ordering

psc1 ∧ psc2 = psc1 check psc1 first if satisfiable, so is psc2

7 psc1 ∧ psc2 � false check psc1 ∧ psc2
if satisfiable, both psc1 and

psc2 can be satisfied

8 psc1 ∧ psc2 = false check any, e.g., psc1, first
if unsatisfiable, psc2 can be

satisfied

d

p

a

free(d)

g

// a heap pointer
// or a null pointer

free(b)

b

print(*c)

c

{mem-leak, null-deref}

{mem-leak, null-deref}

{mem-leak, null-deref}

{mem-leak}

psc: a≠0 psc: a=0

{mem-leak, null-deref}

{null-deref}

Figure 4: Merging the graph traversal.

4.2.2 Graph Traversal Plan. The graph traversal plan is to provide

strategies of sharing paths among different properties.

Merging theGraphTraversal (Rule 5).Weobserve that many

properties actually share the same or a part of source vertices and

even the same sink vertices. If the core engine checks each property

one by one, it will repetitively traverse the graph from the same

source vertex for different properties. Therefore, our graph traversal

plan merges the path searching processes for different properties.

As an example, in Figure 3, since the vertex p may represent

either a heap pointer or a null pointer, checking both the property

null-deref and the property mem-leak needs to traverse the graph

from the vertex p. Figure 4 illustrates how the merged traversal is

performed. That is, we maintain a property set during the graph

traversal to record what properties the current path contributes

to. Whenever visiting a vertex, we check if a property needs to be

removed from the property set. For instance, at the vertex d , we
may remove the property null-deref from the property set if we

can determine the vertex d cannot reach any of its sinks. When the

property set becomes empty, the graph traversal stops immediately.

Ordering the Checks of Property-Specific Constraints

(Rules 6 – 8). Since the graph traversals are merged for different

properties, at a vertex, e.g., a in Figure 4, we have to check multiple
property-specific constraints, e.g., a � 0 for the property mem-leak

and a = 0 for the property null-deref, with respect to the path condi-

tion. In a usual manner, we have to invoke an expensive SMT solver

to check each property-specific constraint, significantly affecting

the analysis performance when there are many properties to check.

We mitigate this issue by utilizing various relations between the

property-specific constraints, so that we can reuse SMT-solving

results and reduce the invocations of the SMT solver.

Given two property-specific constraints, psc1 and psc2, we con-

sider all three possible relations between them: psc1 ∧ psc2 = psc1,

psc1 ∧ psc2 � false, and psc1 ∧ psc2 = false. Since the property-

specific constraints are often simple, these relations are easy to

compute. These relations make it possible to check both psc1 and

psc2 by invoking an SMT solver only once.

The first relation, psc1 ∧ psc2 = psc1, implies that any solution

of the constraint psc1 also satisfies the constraint psc2. In this case,

we first check if the constraint psc1 conflicts with the current path

condition pc by solving the conjunction, pc∧psc1. If it is satisfiable,
we can conclude that the conjunction, pc ∧ psc2, is also satisfiable.

The second relation, psc1∧psc2 � false, implies that there exists

a solution that satisfying both the constraint psc1 and the constraint

psc2. In this case, we first check the conjunction, pc ∧ psc1 ∧ psc2.

If it is satisfiable, we can conclude that both of the constraints, psc1
and psc2, are satisfiable with respect to the path condition.

The third relation, psc1 ∧ psc2 = false, implies that there does

not exist any solution that satisfies both the constraint psc1 and the

constraint psc2. In this case, we check any of the constraints, psc1
and psc2, first. If the current path is feasible but the conjunction

pc ∧ psc1 is not satisfiable, we can conclude that the conjunction

pc ∧ psc2 can be satisfied without invoking SMT solvers.

Conquering the Extensional Scalability Problem for Value-Flow Analysis Frameworks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

4.3 Modular Inter-procedural Analysis

Scalable program analyses need to exploit the modular structure

of a program. They build function summaries, which are reused at

different calling contexts [16, 45]. In Catapult, we can seamlessly

extend our optimized intra-procedural analysis to modular inter-

procedural analysis by exploring the local value-flow graph of each

function and then stitching the local paths together to generate

complete value-flow paths. In what follows, we explain our design

of the function summaries.

In our analysis, for each function, we build three kinds of value-

flow paths as the function summaries. They are defined below and,

in a longer version of this paper [37], we formally prove the sound-

ness of generating these function summaries. Intuitively, these

summaries describe how function boundaries, i.e., formal parame-

ters and return values, partition a complete value-flow path. Using

the property double-free as an example, a complete value-flow path

from the vertex p to the vertex free(b) in Figure 5 is partitioned to a
sub-path from the vertex p to the vertex ret p by the boundary of
the function xmalloc. This sub-path is an output summary of the

function xmalloc as defined below.

Definition 4.1 (Transfer Summary). A transfer summary of a

function f is a value-flow path from one of its formal parameters

to one of its return values.

Definition 4.2 (Input Summary). An input summary of a function

f is a value-flow path from one of its formal parameters to a sink

value in the function f or in the callees of the function f.

Definition 4.3 (Output Summary). An output summary of a func-

tion f is a value-flow path from a source value to a return value of

the function. The source value is in the function f or in the callees

of the function f.

After generating the function summaries, to avoid separately

storing them for different properties, each function summary is

labeled with a bit vector to record what properties it is built for. As-

sume that we need to check there properties, i.e., null-deref, double-

free, and mem-leak, in Figure 5. We assign three bit vectors, 0b001,
0b010, and 0b100, to the three properties as their identities, respec-
tively. As explained before, all three properties regard the vertexp as
the source. The sink vertices for checking the properties double-free

and mem-leak are the vertices free(b) and free(u). There are no sink

vertices for the property null-deref. According to Definitions 4.1–4.3,

we generate the following function summaries:

Function Summary Path Label Type

xmalloc (p, ret p) 0b111 output

xfree
(u, ret u) 0b111 transfer

(u, free(u)) 0b110 input

The summary (p, ret p) is labeled with 0b111 because all three
properties regard p as the source. The summary (u, ret u) is also
labeled with 0b111 because the path does not contain any property-
specific vertices and, thus, may be used to check all three properties.

The summary (u, free(u)) is only labeled with 0b110 because we do
not regard the vertex free(u) as a sink of the property null-deref.

vo id* xmal loc() {
vo id* p = mal loc(…);
return p;

}

vo id* xfree(vo id* u) {
free(u) ;
return u;

}

vo id main() {
vo id* a = xmal loc() ;
vo id* b = xfree(a) ;
i f (…) free(b) ;
return;

}

p

ret p

ret u

a

u

free(u)

b

free(b)

xmalloc

xfree

Figure 5: An example to show the inter-procedural analysis.

When analyzing the main function, we concatenate its intra-

procedural paths with summaries from its callees to generate a

complete path. For example, a concatenation is illustrated below

and its result is labeled by 0b110, meaning that the resulting path
only works for the property double-free and the propertymem-leak.

(p, ret p)0b111 ◦ (a) ◦ (u, free(u))0b110
= (p, ret p,a,u, free(u))0b111&0b110

= (p, ret p,a,u, free(u))0b110

We observe that using value-flow paths as function summaries

has a significant advantage for checking multiple properties. That

is, since value flow is a common program relations, it can be reused

across different properties. This is different from existing approaches

that utilize state machine to model properties and generate state-

specific function summaries [18, 25]. Since different properties

usually have different states, compared to our value-flow-based

function summaries, such state-specific function summaries have

fewer opportunities to be reused across properties.

5 IMPLEMENTATION

In this section, we present the implementation details as well as

the properties to check in our framework.

Path-sensitivity.We have implemented our approach as a pro-

totype tool calledCatapult on top of Pinpoint [38]. Given the source

code of a program, we first compile it to LLVM bitcode,6 on which

our analysis is performed. To achieve path-sensitivity, we build a

path-sensitive value-flow graph and compute path conditions fol-

lowing the method of Pinpoint. The path conditions in our analysis

are first-order logic formulae over bit vectors. A program variable

is modeled as a bit vector, of which the length is the bit width (e.g.,

32) of the variable’s type (e.g., int). The path conditions are solved

by Z3 [19], a state-of-the-art SMT solver, to determine the path

feasibility.

Properties to check.Catapult currently supports twenty C/C++

properties, briefly introduced in Table 3, defined by CSA.7 These

6LLVM: https://llvm.org/.
7More details of the properties can be found on https://clang-analyzer.llvm.org/.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang

Table 3: Properties to check in Catapult.

ID Property Name Brief Description

1 core.CallAndMessage Check for uninitialized arguments and null function pointers

2 core.DivideByZero Check for division by zero

3 core.NonNullParamChecker Check for null passed to function parameters marked with nonnull

4 core.NullDereference Check for null pointer dereference

5 core.StackAddressEscape Check that addresses of stack memory do not escape the function

6 core.UndefinedBinaryOperatorResult Check for the undefined results of binary operations

7 core.VLASize (Variable-Length Array) Check for declaration of VLA of undefined or zero size

8 core.uninitialized.ArraySubscript Check for uninitialized values used as array subscripts

9 core.uninitialized.Assign Check for assigning uninitialized values

10 core.uninitialized.Branch Check for uninitialized values used as branch conditions

11 core.uninitialized.CapturedBlockVariable Check for blocks that capture uninitialized values

12 core.uninitialized.UndefReturn Check for uninitialized values being returned to callers

13 cplusplus.NewDelete Check for C++ use-after-free

14 cplusplus.NewDeleteLeaks Check for C++ memory leaks

15 unix.Malloc Check for C memory leaks, double-free, and use-after-free

16 unix.MismatchedDeallocator Check for mismatched deallocators, e.g., new and free()

17 unix.cstring.NullArg Check for null pointers being passed to C string functions like strlen

18 alpha.core.CallAndMessageUnInitRefArg Check for uninitialized function arguments

19 alpha.unix.SimpleStream Check for misuses of C stream APIs, e.g., an opened file is not closed

20 alpha.unix.Stream Check stream handling functions, e.g., using a null file handle in fseek

properties include all CSA’s default C/C++ value-flow properties.

All other default C/C++ properties in CSA but not in Catapult are

simple ones that do not require a path-sensitive analysis. For exam-

ple, the property security.insecureAPI.bcopy requires CSA report a

warning whenever a program statement calling the function bcopy

is found.

Parallelization. Our analysis is performed in a bottom-up man-

ner, in which a function is always analyzed before its callers. After

a function is analyzed, its function behavior is summarized as func-

tion summaries, which can be reused at different call sites. Thus,

it is easy to run in parallel by analyzing functions without caller-

callee relations independently [45]. Our special design for checking

multiple properties together does not prevent the analysis from

this parallelization strategy.

Soundness.We implement Catapult in a soundy manner [31].

This means that the implementation soundly handles most language

features and, meanwhile, includes some well-known unsound de-

sign decisions as previous works [4, 12, 38, 42, 45]. For example,

in our implementation, virtual functions are resolved by classic

class hierarchy analysis [20]. However, we do not handle C style

function pointers, inline assembly, and library functions. We also

follow the common practice to assume distinct function parameters

do not alias with each other [30] and unroll each cycle twice on the

call graph and the control flow graph. These unsound choices sig-

nificantly improve the scalability but have limited negative impacts

on the bug-finding capability.

6 EVALUATION

To demonstrate the scalability of our approach, we compared the

time and the memory cost of Catapult to three existing industrial-

strength static analyzers. We also investigated the capability of

finding real bugs in order to show that the increased scalability is

not at the cost of sacrificing the bug-finding capability.

Table 4: Subjects for evaluation.

ID Program Size (KLoC) ID Program Size (KLoC)

1 mcf 2 13 shadowsocks 32

2 bzip2 3 14 webassembly 75

3 gzip 6 15 transmission 88

4 parser 8 16 redis 101

5 vpr 11 17 imagemagick 358

6 crafty 13 18 python 434

7 twolf 18 19 glusterfs 481

8 eon 22 20 icu 537

9 gap 36 21 openssl 791

10 vortex 49 22 mysql 2,030

11 perlbmk 73

12 gcc 135 Total 5,303

Baseline approaches.We first compared Catapult to Pinpoint,

a most recent value-flow analyzer with the precision of inter-proce-

dural path-sensitivity [38]. In addition, we also compared Catapult

to two widely-used open-source bug finding tools, CSA and Infer.

All these tools in our evaluation were configured to use fifteen

threads to take advantage of parallelization.

We also tried to compare Catapult to other static bug detection

tools such as Saturn [45], Calysto [4], Semmle [3], Fortify, and Kloc-

work.8 However, they are either unavailable or not runnable on the

experimental environment we are able to set up. The open-source

static analyzer, FindBugs,9 was not included in our experiments

because it only works for Java while we focus on the analysis of

C/C++ programs. We did not compare Catapult to Tricoder [36],

the static analysis platform from Google. This is because it uses

CSA as the C/C++ analyzer, which is included in our experiments.

8Klocwork: https://www.roguewave.com/products-services/klocwork/.
9Findbugs Static Analyzer: http://findbugs.sourceforge.net/.

Conquering the Extensional Scalability Problem for Value-Flow Analysis Frameworks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Subjects for evaluation. To avoid possible biases on the bench-

mark programs, we included the standard and widely-used bench-

marks, SPEC CINT200010 (ID = 1 ∼ 12 in Table 4), in our evaluation.
Meanwhile, to demonstrate the efficiency and effectiveness of Cat-

apult on real-world projects, we also included ten industrial-sized

open-source C/C++ projects (ID = 13 ∼ 22 in Table 4), of which the
size ranges from a few thousand to two million lines of code.

Environment.All experimentswere performed on a serverwith

eighty “Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz” processors

and 256GB of memory running Ubuntu-16.04.

6.1 Comparing to Static Value-Flow Analyzer

We first compared Catapult to Pinpoint, the state-of-the-art value-

flow analyzer. To quantify the effect of the graph traversal plan and

the optimization plan separately, we also configured Catapult∗ to
only contain the graph traversal plan.

In this experiment, we performed the whole program analysis

by linking all compilation units of a project into a single file for

the static analyzers to perform the cross-file analysis. Before the

analysis, both Pinpoint and Catapult need to build the value-flow

graph as the program intermediate representation. Since Catapult

is built on top of Pinpoint, the pre-processing time and the size

of value-flow graph are the same for both tools, which are almost

linear to the size of a program [38]. Typically, for MySQL, a program

with about two million lines of code, it takes twenty minutes to

build a value-flow graph with seventy million nodes and ninety

million edges.

Efficiency. The time and memory cost of checking each bench-

mark program is shown in Figure 6a. Owing to the inter-property-

awareness, Catapult is about 8× faster than Pinpoint and takes

only 1/7 of the memory on average. Typically, Catapult can finish

checking MySQL in 5 hours, which is aligned with the industrial

requirement of finishing an analysis in 5 to 10 hours [7, 32].

When the optimization plan is disabled, Catapult∗ is about 3.5×
faster than Pinpoint and takes 1/5 of the memory on average. Com-

pared to the result of Catapult, it implies that the graph traversal

plan and the optimization plan contribute to 40% and 60% of the

time cost reduction, respectively. Meanwhile, they contribute to

70% and 30% of the memory cost reduction, respectively. As a sum-

mary, the two plans contribute similar to the time cost reduction,

and the graph traversal plan is more important for the memory

cost reduction because it allows us to avoid duplicate data storage

by sharing analysis results across different properties.

Using the largest subject, MySQL, as an example, Figure 6b illus-

trates the growth curves of both the time and the memory overhead

when the properties in Table 3 are added into the core engine one

by one. Figure 6b shows that, in terms of both time and memory

overhead, Catapult grows much slower than Pinpoint and, thus,

scales up quite gracefully.

It is noteworthy that, except for the feature of inter-property-

awareness, Catapult follows the same method of Pinpoint to build

value-flow graph and perform path-sensitive analysis. Thus, they

have the similar performance to check a single property. Catapult

performs better than Pinpoint only when multiple properties are

checked together.

10SPEC CINT2000 benchmarks: https://www.spec.org/cpu2000/CINT2000/.

Effectiveness. Since both Catapult and Pinpoint check pro-

grams with the precision of inter-procedural path-sensitivity, as

shown in the left part of Table 5, they produce a similar number of

bug reports (# Rep) and false positives (# FP) for all the real-world

programs except for the programs that Pinpoint fails to analyze

due to the out-of-memory exception.

6.2 Comparing to Other Static Analyzers

To better understand the performance of Catapult in comparison

to other types of property-unaware static analyzers, we also ran

Catapult against two prominent and mature static analyzers, CSA

(based on symbolic execution) and Infer (based on abductive in-

ference). Note that Infer does not classify the properties to check

as Table 3 but targets at a similar range of properties, such as null

dereference, memory leak, and others.

In our experiment, CSA was run with two different configura-

tions: one is its default configuration where a fast but imprecise

range-based solver is employed to solve path conditions, and the

other uses Z3 [19], a full-featured SMT solver, to solve path condi-

tions. To ease the explanation, we denote CSA in the two config-

urations as CSA (Default) and CSA (Z3), respectively. Since CSA

separately analyzes each source file and Infer only has limited ca-

pability of detecting cross-file bugs, for a fair comparison, all tools

in the experiments were configured to check source files separately,

and the time limit for analyzing each file is set to 60 minutes. Since

a single source file is usually small, we did not encounter memory

issues in the experiment but missed a lot of cross-file bugs as dis-

cussed later. Also, since we build value-flow graphs separately for

each file and do not need to track cross-file value flows, the time

cost of building value-flow graphs is almost negligible. Typically,

for MySQL, it takes about five minutes to build value-flow graphs

for all of its source code. This time cost is included in the results

discussed below.

Note that we did not change other default configurations of

CSA and Infer. This is because the default configuration is usually

the best in practice. Modifying their default configuration may

introduce more biases.

Efficiency (Catapult vs. CSA (Z3)).When both Catapult and

CSA employ Z3 to solve path conditions, they have similar preci-

sion (i.e., full path-sensitivity) in theory. However, as illustrated

in Figure 6c, Catapult is much faster than CSA and consumes a

similar amount of memory for all of the subjects. For example, for

MySQL, it takes about 36 hours for CSA to finish the analysis while

Catapult takes only half an hour, consuming a similar amount of

memory. On average, Catapult is 68× faster than CSA at the cost

of only 2× more memory space. Both analyses can finish in 12GB
of memory, available in common personal computers.

Efficiency (Catapult vs. CSA (Default) and Infer). As illus-

trated in Figure 6c, compared to both Infer and the default version

of CSA, Catapult consumes a similar, sometimes a little higher,

amount of time and memory. For instance, for MySQL, the largest

subject program, all three tools finish the analysis in 40 minutes and

consume about 10GB of memory. With similar efficiency, Catapult,

as a fully path-sensitive analysis, is much more precise than the

other two. The lower precision of CSA and Infer leads to many

false positives as discussed below.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

36hr

Ti
m

e
lo

g
sc

al
e

Subjects ordered by size

0.5hr
> 35hr

≈ 0.8hr

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
em

or
y

G
B

Subjects ordered by size

Ti
m

e
m

in
ut

es

Checkers

Memory out

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Memory out

M
em

or
y

G
B

Checkers

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Memory out

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
em

or
y

G
B

Subjects ordered by size

Not finish due to memory out

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Subjects ordered by size

Not finish due to memory out

Ti
m

e
m

in
ut

es

(a) (b) (c)

catapult

infer

csa (z3)

csa (default)

pinpoint

catapult

pinpoint

catapultcatapult* catapult*

Figure 6: (a) Comparing Catapult to Pinpoint. (b) The growth curves of the time overhead and the memory overhead. (c) Com-

paring Catapult to CSA and Infer.

Table 5: Effectiveness (Catapult vs. Pinpoint, CSA, and Infer).

Program
Catapult Pinpoint

Rep # FP # Rep # FP

shadowsocks 9 0 9 0
webassembly 10 2 10 2
transmission 24 2 24 2
redis 39 5 39 5
imagemagick 26 8 - -
python 48 7 48 7
glusterfs 59 22 59 22
icu 161 31 - -
openssl 48 15 - -
mysql 245 88 - -

% FP 26.9% 20.1%

Program
Catapult CSA (Z3) CSA (Default) Infer†

Rep # FP # Rep # FP # Rep # FP # Rep # FP

shadowsocks 8 2 24 22 25 23 15 13
webassembly 4 0 1 0 6 2 12 12
transmission 31 10 17 12 26 21 167* 82
redis 19 6 15 7 32 20 16 7
imagemagick 24 7 34 21 78 61 34 18
python 37 7 62 40 149* 77 82 63
glusterfs 28 5 0 0 268* 82 - -
icu 55 11 94 67 206* 69 248* 71
openssl 39 19 44 26 44 26 211* 85
mysql 59 20 271* 59 1001* 79 258* 80

% FP 28.6% 64.9% 75.7% 78.6%

* We inspected one hundred randomly-sampled bug reports.
†We fail to run the tool on glusterfs.

Effectiveness. In addition to the efficiency, we also investigate

the bug-finding capability of the tools. The right part of Table 5

presents the results. Since we only perform file-level analysis in

this experiment, the bugs reported by Catapult is much fewer than

those in the left part of Table 5. Because of the prohibitive cost of

manually inspecting all of the bug reports, we randomly sampled a

hundred reports for the projects that have more than one hundred

reports. Our observation shows that, on average, the false positive

rate of Catapult is much lower than both CSA and Infer. In terms of

recall, Catapult reports more true positives, which cover all those

reported by CSA and Infer. CSA and Infer miss many bugs due to

the trade-offs they make in exchange for efficiency. For example,

CSA often stops its analysis on a path after it finds the first bug.

Together with the results on efficiency, we can conclude that

Catapult is much more scalable than CSA and Infer because they

have similar time and memory overhead but Catapult is much more

precise and able to detect more bugs.

6.3 Detected Real Bugs

We note that the real-world software used in our evaluation is

frequently scanned by commercial tools such as Coverity SAVE11

and, thus, is expected to have very high quality. Nevertheless, due

to the high efficiency, precision, and recall, Catapult still can detect

many deeply-hidden software bugs that existing static analyzers,

such as Pinpoint, CSA, and Infer, cannot detect.

At the time of writing, thirty-nine previously-unknown bugs

have been confirmed and fixed by the software developers, in-

cluding seventeen null pointer dereferences, ten use-after-free or

double-free bugs, eleven resource leaks, and one stack-address-

escape bug. Four of them even have been assigned CVE IDs due to

their significant security impact. We have made an online list for

all bugs assigned CVE IDs or fixed by their original developers.12

11Coverity Scan: https://scan.coverity.com/projects/.
12Detected real bugs: https://qingkaishi.github.io/catapult.html.

Conquering the Extensional Scalability Problem for Value-Flow Analysis Frameworks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

ResampleFilter **AcquireResampleFilterThreadSet(...) {
…
if (…)

return ((ResampleFilter **) NULL);
…

}

Image *DistortImage(...) { // >1, 000 lines of code
…
resample_filter=AcquireResampleFilterThreadSet(...);
…
switch (method) {
case AffineDistortion:

ScaleFilter(resample_filter[id], ...)
…
}
…

}

Location: MagickCore/resample-private.h

Location: MagickCore/distort.c

A null pointer is returned if
some condition is satisfied.

Get the null pointer from the
callee function.

The null pointer is dereferenced
after a long propagation

Figure 7: A null-dereference bug in ImageMagick.

As an example, Figure 7 presents a null-deference bug detected by

Catapult in ImageMagick, which is a software suite for processing

images. This bug is of high complexity, as it occurs in a function of

more than 1,000 lines of code and the control flow involved in the

bug spans across 56 functions over 9 files.

Since both CSA and Infer make many unsound trade-offs to

achieve scalability, neither of them detects this bug. Pinpoint also

cannot detect the bug because it is not memory-efficient and has to

give up its analysis after the memory is exhausted.

7 RELATEDWORK

To the best of our knowledge, a very limited number of existing

static analyses have studied how to statically check multiple pro-

gram properties at once, despite that the problem is very important

at an industrial setting. Goldberg et al. [26] make unsound assump-

tions and intentionally stop the analysis on a path after finding the

first bug. Apparently, the approach will miss many bugs, which

violates our design goal. Different from our approach that reduces

unnecessary program exploration via cross-property optimization,

Mordan and Mutilin [33] studied how to distribute computing re-

sources, so that the resources are not exhausted by a few properties.

Cabodi and Nocco [9] studied the problem of checking multiple

properties in the context of hardwaremodel checking. Their method

has a similar spirit to our approach as it also tries to exploit the

mutual synergy among different properties. However, it works in a

different manner specially designed for hardware. In order to avoid

state-space explosion caused by large sets of properties, some other

approaches studied how to decompose a set of properties into small

groups [1, 10]. Owing to the decomposition, we cannot share the

analysis results across different groups. There are also some static

analyzers such as Semmle [3] and DOOP [8] that take advantage

of datalog engines for multi-query optimization. However, they

are usually not path-sensitive and their optimization methods are

closely related to the sophisticated datalog specifications. In this

paper, we focus on value-flow queries that can be simply specified

as a quadruple and, thus, cannot benefit from the datalog engines.

CSA and Infer currently are two of the most famous open-source

static analyzers with industrial strength. CSA is a symbolic-execu-

tion-based, exhaustive, and whole-program static analyzer. As a

symbolic execution, it suffers from the path-explosion problem [27].

To be scalable, it has to make unsound assumptions as in the afore-

mentioned related work [26], limit its capability of detecting cross-

file bugs, and give up full path-sensitivity by default. Infer is an

abstract-interpretation-based, exhaustive, and compositional static

analyzer. To be scalable, it also makes many trade-offs: giving up

path-sensitivity and discarding sophisticated pointer analysis in

most cases. Similarly, Tricoder, the analyzer in Google, only works

intra-procedurally in order to analyze large code base [35, 36].

In the past decades, researchers have proposed many general

techniques that can check different program properties but do not

consider how to efficiently check them together [4, 5, 11, 13, 15, 23,

24, 34, 38, 41, 45]. Thus, we study different problems. In addition,

there are also many techniques tailored only for a special program

property, including null dereference [30], use after free [46], mem-

ory leak [12, 25, 42, 44], and buffer overflow [28], to name a few.

Since we focus on the extensional scalability issue for multiple

properties, our approach is different from them.

Value-flow properties checked in our static analyzer are also

related to well-known type-state properties [39, 40]. Generally, we

can regard a value-flow property as a type-state property with at

most two states. Nevertheless, value-flow properties have covered

a wide range of program issues. Thus, a scalable value-flow ana-

lyzer is really necessary and useful in practice. Modeling a program

issue as a value-flow property has many advantages. For instance,

Cherem et al. [12] pointed out that we can utilize the sparseness

of value-flow graph to avoid tracking unnecessary value propaga-

tion in a control flow graph, thereby achieving better performance

and outputting more concise issue reports. In this paper, we also

demonstrate that using the value-flow-based model enables us to

mitigate the extensional scalability issue.

8 CONCLUSION

We have presented Catapult, a scalable approach to checking mul-

tiple value-flow properties together. The critical factor that makes

our technique fast is to exploit the mutual synergy among the prop-

erties to check. Since the number of program properties to check is

quickly increasing nowadays, we believe that it will be an important

research direction to study how to scale up static program analysis

for simultaneously checking multiple properties.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and Dr.

Yepang Liu for their insightful comments. This work is partially

funded by an MSRA grant, as well as Hong Kong GRF16230716,

GRF16206517, ITS/215/16FP, and ITS/440/18FP grants. Rongxin Wu

is partially supported by the NSFC Project No. 61902329 and is the

corresponding author.

REFERENCES
[1] Sven Apel, Dirk Beyer, Vitaly Mordan, Vadim Mutilin, and Andreas Stahlbauer.

2016. On-the-fly decomposition of specifications in software model checking. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. ACM, 349–361.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM, 259–269.

[3] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016.
QL: Object-oriented Queries on Relational Data. In 30th European Conference on
Object-Oriented Programming (ECOOP ’16). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2:1–2:25.

[4] Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and precise extended
static checking. In Proceedings of the 30th International Conference on Software
Engineering (ICSE ’08). IEEE, 211–220.

[5] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM project: Debugging system
software via static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’02). ACM, 1–3.

[6] Paul Beanie, Henry Kautz, and Ashish Sabharwal. 2003. Understanding the power
of clause learning. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI ’03). Morgan Kaufmann Publishers Inc., 1194–1201.

[7] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (2010), 66–75.

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’09). ACM, 243–262.

[9] Gianpiero Cabodi and Sergio Nocco. 2011. Optimized model checking of multiple
properties. In 2011 Design, Automation, and Test in Europe Conference (DATE ’11).
IEEE, 1–4.

[10] P Camurati, C Loiacono, P Pasini, D Patti, and S Quer. 2014. To split or to group:
from divide-and-conquer to sub-task sharing in verifying multiple properties. In
International Workshop on Design and Implementation of Formal Tools and Systems
(DIFTS), Lausanne, Switzerland. Springer, 313–325.

[11] Sagar Chaki, Edmund M Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2004.
Modular verification of software components in C. IEEE Transactions on Software
Engineering 30, 6 (2004), 388–402.

[12] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory
leak detection using guarded value-flow analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, 480–491.

[13] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. 2013. BLITZ: Compositional
bounded model checking for real-world programs. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’13).
IEEE, 136–146.

[14] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. 2010. Efficient gen-
eration of Craig interpolants in satisfiability modulo theories. ACM Transactions
on Computational Logic (TOCL) 12, 1 (2010), 7.

[15] Edmund Clarke, Daniel Kroening, and Karen Yorav. 2003. Behavioral consistency
of C and Verilog programs using bounded model checking. In Proceedings of the
40th annual Design Automation Conference. ACM, 368–371.

[16] Patrick Cousot and Radhia Cousot. 2002. Modular static program analysis. In
International Conference on Compiler Construction (CC ’02). Springer, 159–179.

[17] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. 1991. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 4 (1991), 451–490.

[18] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive program
verification in polynomial time. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation (PLDI ’02). ACM,
57–68.

[19] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[20] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[21] Dorothy E. Denning. 1976. A lattice model of secure information flow. Commun.
ACM 19, 5 (1976), 236–243.

[22] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. 2006. A scalable
algorithm for minimal unsatisfiable core extraction. In Theory and Applications
of Satisfiability Testing (SAT ’06). Springer, 36–41.

[23] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable
path-sensitive analysis. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’08). ACM, 270–280.

[24] Isil Dillig, Thomas Dillig, Alex Aiken, andMooly Sagiv. 2011. Precise and compact
modular procedure summaries for heap manipulating programs. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’11). ACM, 567–577.
[25] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.

2019. Smoke: scalable path-sensitive memory leak detection for millions of lines
of code. In Proceedings of the 41st ACM/IEEE International Conference on Software
Engineering (ICSE ’19). IEEE, 72–82.

[26] Eugene Goldberg, Matthias Güdemann, Daniel Kroening, and Rajdeep Mukherjee.
2018. Efficient verification of multi-property designs (The benefit of wrong
assumptions). In 2018 Design, Automation, and Test in Europe Conference (DATE
’18). IEEE, 43–48.

[27] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[28] Wei Le and Mary Lou Soffa. 2008. Marple: a demand-driven path-sensitive
buffer overflow detector. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. ACM, 272–282.

[29] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the Performance
of Flow-sensitive Points-to Analysis Using Value Flow. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE ’11). ACM, 343–353.

[30] Benjamin Livshits and Monica S Lam. 2003. Tracking pointers with path and
context sensitivity for bug detection in C programs. In Proceedings of the 9th
European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE ’11).
ACM, 317–326.

[31] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[32] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. 2013. Scal-
able and incremental software bug detection. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE ’13). ACM, 554–564.

[33] Vitaly O Mordan and Vadim S Mutilin. 2016. Checking several requirements at
once by CEGAR. Programming and Computer Software 42, 4 (2016), 225–238.

[34] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’95). ACM,
49–61.

[35] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at Google. Commun.
ACM 61, 4 (2018), 58–66.

[36] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a program analysis ecosystem. In Proceedings
of the 37th International Conference on Software Engineering (ICSE ’15). IEEE,
598–608.

[37] Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. 2019. Conquering the
Extensional Scalability Problem for Value-Flow Analysis Frameworks. arXiv
preprint arXiv:1912.06878 (2019).

[38] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: Fast and precise sparse value flow analysis for million lines
of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’18). ACM, 693–706.

[39] Robert E. Strom. 1983. Mechanisms for Compile-time Enforcement of Security.
In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’83). ACM, 276–284.

[40] Robert E Strom and Shaula Yemini. 1986. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software Engi-
neering SE-12, 1 (1986), 157–171.

[41] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis
in LLVM. In International Conference on Compiler Construction (CC ’16). ACM,
265–266.

[42] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
40, 2 (2014), 107–122.

[43] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. 2013. Andromeda: Accurate and scalable security analysis of web
applications. In International Conference on Fundamental Approaches to Software
Engineering. Springer, 210–225.

[44] Yichen Xie and Alex Aiken. 2005. Context- and path-sensitive memory leak
detection. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’05). ACM, 115–125.

[45] Yichen Xie and Alex Aiken. 2005. Scalable error detection using Boolean satisfia-
bility. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’05). ACM, 351–363.

[46] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal
context reduction: a pointer-analysis-based static approach for detecting use-
after-free vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE ’18). IEEE, 327–337.

