Small Summaries for Big Data

Ke Yi
HKUST
yike@ust.hk
MASSIVE Data

• Massive data is being collected everywhere: business, technology, scientific research, etc.

• Examples:
 – TIGER/Line data set: 16.7 million road segments
 – LIDAR data set: 500 million points for just Neuse River Basin (14GB)
 – AT&T phone call database: 20TB
 – Google indexes 20 billion web documents

• Keep growing!
Massive Data Algorithms

External Memory Algorithms

Data Stream Algorithms

Parallel/Distributed Algorithms

Sublinear Algorithms

1988

1999

2006

2015

Theory ➔ Practice
Example: Random sampling

- Random sampling in standard model is trivial.
- Becomes challenging when...

External memory

Streaming

Distributed Streams
Query sampling

- Sample from the query results **without** evaluating the query!

Sampling from a range query (SIGMOD’15 best demo award)
Sampling for joins

```
select n_name,
       sum(l_extendedprice *(1 - l_discount)) as revenue
from customer,
    orders,
    lineitem,
    supplier,
    nation,
    region
where c_custkey = o_custkey
  and l_orderkey = o_orderkey
  and l_suppkey = s_suppkey
  and c_nationkey = s_nationkey
  and s_nationkey = n_nationkey
  and n_regionkey = r_regionkey
  and r_name = 'REGION'
  and o_orderdate >= date '[DATE]' 
  and o_orderdate < date '[DATE]' + interval '1' year
group by n_name
order by revenue desc;
```

- TPC-H Benchmark Query
- 6 tables
- 10GB data
- Takes >1 hour in Oracle
- Our algorithm finishes in <10 seconds\(^1\)
- Now working on integration into PostgreSQL

\(^1\)Returns an answer with ±1% error
How NOT to do it

Suppose there are 2 tables:

- Companies (CompanyID, Nation)
- Orders (OrderID, SellerD1, BuyerID2, Revenue)

Say, the query asks for the total revenue of all orders made between a company in China and another in the US.

Simple random sampling:

- Take a 0.01% sample (1MB data) from Companies
- Take a 0.01% sample (1MB data) from Orders
- Only get 1MB * 0.01% * 0.01% = 0.01 byte of joined data!
Scaling up / out computation

- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move code to data
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Decide which constraints to drop: noSQL, ACID, CAP

- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast
Scaling down data

- A second approach to dealing big data:
 scale down the data!
 - A compact representation of a large data set
 - Too much redundancy in big data anyway
 - What we finally want is small: human readable analysis / decisions
 - Necessarily gives up some accuracy: approximate answers
 - Often randomized (small constant probability of error)
 - Examples: samples, sketches, histograms, wavelet transforms

- Complementary to the first approach: not a case of either-or
Flavors of my research

- Focus on fundamental problems
 - Random sampling, hashing, sorting
 - New challenges arise in the “big data” era even for these fundamental problems
 - Don’t work on made-up problems just for writing papers
 - Don’t work on “n choose k” problems like “k nearest neighbor search in high dimensions using L1 metric on uncertain data with multiple query points and keywords using MapReduce”

- Only work on well-defined problems
 - Actually, the main challenge in many areas of CS (data mining, machine learning, etc) is to find the right definition.

- Don’t work on NP-hard problems