Machine Learning in Crowdsourcing for Video Annotation

Min Hyung Lee

Advised by Prof. Dit-Yan Yeung

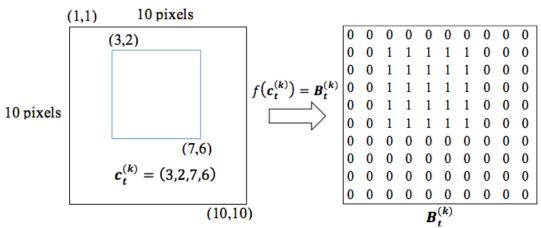

Introduction

Object trackers find the location of objects in a video

- Need labeled training data
- Labeling videos requires much cost

Crowdsourcing Platforms – Many labeled data, low cost

BUT the quality of the workers' labels is unreliable

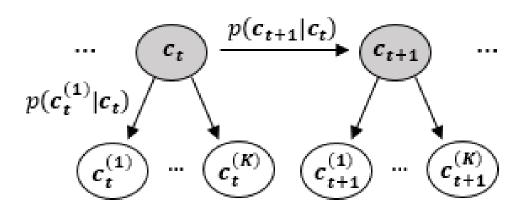

Malicious, Inexperienced workers impair quality of labels

Objective

Use machine learning methodology to correctly aggregate the video annotation results (bounding box) from multiple workers

The reliability of workers and ground truth label computed simultaneously

Non-Probabilistic Method



Assumption: Results closer to average are more accurate

Process

- \rightarrow Compute average of binary matrix
- \rightarrow Set weights based on distance to average
- \rightarrow Re-compute average

Probabilistic Method

Model using continuous-state hidden Markov model

Probabilistically model the temporal dependency

Expectation-Maximization algorithm learns the unknown probability measures and Viterbi algorithm finds the most probable sequence of ground truth labels

Experiment Dataset

Tracking result of 9 trackers on 10 video sequences

- Trackers simulate workers in crowdsourcing setting
- Trackers are inaccurate in the latter part of video

Experiment Result

Object moving frequently and randomly

Non-probabilistic algorithm outperform the others
Object moving slowly

Probabilistic algorithm outperform the others
Majority of trackers perform reasonably

Probabilistic algorithm outperforms the best tracker

