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Abstract

Image segmentation is defined as partitioning an im-
age into non-overlapping regions based on the intensity or
texture. The active contour methods provide an effective
way for segmentation, in which the boundary of an object
(usually with large image gradient value) is detected by an
evolving curve. But, these methods have limitations due to
the fact that real images may have objects with complex ge-
ometric structures and shapes, and are often corrupted by
noise. Developing more robust and accurate active contour
methods has been an active research area since the idea of
the methods was proposed. In this paper, we propose a new
active contour method and apply the method to medical im-
age segmentation. This new method uses a long-ranged in-
teraction between image boundaries and the moving curves,
which is inspired by the elastic interaction between line de-
fects in solids (dislocations). The new method is more ef-
ficient and effective, especially in detecting thin, weak and
blurred structures such as the images of blood vessels.

1. Introduction

Image segmentation is defined as partitioning an image
into non-overlapping regions based on the intensity or tex-
ture. The active contour method for image segmentation
was proposed in late 1980’s [7]. In this method, a curve
is evolved towards the object boundary under a force, un-
til it stops at the boundary. In the classical active contour
methods [7], the curve moves to minimize the energy

E(l) =
∫

l

(
1
2
α|l′(s)| + 1

2
β|l′′(s)| − λ|∇I(l(s))|2

)
ds,

(1)
where l(s) represents a parameterized curve, I(x, y) is the
image gray-level function, and constants α, β, λ > 0. The
first two terms in the energy functional smooth the curve.
The third term attracts the curve to the object boundary,
where the value of image gradient is large. The dynamics

of the curve is given by the Euler-Lagrange equation

lt(s) = αl′′(s) − βl′′′′(s) + λ∇|∇I(l(s))|2. (2)

The image function I(x, y) can be replaced by its smoothed
version Gσ(x, y) ∗ I(x, y), where Gσ(x, y) is a two-
dimensional Gaussian function with zero mean and stan-
dard deviation σ, and the operator ∗ is the convolution op-
erator. Later, a constant force (balloon force) was added in
the normal direction of the curve to accelerate the motion of
the curve and increase the capture range [4]. In [2, 8], the
level set framework [9] was used to handle the topological
changes such as merging or splitting of the moving curve.
The dynamic equation can be summarized as

φt = g(∇I)
(
∇ ·

( ∇φ

|∇φ|
)

+ ν

)
|∇φ|, (3)

where φ(x, y) is the level set function whose zero level set
represents the curve. The terms before |∇φ| form the ve-
locity of the curve in its normal direction. The first term
in the bracket is the effect of the curvature of the curve,
which smooths and shortens the curve. The second term in
the bracket is a constant ν, which corresponds to the bal-
loon force mentioned above, making the curve expand or
shrink depending on its sign. The function g(∇I(x, y)) is
chosen such that it is very small at the boundary, where the
value of image gradient is large, so that the velocity of the
curve is small and the curve will stop there. One choice
of g(∇I(x, y)) is g(∇I(x, y)) = 1/(1 + |∇Gσ(x, y) ∗
I(x, y)|p), p ≥ 1. There are some modifications to
the level set formulation, stated in Eq. (3), rewriting the
right-hand-side as the minimization of an energy [3, 14]
which gives some additional terms to attract the curve to
the boundary from its both sides. However, for these meth-
ods, without the balloon force, the capture range is short
and the curve cannot reach the narrow concave parts of the
boundary. This is because the effect of ∇I(x, y), defined by
∇|∇I(x, y)|2 in Eq.(2) or g(∇I(x, y)) in Eq.(3), is local-
ized near the boundary. While with the balloon force, there
is a limitation that the balloon force cannot make some parts
of curve shrink while other parts of the curve expand, so the
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initial curve must be placed entirely outside or inside the
object to be detected.

To solve the problem of these methods, Xu and Prince
[16] proposed the gradient vector flow (GVF) method. In
this method, the attractive force near the object boundary
∇|∇I(l(s))|2 (see Eq.(2)) is extended to the whole com-
putational region by diffusion. They obtained a force field
v = (u, v) from an image by minimizing the energy

E =
∫∫

µ(u2
x+u2

y+v2
x+v2

y)+|∇f |2|v−∇f |2dxdy, (4)

where f = |∇I(x, y)|2, ∇f = ∇|∇I(x, y)|2 represents
the attractive force to the boundary, and µ is the diffusion
constant. In this equation, near the object boundary, |∇f |
is large, the second term dominates and the minimization
gives v = ∇f ; while away from the boundary, |∇f | is
small and thus the second term is small, the energy is dom-
inated by the diffusion term, which means the force v is
extended smoothly from its value near the object bound-
ary. Therefore, the capture range is longer than that of the
previous methods and there is no need to place the initial
curve entirely inside or outside the object. However, the
initial curve must be placed near the object boundary to be
detected; otherwise it might be attracted to a boundary of
a wrong object or a wrong part of the boundary. Besides,
it is still not effective for detecting narrow concave bound-
aries, even with the modifications made afterwards [11] (see
Fig.5(a)).

In this paper, we propose a new active contour method,
which is inspired by the elastic interaction between line
defects (dislocations) in solids [5, 15]. There is a long-
range attractive interaction between two dislocation lines
with different directions. The interaction is proportional to
1/r for two long straight parallel dislocations, where r is
the distance between them. Using a similar idea for two-
dimensional image segmentation, we shall define a long-
range attractive force generated by the object boundary and
acting on the moving curve, and use the level set frame-
work to handle the topological changes that might occur
during the evolution of the curve. In Sec.2, we will present
the formulation and numerical implementation for this new
method. In Sec.3, we will show by examples that the new
method is more efficient and effective, especially in detect-
ing thin, weak and blurred structures such as the images of
blood vessels.

2. Methodology

2.1. Attractive force based on elastic interaction

We use the level set framework [9] to represent and
evolve the curve. Let φ(x, y) be the level set function whose

zero level set represents the moving curve. The evolution
equation of the level set function is

φt = v|∇φ|, (5)

where v(x, y) is the normal velocity of the curve extended
to the whole space.

We now define the velocity field using three-dimensional
formulations. Considering a parameterized curve γ(s) in
the three-dimensional space, we define an energy associated
with γ(s)

E(γ) = min
∫

1
2

(
w2

1 + w2
2 + w2

3

)
dxdydz, (6)

subject to the constraint

∇× w = δ2(γ)t, (7)

where w = (w1, w2, w3) is a function defined in the three-
dimensional space, t is the line direction of γ(s), δ2(γ) is
the Dirac delta-function of γ(s) which is zero anywhere
except on γ(s). In Eq.(7), the operator ∇ is a three-
dimensional operator. This convention will be used in and
only in this paragraph; in other paragraphs, it is still a
two-dimensional operator. After taking variation, we have
Eq.(7) and

∇ ·w = 0. (8)

This is a simplified version of the elasticity system associ-
ated with dislocations in solids [5]. This system is also sim-
ilar to those for vortices in superconductivity [13] and fluid
dynamics [1]. This system for w can be solved analytically
[1, 5], which is

w(x, y, z) = − 1
4π

∫
γ

r × dl
r3

, (9)

where r = (x − x(s), y − y(s), z − z(s)) is the vector be-
tween the point (x, y, z) and a point (x(s), y(s), z(s)) on
γ(s), and r =

√
(x − x(s))2 + (y − y(s))2 + (z − z(s))2

is the distance between them. The solution is singular on
γ(s) and as a result, the energy E(γ) is also singular. The
singularities can be smeared out if we use a smeared delta-
function in Eq.(7). Similar to the properties of dislocations
[5], if γ(s) is a single loop or line, the energy is propor-
tional to its length; if γ(s) consists of multiple loops or
lines, besides the energy proportional to the length, there
is another contribution to energy due to the interaction of
different loops or lines. The interaction energy of two loops
depends on their line directions, their relative position and
their length. If we allow γ(s) to move to minimize E(γ),
the Euler-Lagrange equation is

γt = w × t. (10)



Under this velocity field, the energy is reduced by shrinking
of γ(s), attraction and annihilation of segments of γ(s) with
opposite directions, and repulsion of segments with same
direction.

Now we consider our segmentation problem. We put the
image in the z = 0 plane and use the above formulation to
compute the force acting on the moving curve. If I(x, y)
is the image gray-level function, the direction of the object
boundary is defined as

t = 1
|∇(Gσ∗I)|

(
∂(Gσ∗I)

∂x , ∂(Gσ∗I)
∂y , 0

)
× (0, 0, 1),

= 1
|∇(Gσ∗I)|

(
∂(Gσ∗I)

∂y ,−∂(Gσ∗I)
∂x , 0

)
.

(11)
Under this definition, if the image of an object has a stronger
intensity than the background, the direction of the object
boundary is counterclockwise; and is clockwise vice versa.
The direction of the moving curve, i.e., the zero level con-
tour of the level set function φ(x, y), is defined similarly,
with Gσ ∗ I replaced by φ in the above equation. The level
set function is chosen such that the moving curve has an op-
posite direction with the object boundary. As a result, the
moving curve is attracted to the object boundary under the
force generated by the object boundary. The delta-function
in Eq.(7) can be approximated by |∇(Gσ ∗ I)|δ(z), where
δ(z) is the one-dimensional Dirac delta-function of z. As
such, for Eq.(7)

δ2(γ)t =
(

∂(Gσ ∗ I)
∂y

,−∂(Gσ ∗ I)
∂x

, 0
)

δ(z). (12)

In summary, w can be obtained by solving Eqs. (7), (8) and
(12). The solution is given by Eq.(9), where γ is the object
boundary. Using Eq.(9), it can be verified that w1(x, y, 0) =
w2(x, y, 0) = 0. As such, by Eq.(10), the velocity (force)
generated by the object boundary and acting on the moving
curve is

v = w3(x, y, 0)∇φ/|∇φ|. (13)

We can add a small curvature term to smooth the moving
curve, then the evolution equation can be written as

φt =
(

µ∇ ·
( ∇φ

|∇φ|
)

+ w3(x, y, 0)
)
|∇φ|, (14)

where µ is a small constant.
It is not easy to compute w3 from Eq.(9). We use the

Fast Fourier Transform (FFT) to solve for w3 from Eqs.(7),
(8) and (12). Assume that the image size is [−π, π]2, and is
placed in the z = 0 plane of a three-dimensional computa-
tion cell [−π, π]3 with periodic boundary conditions in x, y
and z directions. The solution of the Eqs.(7), (8) and (12) is

w3(x, y, 0)

=
∑
m,n

√
m2+n2

2 · eπ
√

m2+n2
+e−π

√
m2+n2

eπ
√

m2+n2−e−π
√

m2+n2 · dmneimxeiny,

(15)

where m2 + n2 �= 0, and {dmn} are the two-dimensional
Fourier coefficients of the function Gσ ∗ I(x, y), i.e.,

Gσ ∗ I(x, y) =
∑
m,n

dmneimxeiny. (16)

We can see that even though we use three-dimensional for-
mulations, the effect in z direction can be computed analyt-
ically, and w3 can be obtained by FFT only in xy space. We
only need to perform an FFT using Eq.(16) and an inverse
FFT using Eq.(15). Therefore it is still a two-dimensional
problem and is very efficient in terms of computation. If
the image size is not (2π)2, there will be a constant coeffi-
cient in Eq.(15), which does not change the dynamics of the
moving curve. In all cases, a normalized velocity field,

w3(x, y, 0)/|w3(x, y, 0)|, (17)

can be used to accelerate the evolution.
Regarding the numerical implementation for the evolu-

tion equation of the level set function φ (Eq.(14)), we use
central difference for the curvature term, Godunov’s scheme
[10] combined with third order WENO derivative [6] for the
term w3|∇φ|, and the forward Euler method in time. To
reduce the numerical errors, a standard technique called re-
initialization is used to maintain an accurate distance func-
tion near the zero level set of the level set function during
its evolution [12].

2.2. Noise removal and initialization

In the evolution equation (Eq.(14)), there are two ways to
remove noise and smooth the moving curve. The first way is
to control the standard deviation σ of the Gaussian function
in Eqs. (16) and (15) when computing w3. The second way
is to control the coefficient µ of the curvature term. Large
values of σ and µ can remove noise effectively, but they can
also over-smooth the object boundary. Small values of σ
and µ can keep sharp features of the objects, but is not very
effective for noise removal. We combine them to remove
the noise and keep the sharp features. This can be done
efficiently by the following way. First note that the velocity
field w3 has different signs inside and outside an object.
Without noise, the zero level contour of w3 actually gives
the boundary of the object. However, with noise present,
which is the case for real images, large amount of noise is
also kept. The zero level contours of w3 computed from a
large value of σ and a small value of σ can be combined
(by taking either max or min of w3’s, depending on the
sign of the object boundary) to get an approximation of the
object with only very small amount of noise. The small
amount of noise can be further removed by the evolution of
the curve with only the curvature term in Eq.(14). Then the
obtained curve is used as the initial curve, and is evolved
using Eq.(14) with small values of σ and µ to recover the
object boundary accurately.



2.3. Outline of the algorithm

For an image without noise, the contour is simply the
zero level contour of the normalized velocity field, w3/|w3|.
No evolution is needed.

For an image with noise, there are two major steps:
1. Noise removal and initialization
(1) Compute the normalized velocity field f1 = w3/|w3|

using a small σ;
(2) Compute the normalized velocity field f2 = w3/|w3|

using a big σ;
(3) Take f = max{f1, f2} (or min depending on the

sign of the object boundary); and
(4) Evolve f under the curvature flow for a few steps and

assign the result function to be the initial value of φ.
2. Evolution of φ using Eq.(14) with the velocity field

f1. Re-initialization is performed when necessary.

3. Experimental Results

We have applied the proposed method on the synthetic
and real images and also performed comparison between
our method and the gradient vector flow (GVF) method
[16, 11] (The results using these GVF methods are similar
in the comparison. The results shown are the results ob-
tained using the modified GVF method with balloon force
[11]). All methods were programmed in Fortran and run on
a 2.8GHz PC with 256MB RAM.

3.1. Synthetic Images

(a) (b)

Figure 1. Multiple objects without noise. (a)
Input image. (b) Contours found by our
method.

All results in this section were obtained using a numeri-
cal mesh with the size of 128 × 128 pixels. The length was
equal to 2 units. As such, the pixel width is dx = dy =
2/128. Fig.1 shows the results on an image with multi-
ple objects, which have different intensity and topology, but
without noise. The intensity values of the four objects were

3/9, 4/9, 5/9 and 6/9, respectively. We set σ = 2.4dx.
Fig.1(b) shows the zero level contours of the normalized
velocity field, which was calculated by FFT using Eq.(15).
It shows that our method is very efficient and no evolution
is needed.

(a) (b)

Figure 2. Thin concave and convex struc-
tures. (a) Input image. (b) Contour found
by our method.

Fig.2 shows the experimental result on an image of an
object which has very thin convex feature on its right and
concave feature on its left, at which these features are
pointed by the arrows, see Fig.2(a). Both features are only
one pixel width. The zero level contour of the normalized
velocity field w3 using σ = 2.4dx gave a good result, but
on the tip of the one-pixel convex, the contour width was
a little bit bigger than one pixel. To obtain a more accu-
rate result, we used σ = dx to calculate w3. However, this
caused numerical oscillation of the velocity field and gen-
erated some spurious contours away from the object. This
numerical noise can be removed using the same way as for
removing the image noise. As such, the zero level contour
of the maximum of the two normalized velocity fields w3

( σ = dx, 2.4dx) found the object accurately, as shown in
Fig.2(b). Still, no evolution is needed.

These two examples show that our method can find the
object accurately and efficiently (without evolution) if the
image has no noise.

Using the image shown in Fig.1(a), Fig.3 shows the re-
sults of our method applied on the image corrupted by zero
mean Gaussian noise with σ = 0.1. First of all, we used
σ1 = 2.4dx and σ2 = 10dx to compute the velocity fields
w3, respectively. The two velocity fields, after normaliza-
tion, are denoted by f1 and f2, respectively. The zero level
contours of f1 are shown in Fig.3(b). The contours found
the sharp features of the objects and a large amount of noise.
The zero level contours of f2 are shown in Fig.3(c). The
contours only kept a small amount of noise but were over-
smoothed. After taking the maximum of f1 and f2, bet-
ter contours were obtained, as shown in Fig.3(d). After a
few steps of smoothing using the mean curvature flow, we
got more smooth initial contours without noise, as shown



(a) (b) (c)

(d) (e) (f)

Figure 3. Multiple objects with Gaussian
noise. (a) Input image. (b) Contours of
f1 = 0. (c) Contours of f2 = 0. (d) Con-
tours of max{f1, f2} = 0. (e) Contours after
smoothing. (f) Final result after evolution.

in Fig.3(e). These initial contours were then evolved using
Eq.(14) under the velocity field f1 with µ = 0.015 to re-
cover the sharp features of the objects, as shown in Fig.3(f).

This example shows that our method is also efficient and
effective for an image with noise, in which an initial contour
close to the object can be first calculated efficiently, then the
detailed features are recovered quickly by further evolution
of the contour.

(a) (b) (c)

Figure 4. Contour found from an initial con-
tour not close to the object using Eq.(14). (a)
Initial contour and object. (b) Intermediate
result. (c) Final result.

In the next example, we show the ability of our method
to recover the detailed features of the objects by evolving an
initial contour that is not close to the object boundary. Note
that it is only to mimic the second stage of our method for
images with noise. If an image itself has no noise, objects
in the image can be found efficiently by calculating the zero

level contour of the normalized velocity field. The result is
shown in Fig.4. We started from a small circle intersect-
ing with the right hand side of a U shape object, as shown
in Fig.4(a), and evolved it using Eq.(14) with σ = 2.4dx
and µ = 0.01. The contour outside the object was at-
tracted to the object boundary. The contour inside the ob-
ject was pushed far away to touch the another side of the
object boundary. An intermediate result after several steps
is shown in Fig.4(b). Finally, the contour converged to the
object boundary, as shown in Fig.4(c).

Fig.5(a) shows the result obtained using the GVF
method. The GVF method was applied on the image shown
in Fig.2(a). The initial contour started from a circle enclos-
ing the object. It is observed that the final contour found
by the GVF method cannot correctly detect the thin con-
vex and concave features. It is because the GVF method
must smooth the gradient values on the boundary in order
to get an extended force field. We have also applied the
GVF method on the same U shape object with the same ini-
tial contour as shown in Fig.4(a). The contour shrank and
finally disappeared. It was because both sides of the contour
were attracted to the right hand side of the object boundary.
This can be seen from the force field near the object bound-
ary and the initial contour plotted in Fig.5(b). It illustrates
that the GVF method is dependent on the contour initializa-
tion. In contrast, the evolution stage of our method has less
sensitivity to the initialization.

From these examples, it can be seen that our method is
more efficient and effective than the GVF method. The
computation times for our method (Fig.2b) and the GVF
method (Fig.5a) were 0.49 and 141.96 seconds respectively.

(a) (b)

Figure 5. GVF method for the images in Figs.
2 and 4. (a) GVF method for the thin concave
and convex structures as shown in Fig.2(a):
final result. (b) GVF method for the U shape
object in Fig.4(a): force field near the object
boundary and the initial contour.

3.2. Real Image

In Fig.6, we applied our method on a real image of blood
vessels. The image was acquired and obtained from the



(a) (b) (c)

(d) (e) (f)

Figure 6. Blood vessels. (a) Input image. (b)
Contours of f1 = 0. (c) Contours of f2 = 0.
(d) Contours of min{f1, f2} = 0. (e) Contours
after smoothing. (f) Final result.

Prince of Wales Hospital, Hong Kong. The image size was
128 × 128 pixels. This image is more noisy and has more
complex structures. First of all, we used σ1 = 2.4dx and
σ2 = 10dx to compute the velocity fields w3, respectively.
The two velocity fields, after normalization, are denoted by
f1 and f2, respectively. The zero level contours of f1 are
shown in Fig.6(b). The contours found sharp features of the
blood vessels, as well as a large amount of noise. The zero
level contours of f2 are shown in Fig.6(c). The contours
kept only a small amount of noise but were over-smoothed.
After taking the minimum of f1 and f2, better contours were
obtained, as shown in Fig.6(d). After a few steps of smooth-
ing using the mean curvature flow, we got more smooth ini-
tial contours as shown in Fig.6(e). These initial contours
were then evolved under the velocity field f1. After evo-
lution, some small holes inside the contours were lost. We
took the minimum of the final state of the level set function
φ and f1. Then those small holes were recovered (for ex-
ample, see two small holes near the left edge of the image,
as shown in Fig.6(f)). The final result is shown in Fig.6(f).
It is noted that some parts of the contours are nearly discon-
nected because the intensity contrast is very low.

4. Summary and Discussions

We proposed a new active contour method and have ap-
plied the method to medical image segmentation. The new
method is based on a long-range elastic interaction between
the object boundary and the moving contour. The interac-
tion force can be calculated efficiently by the Fast Fourier

Transform (FFT). For an image without noise, objects can
be found by the zero level of this force without evolution in
time. For an image with noise, an initial contour very closed
to the object boundaries is first computed efficiently, and
then detail features of objects are recovered after a short-
time evolution. Examples show that this new method is
more efficient and effective, especially in detecting thin,
weak and blurred structures such as the images of blood
vessels.
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