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ABSTRACT tries of the form (MBRptr). At leaf node entries, MBR is the

minimum bounding rectangle of a data object ptrds theid of
Several techniques that compute the join between two spatialthe object. At intermediate node entries, MBR is the minimum
datasets have been proposed during the k. Among these  bounding rectangle of all data objects under the R-tree node
methods, some consider existing indices for the joined inputs, pointed byptr. Each R-tree node (except from the root) should
while others treat datasets with no index, providing solutions for contain at least a number of entrigsrimum R-tree node utiliza-
the case where at least one input comes as an intermediate resuibn). The R*-tree [BKSS90] is an improved version of R-tree that
of another database operator. In this paper we analyze previougmploys a sophisticated insertion algorithm, achieving best qual-
work on spatial joins and propose a novel algorithm, called ity of intermediate nodes. The R-tree and R*-tree dyneamic
index spatial join(SISJ), that efficiently computes the spatial join  SAMs that build and maintain their structure incrementally, thus
between two inputs, only one of which is indexed by an R-tree. serving as efficient index methods for spatial data. Packing algo-
Going one step further, we show how SISJ and other spatial joinrithms [RL85, KF93, vdBSW97] build optimal R-tree structures
algorithms can be implemented as operators in a databasdrom a static set of objects in space. The resulting packed R-trees
environment that joins more than two spatial datasets. We studyhave full leaf nodes, and thus minimum number of nodes and
the differences between relational and spatial multiway joins, and height, leading to minimization of search time.
propose a dynamic programming algorithm that optimizes the

s . : i i ies i ial join
execution of complex spatial queries. Among the most important spatial queries is #patial join,

which retrieves from two datasets all object pairs that satisfy a

Keywords spatial predicate (e.g., “find all pairs of cities and rivers itz
Spatial Joins, Spatial Query Processing, Query Optimization. sect). The first known work on spatial joins is by Orenstein

[Ore86], who proposes a 1-dimensional ordering of spatial objects
1. INTRODUCTION that uses space-filling curves (z-ordering), arfetrBes to index

The large and steadily increasing availability of multidimensional them. The spatial join is then performed in a merge join fashion,
data in various forms (e.g., satellite images, digital video, multi- whereas range queries can be answered using "treeBindex.
media documents) has rendered Spatia| query processing as one aotem [ROtgl] describes the creation and maintenance of a spatial
the most active research areas in the database community. In adoin index, analogous to the relational join index, that indexes two
dition to conventional applications, such as GIS, spatial queryspatial relations and is especially used to compute their join.
processing techniques have been successfully employed in a nunfSunther [Giin93] proposes a method that joins two inputs, pro-
ber of domains including medical information systems and time Vided that they are both indexed ¢pneralization treesA gener-
series databases. Several types of spatial queries have been studfization tree can be either a spatial accestadetor some hier-

ied; these include window queries (spatial selections) [Gut84], archical conceptual structure.

relation-based queries [PTSE95], nearest neighbors [RKV95] andprinkhoff et al. [BKS93] describe an algorithm and some optimi-
similarity search [PM98]. Traditional methods used in relational zation techniques that compute the spatial join of two datasets
databases are not directly applicable for spatial queries due to thgndexed by R-trees. This method, callBetree join (RJ), syn-

fact that there is no total ordering of objects in space that pre-chronously traverses both trees, excluding pairs of nodes that do

serves spatial proximity [GUn93]. As a result, a numbespatial not intersect, based on the simple observation that such pairs can-
access methodSAMs) have been proposed [GG98]. not contain overlapping MBRs. RJ is considered as one of the
The most popular spati@liccess mébd is the R-tree [Gut84], ~ mMost important spatial join methods, due to its efficiency and the
which can be thought of as an extension &fti@e in multi- popularity of R-trees. Huang et al. [HIR97a] present a breadth-

dimensional space. Each R-tneede consists of a number of en- first search optimized version of RJ that is very efficient when a
reasonably large buffer is available. After the RJ algorithm, re-

) ) search interest focused on spatial join processing when no index is
Proceedings of the ACM SIGMOD International Conference on  gyajlable for some input.

Management of Data, Philadelphia, Pennsylvania, June 1999. . . L
Suppose that we have to join two inputs; the first is indexed by an

R-tree, while the second one is not indexed (e.g., it comes as re-
sult of another query operation). Lo and Ravishankar [LR94]
propose an algorithngeeded tree joifSTJ, that builds an R-
tree-like index ¢eededree) for the second set and then joins the
two trees using RJ. The same authors deal with the problem of



joining two sets, none of which is indexed.hash-join based (ii) build an on the fly R-tree indexgRor B, and then join R
method HJ) is presented in [LR96]. HJ uses sampling informa- and R using RJ.

tior_l to partition the first dataset, crc_aating a nu_mber o_f buckets (i) build aseededR-tree for B, and then join the trees [LR94].
which may overlap. The second set is then partitioned into buck- " ) ) T i
ets with the same extents as the first set's buckets, replicating afiV) do not consider the index of the first input, and use a spatial
object when it overlaps more than one bucket. The spatial join is ~ 0in algorithm for non-indexed inputs [LR96, PD96, KS97,
finally performed by joining the pairs of buckets that have the APR'98].

same extent. These techniques are discussed and analyzed furthghe indexed nested loop algorithi {s a viable choice, only

in section 2. when the size of input B is small enough for the expected number
Patel and DeWitt [PD96] describe another hash-join based algo-Of accesses in Rnot to exceed the total number of pages in the
rithm, partition based spatial merge joifPBSM), that regularly index; in the general case it is too expensive. Patel and DeWitt

partitions the space and hashes batbus into the partitions. It ~ [PD96] use @ulk loadingtechnique that builds a Hilbert packed
then joins groups of partitions that cover the same area using &}-tree [KF93] for set B, under the assumption that the size of B is
plane-sweep technique [PS85] to produce the join results. Somesmaller than the available buffer. For typical situations (i.e., the
objects from both sets may be assigned in more than one partiSize of B is greater than the buffer), however, methigdg( ex-
tions, so the algorithm needs to sort the results in order to removePensive because of the large overhead of external sorting prior to
the duplicate pairs. Another algorithm that uses a regular spacUilding Rs. [LR94] shows that methodii( outperformsi() by a
decomposition is theize separation spatial joi(8"J) [KS97]. $J wide margin but it does not consider bulk loading in the imple-
avoids replication of objects during the partitioning phase by in- mentation ofif). In [LR96], it is suggested that methdd) (Using
troducing more than one partition layers. Each object is assignedJ, can be more efficient than approaches that use indices. In the
in a single partition, but one partition may be joined with many Seduel we describe in detail STJ and HJ.

upper layer partitions. The number of layers is usually small 2 1 Seeded tree join

enough for one partition frormach layer to fit in memory, thus L o .
multiple scans of the files during the join phase are avoidid. S The seeded tree method [LR94] joins two spatial inputs, provided
that only one is supported by an R-tree. This technique builds a

uses Hilbert curve ordering to sort the partitions inside the layers, > > =
and to avoid extra pointers between partitions of different layers. S8c0nd R-tree using.Ras aseed and then applies RJ to join the
two R-trees. The motivation behind creating a seeded R-tree for

A recent paper [APR8] proposes an algorithm, callsdalable ) i >
sweeping-based spatial joi(8SS)] that applies combination of the second input, instead of a normal R-tree, is the fact that a

plane sweep and space partitioning to join the datasets, and work§€€ded tree with extents similar tg Rodes will be more efficient
under the assumption that in most cases the *horizon” of theduring tree matchlng, as the number of overlapping node pairs
sweep line will fit in main memory. However, the algorithm can- between the trees will be smaller. Thus, the seeded tree construc-

not avoid external sorting of both datasets which may lead to largefion algorithm creates an R-tree that is optimal for spatial join and
I/O overhead. not for range searching.

; ; he seeded tree construction is divided in two phasesetding
In summary, RJ should be used when both inputs are indexed b . A X
Y P M %—nd thegrowingphase. In the seeding phase thektgvels kis a

R-trees, while there is a variety of good algorithms (HJ, PBSM, ) i
S%J and SSSJ) for non-indexed inputs. Currently, however, thereParameter of the algorithm) ofyFare copied to formulate the top

does not exist an efficient method for joining two inputs out of X €vels of the seeded treg. he entries of the lowest level of S

which only one is indexed. In section 2, we show that STJ is not@'€ calledslots After copying, the slots maintain the copied ex-

always applicable and other methods like indexed nested loopt€Nt Put they point to empty (null) sub-trees. During the growing

join, and packed R-tree building are, in general, inefficient. In Phase, all objects from B are inserted info & rectangle is in-
serted under the slot that contains it, or needs the least area en-

section 3, we propose an algorithm, caldt Index Spatial Join .
(SISJ), which is very efficient when only one input is indexed by largement. Figure 1 shows an example of a seeded tree structure.

an R-tree. SISJ is motivated by STJ and HJ, but outperforms bothT Ne top 2 levels of the R-tree are copied to guide the insertion of
of them analytically and experimentally. Section 4 presents a gen-tN€ sécond dataset.
eral method that computes the multiway join between more thanLo and Ravishankar propose some techniques that optimize the
two spatial datasets by combining pairwise join algorithms. The structure of the seeded tree, and a filtering mechanism that rejects
technique applies RJ when both inputs are indexed, SISJ whemectangles from the second set that do not overlap any of the seed
only one R-tree exists, and HJ if no indexes are present. Querslots. They also present a tree construction technique that reduces
optimization is performed through a dynamic programming algo- 1/0O page accesses when the size of the tree exceeds the size of the
rithm using cost models for the pairwise joins and analytical for- available memory buffer. If this happens, many pages may have to
mulae for the expected size of intermediate results. Finally, sec-be fetched and written back to disk during a single insertion, re-

tion 5 concludes the paper with directions for future work. sulting in a large 1/O cost. In order to avdidffer thrashing the
objects which are to be inserted under a slot are written in a tem-
2. BACKGROUND porary file. After all objects are inserted, an R-tree is constructed

Let A, B be two sets of objects in space out of which only A is for each temporary file, and is pointed by the cpuesling slot
indexed by an R-tree R Alternative methods that compute the in the seeded tree. To implement this mechanism and minimize

spatial join between A and B include: random l/Oaccesses, at least one page is allocated in the buffer
(i) probe each object from B agains Rndexed nested loop for each slot. If the buffer is full, all slots that have more than a
join). constant number of pages flush their data to disk and memory is

freed.



A problem with STJ, however, is that it cannot be applied in every slots slots
case. In order for the above algorithm to work efficiently, the

number of slot$s should not exeed the number of pagkkin the 77
system buffer. IfS=M, it is not possible to avoid buffer thrashing, grown subtre
which may lead to a large I/0 penalty. Thus the algorithmis inef- /UL T T [T T] LT [TT] [TT]
ficient when the fanout of the R-tree nodes is large and the mem- ( )
ory buffer is relatively small. Consider, for instance, a dataset of
100,000 objects which are indexed by a 8K page size R-tree (a
rather typical case). Under the assumption that eade entry is

20 bytes long (16 for the x- and y-coordinates, plus 4 for the ob- 7 filtered
ject id or block reference), the capacity of a tree node is 409; thus B1 ] D4
the dataset can be indexed by a 2-level R-tree, with 245 leaf nodes | B1 H> — O
and 1 root. When trying to apply STJ, we have to copy the root ‘

level of the R-tree to the seeded tree, which resulis245. As a

consequence the algorithm cannot be applied for buffers smaller — | — &j D

\
|
B2 - B2
than 1.96Mbytes. = _ﬁ ﬁ L¥* *7ﬁ
=

2.2 Spatial Hash-Join , /= L
Spatial hash-join (HJ) [LR96], based on the relational hash-join (&) Obiects from set Ainthree  (b) Filtering and replication of
paradigm, computes the spatial join of two inputs, none of which par.tltlon buckets N objects from S_et B

is indexed. Set A is partitioned infbuckets, wher&is decided Figure 2: The partition phase of HJ algorithm

using the system parameters. The initial extents of the buckets argy|atively large rectangles and extensive replication occurs in HJ
deter.mlned by sampling. Each opject is msgrted into the pucketand PBSM. HJ is, in general, expected to perform better than
that is enlarged the least. Set B is hashed into buckets with thgsggy pecause the latter requires sorting of the results in order to
same extent as A’s buckets, but with a different insertion policy; o5ve duplicate solutions. In [APS8] SSSJ is compared only
an.object is insgrted into all buckets that inter_sect it. Thus, someith PBSM, and was found inferior in the average case (but better
objects mbay 90 mtodmoreﬁtlhar_l one ?]UCk?p“C,ar:'on)d' and some for skewed data). Furthermore, SSSJ requires sorting of both data-
may not F mséerte ata ering). The algorithm does not en-  ge5 15 pe joined, and therefore it does not favor pipelining and
sure equal sizédpartitions for A, as sampling cannot guarantee ;o jelism of spatial joins. On the other hand, the fact that PBSM

the best po;sible slots. Equal siz.ed. partitions for B .cann.ot beuses partitions with fixed extents makes it suitable for processing
guaranteed in any case, as the distribution of the objects in themultiple joins in parallel [PYK97].

two datasets may be totally different. Figure 2 shows an example

of two datasets, partitioned using the HJ algorithm. 3. THE SLOT INDEX SPATIAL JOIN

After hashing set B, the two bucket sets are joined; each buckes shown in section 2, STJ is not always applicable due to buffer
from A is matched with only one bucket from B, thus requiring a Size limitations. In this section we propose a novel algorithm,
single scan of both files, unless for some pair of buckets none ofcalledslot index spatial join(SISJ), which is very efficient when
them fits in memory. If one bucket fits in memory, it is loaded and only one R-tree index exists, and can be used independently of the
the objects of the other bucket are prompted against it. If none ofouffer size. The motivation behind SISJ is to apply hash-join,
the buckets fits in memory, an R-tree is built for one of them, and using as buckets the entries of the topmost R-tree level that leads
the bucket-to-bucket join is executed in an indexed nested-loopto a desired number of partitior® In order to overcome the
fashion. limitation of buffer size, (i.e., when the number of entries is larger
than the buffer siz®l), SISJ groups the entries of the selected tree
level to S (possibly overlapping) partitions callstbts Each slot
contains the MBR of the indexed R-tree entries, along with a list
kOf pointers to these entries. The algorithm uses the MBRs of the
slots to hash set B. Hash-join is then performed by joining each
bucket of set B with the data under the R-tree entries pointed by
the corresponding slot in the slot index. Figure 3 illustrates a 3-
level R-tree (the leaf level is not shown) and a slot index built
over it. If M=10, the root level contains too few entries to be used
as partition buckets. As the number of entries in the next level are
overM, we have to partition them &9 (for this example) slots
(notice that STJ cannot be applied in this case).

seed(copied) levels

grown levels

Experiments in [LR96] show that HJ is better in terms of I/O than
building two seeded trees and joining them. It is also shown that
this algorithm is faster than spatial join with pre-computed R-tree
indices (RJ), if the difference between sequential and random dis
accesses is taken into acot. We believe that this comparison of
HJ with RJ is unfair. First, as we show in section 3, RJ is signifi-
cantly faster than HJ in terms of CPU-time. Second, as shown in
[KC98], when a R-tree packing method thaaqals siblinghodes

in sequence is used, the I/O performance of RJ in terms of 1/O is
significantly improved. In the rest of the paper, we will not con-
sider the difference between random and sequential I/O accesses.

We cannot draw conclusive results about the relative performanc
of HJ with respect to other algorithms that perform joins of non-
indexed inputs (i.e., PBSM,%% SSSJ). The experiments in

[KS97] suggest that®3 behaves best when the datasets contain

®As stated beforeS should be smaller thall in order to avoid
buffer thrashing. The lower limit o6 is such that the expected
number of data from set A in each slot will fit in memory. Afi®

the number of pages that can fit the first dataset (i.e. the number
of R4 leaf nodes assuming thag B packed), then:

! The term "size of partition/slot" denotes the number of objects
inside the partition, and not its spatial extent.
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in order for the data undeach slot to fit in memory. There exist
some cases (whevi is very small compared to,Pthat the lower (@) level 2 (root) entries  (b) level 1 entries  (c) slot index over level 1
limit Pa/M should be ignored. Consider, for instance, that the

page size is 8K, the buffer size is 128K, and set A consists of
100,000 objects (=2Mbytes); thé4=128/8=16 and pP= 245. Eq. the R*-treesplit algorithm. IRS does not guarantee slots of equal

(1) results in 16 $< 16, which does not provide a valid value for size; the equal size splitting criterion is not considered in order to
S. Thus, the lower limit is ignored and the partitions are not guar- favor the good shape criterion. To ensure that the final number of

Figure 3: An R-tree and a slot index built over it

anteed to fit in memory. More details about the choic& afe partitions after IRS will be “aroun8’, and considering that the

given in section 3.3. slot utilization is 70% on the average [BKSS90] (given that slots
. will be at least 40% full), we set as slot capacity (1Q#Z)S), so

3.1 The SISJ algorithm that the average number of entries in a slot will g8 he final

SISJ takes as parameter the desired number ofSsatsording to number of buckets may not t&but will definitely be between
eg. (1). The topmost tree levielith total number of entrieser» 70%S (if all buckets are full) and (7/8 (if all buckets are 40%
Pa/M is the level where partitioning will take pldcef ne is full). If these limits are out of the valid range, the maximum slot
within the valid range fof, i.e. /M < ne <M, Sis exactly » capacity should be tuned correspondingly. Notice that the ex-
and the slots will have as extents the MBRs of these entrigs. If n pected p cannot ereed miNKIC,, C,2), where G is the node

> M, we cannot directly use the entrigsta partition and the slot  capacity (maximum fanout) in &R otherwise the upper tree level
index should be built. A good partitioning mechanism will mini-  should be used for partition. Therefore, all three partitioning poli-
mize total area and overlap between the slots, and will evenlycies can take place in main memory with trivial CPU time cost. In
distribute the entries. We consider 3 policies of partitioning ¢he n  section 3.3 we empirically compare these three splitting policies.

entries intoS groups: After building the slot index, the second set B is hashed into

() SplitXL: sort entry MBRs with respect to their lower x-  puckets with the same extents as the slots. As in HJ, if an object
coordinate and divide them in®equal sized groups. This  from B does not intersect any bucket it is filtered; if it intersects
method is motivated by [RL85]. more than one buckets it is replicated. The join phase of SISJ is

(i) SplitHC: sort entry MBRs with respect to the Hilbert value also similar to the corresponding phase of HJ. All data fram R

of their center and divide them in® equal sized groups. indexed by a slot are loaded and joined with the corresponding
SplitHC is motivated by [KF93]. hash-bucket for set B. When the buffer does not permit the R-tree

. L . , ) data under a slot to fit in memory, it may be natural for the parti-
(iii) IRS: _|nsert the entries int® slots using the R*-tree insertion tions of the second set not to fit in memory, as well. If these sets
algorithm [BKSS90]. are small, external sorting + plane sweep [A$8} or indexed
From the above partitioning methods, SplitXL and SplitHC in- nested loop join (using as root of the R-tree the corresponding
clude just sorting and splitting. The third partitioning method, IRS slot), may work well, but for large sets the best solution is the
(insert re-insertandsplit), is more sophisticated. Starting from a recursive application of SISJ, in a similar way to recursive hash-
single empty slot, for each entey the following insertion algo-  join [SKS97]. During the join phase of SISJ, when no data from B
rithm is called: is inserted into a bucket, the R-tree data under the corresponding

slot do not need to be loaded (slot filtering).
Algorithm IRSRTreeEntrye)

1. choose a sl such thae.MBR is contained ints.MBR. 3.2 Analysis of SISJ
la. If more than one such slots exist, choose the one with the smallesip, this section we provide formulae for the cost of SISJ in terms
area. of 1/0, and analytically compare the algorithm with STJ and HJ.

1b. If no such slot exists, choose the one that causes the minimum, . SR }
overlap enlargement (between the slots) whisrinserted to it. Let A be the first dataset, which is indexed by an R-tigeaRd B

2. inserteinto sand update its MBR. the second dataset, for which no index exists.dénotes the
2a. If s overflows, and no other overflow has occurred during this in- nNumber of pages (blocks) of\Rand R is the number of pages of

sertion: B. Initially, the slots have to be determined from A. This requires
. sort the entries is according to their distance of their centers to loading the tofk levels of R in order to find the appropriate slot
the center o6 MBR level. Let g be the fraction of Rnodes from the root until The
- delete from s the 30% last (furthest) entries and usdd@R slot index is built in memory, thus no additional 1/O is required.
- re-insert the entries into the slots Set B is then hashed into the slots requiripgaécesses for read-

2b. If soverflows, and overflow has reoccurred during this insertion:

; + X g :
- apply the R*-tree split algorithm to spéinto 2 slots. ing, and 1 + sPs - fsPs accesses for writing, wherg is the

fraction of replicated data ang s the fraction of filtered data.

) . . Thus, the cost of SISJ partition phase is:
The first part of IRS is equivalent to ti@hooseSubtre®*-tree

algorithm that determines the best leaf node when inserting a rec- Cpart = S\0'a + (2+15-f5) [Pg (2)
tangle. ParRais equivalent to th&orced Reinsertwhereab is Next, the algorithm will join the contents of the buckets from both
sets. If for each joined pair at least one bucket fits in memory,
then a single scan is required; the smaller partition is loaded in
2 Under typical system conditions (e.g. page size 4K-8K, M=64) memory and each object of the other partition is probed against it.
usuallyk will be the root level, or the level under the root. If no bucket fits in memory, pages may have to be fetched more
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(a) California roads (T1) (b) Leaf node MBRs of T1 (c) SplitXL partitioning (d) SplitHC partitioning (e) IRS partitioning
Figure 4: T1 slot index using three partitioning policies

than once from the disk. We consider the typical case, where thes 3 Experimental evaluation of SISJ

buffer is large enough, for at least one partition to fit in memory. H’n order to evaluate the performance of SISJ we conducted three

For fairmess, we make the same assumption when analyzing STsets of experiments. We first compare the quality of the three par-
and HJ. The pages from set A that have to be fetched for the join P : P quanty b

phase are the remaining (1., since the pointers to the slot titioning policies (SplitXL, SplitHC and IRS), then we test the

entries are kept in the slot index and need not be loaded agair(laﬁect ofSin the performance of SISJ, and finally, SISJ is com-

) pared with HJ and RJ. In our experiments we used several real
from the top Ievels_ of the R_-trge. Moreover, some of these will not and synthetic data files, described in Table 1. Files AS, AL, AU,
be fetched at all, if a slot is filtered. We consider the worst case

; o X and AH are publicly available attp://www.maproom.psu.edu/dcw/
and ignore the possmlllty_ of filtered §Ic_>ts for da_ta_set A. The num- T1 and T2 [Bur89] are commonly used to benchmark spatial join
ber of I/O accesses required for the join phase is:

algorithms [BKS93, LR96, HJR97a, KC98]. The synthetic files
Cioin = (1-5) @ + (1+15-fg) Py ?3) G1 and G2 were created according to a Gaussian distribution with
16 clusters. The centers of the clusters were randomly generated,
and the sigma value of the data distribution around the clusters
followed a random value between 1/20 and 1/10 of the map size.

Csisa= Goart + Goin = Ta + (3+255-2fg) [Ps “ The density of a dataset is defined as the total area of the rectan-
The cost of HJ (under the same assumptions as SISJ) is: ?Ies di\;:dé%d by the harea of the w?rksp?dm E*-tf:e Was)built

or each dataset. The page size (equal to thentyde size) was

Chy = Gramping* 3P4 + (3+2%-2f5) s ®) set to 8K, and the buffer size was set to 512K. Table 1 also shows
in accordance with the corgending formula in [KS97]. HJ re-  the heighth of the corresponding R*-trees, the number P of pages
quires Gampingrandomaccesses to determine the initial slots and that fit the datasets in a sequential file and the number T of tree
an extra reading and writing to hash A. After hashing A and de- nodes. All experiments were run on an UltraSparc2 workstation
termining the final bucket extents, HJ follows the same procedure (200 MHz) with 256MB of main memory.

.

considering that the join output is not written back to disk. Sum-
marizing, the total cost of SISJ is:

with SISJ. From eq. (4) and (5), and given that for ty'pical R*-tree g5 Descripion Si7e densitl nT PT T
structures R = 70%T,, SISJ clearly outperforms HJ in terms of GS | Greek roads 23268 0.33 ol 51 8
VO. GR | Greek rivers 24650 039 |2 | 61] 93
Next, we provide an analysis of the seeded tree join (STJ). WgAS |German roads 30674| 0.08 2[ 74 113
charge the same 1/O for copying the seed levels, as for determintAL _|German railroads 36334 | 0.07 2] 89 139
ing the slots in SISJ, i.eaEa. For fairness to STJ, we assume that [AU_[German utilities 17790 | 0.12 2| 44| 69

a grown sub-tree can fit in memory. Thus the growing phase costgAH |German hypsography 76999 |0.04 |2 | 189 27§
3P; + Tg because the send set has to be initially read and writ- |T1 |California roads 131461 005 | 3| 322 449
ten under the slots in sequential files; then the sequential files{T2_[California rivers+railroads| 128971 039 | 3] 316 4p8
have to be read to build the grown sub-trees, and finajlyree U1l |Uniform distributed MBRs| 10000 0.5 | 2| 245 334
pages have to be written back (as the whole seeded tree is ngt/2_|Uniform distributed MBRs| 100009 1 2| 24p 321
expected to fit in memory). The join phase for STJ is expected to|S1 | Gaussian distributed MBRs 100090 0.5 4 245 328
cost at least T+ Tg (all pages from both trees are read during RJ LG2_|Gaussian distributed MBRs 100040 1 4 25 39

[HIR97b]). Summarizing, Table 1 Characteristics of the datasets used at the experiments

Csry= (1+5)0a + 3R + 2Ty (6) First, we test the quality of the three partitioning policies of SISJ.
igure 4(b) shows the set of 466 level 1 entries of the T1 R*-tree
he root contains just two entries). If we §et 20, and follow

reasonable filtering and replication ratios, the difference is sub- E?ém:?; Szil)zlcti))(lgnipzlllzs)c’rSQSeICFt{i\?éI;I/VeT%eet ftigirgirtgrl%rx tct)1fatFI|gF;S
stantial; STJ needs an extra read/write for the seeded trgp (2T achieves better quality partitions (smaller overlap and total area)

which is a considerable overhead. Furthermore, STJ is expected t . . .
be more expensive than SISJ in terms of CPU-time, due to the?han SplitXL and SplitHC. Figure 5 presents the effect of the three

CPU-intensive seeded tree construction. In conclusion, SISJ re-
tains (i) the advan_tage of STJ, which avoids partitioning the first 3 Given a series of different layers of the same region (e.g. rivers,
set using information from the R-tree to decide the hash-bucket gyeets, forests), itworkspaces defined as the total area cov-

extents and (ii) the advantage of HJ, which avoids on-the-fly R-  greq by all layers (not necessarily rectangular) including holes,
tree building, requiring to read the second set only twice. if any.

From eq. (4), (6) we can conclude that the cost difference betweerft
STJ and SISJ is: §J - CSISJ: &\TA+ 2TB - (2rB - 2fB)HB For
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policies on the performance of SISJ for various join pairs. The served that in these cases HJ spends most of its time partitioning
overall time was computed after charging 10ms for each pagethe first dataset; if an object is not contained in any slot, the ap-
access, a typical value for modern disks [SKS97]. In all cases IRSpropriate slot has to be determined and updated based on some
is substantially better than the other two policies, with SplitXL factors (overlap, area) that are CPU-intensive. When the first da-
performing very bad because of the extensive replication it intro- taset is clustered, the above situation is very common and the time
duces. The inferior performance of SplitXL and SplitHC is due to to partition the first set is considerable. In order to test the parti-
the fact that the entries to be split have large spatial extentstioning overhead in HJ and SISJ, we decomposed the processing
[vdBSW97]. In the rest of the paper we adopt IRS as the standardof the first three joins into partition and join time for all algo-
SISJ partitioning policy. rithms (Figure 8). Observe that HJ, SISJ and RJ require almost the

In the next experiment we test the effecSain the performance same time at join phase. This indicates that as long as partitions of
of SISJ. The overall cost of the three joins that involve real data-9°0d quality have been constructed, the time to join them is close
sets is split to partitioning and join cost (Figure 6). Notice that © the optimal. The performance gap between HJ and SISJ is
there is no significant difference in performance for the different Mainly due to the difference between partitioning the first dataset

choices. The partitioning time grows slightly wi as more (for HJ) and constructing the slot index (for SISJ). The construc-

bucket extents have to be tested and more replication is intro-ion Of the slot index never exceeded 1% of the total CPU-time.

duced. The join time is larger for sm&lwhen the datasets are In summary, SISJ is a spatial hash join algorithm that achieves
large (e.g., T T2), because the chance that some buckets for avery good performance when computing joins in the presence of a
hash partition will not fit in memory increases. As the differences single R-tree, based on the following properties:

are trivial, a relatively larg&, which will certainly lead to parti-

. L . . - The hash-buckets are decided upon the tree structure and no
tions that fit in memory, is a safe choice.

extra /O for hashing the build input is needed.
In the final set of experiments, we compare SISJ with HJ and RJ. 11,4 partitions of the build input are guaranteed to have, ap-

The number of slot§ in the experiments was set to 25 for both . imately, the same number of objects, as they point to almost
HJ and SISJ. When SISJ was applied, the R-tree index for the first 1o <2 me number of R-tree entries. Thus. skewed data are han-
set was used. Most pairs of buckets to be joined fitted in memory dled very efficiently. ' '

and a fast plane sweep technique was utilized to perform the join. ) )

ure 7 illustrates the performance of all three algorithms. BecausePther spatial join algorithms to process complex spatial queries
STJ cannot be applied in the current experimental setting withoutinvolving multiple inputs.

buffer thrashing (g>M), we omit it from the evaluation. 4. PROCESSING OEMULTIWAY SPATIAL JOINS

From the charts we can conclude that SISJ is clearly the besiy spatial database applications the user is not limited to simple
choice when only one index exists; it outperforms HJ in all cases. ggjections and joins, but queries often involve processing of nu-
RJ is the clear winner, if R-trees exist for both sets, a fact that wasyerqus spatial sets, or combinations of spatial and non-spatial
expected. The CPU overhead of HJ in comparison to RJ is largegytriputes. Here, we deal with the problem of joining more than
thus, even if the difference between random and sequential I/O iswg spatial inputs in a uni-processor, centralized environment. As
considered, RJ still outperforms HJ. In some cases (e.y! G, an example consider the query “find all cities tinégrsecta river
ASIAL), the CPU-time overhead of HJ is very large. We ob- \yhich alsopasses througlan industrial @a”. Such queries re-
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Figure 8: Overall partition and join cost (in seconds) of the three algorithms

quire (i) determining a good execution plan that will minimize the concurrent execution of many joins is not possible unless the in-
evaluation time and usage of resources, and (ii) an execution entermediate results are sorted on the next join’s attribute (an un-
gine that applies this plan, by effectively managing the synchroni- common situation). Left-deep plans are linear in nature and re-

zation between the spatial join operators. strict the space of possible execution orders, making the optimi-
Multiway spatial joins can be expressed by a query graph Q(V,E 'zation procedure faster. Later, the development of hash-join algo-
where gacpr)nodej v corresponds to a spa;ltialqrela)t/ign p&BSI’(I ) rithms shifted attention towards bushy and right-deep plans. The

edge E to a join predicate. Figure 9(a) shows the graph of a mu|_trade-off is .the explosion of the query optimization search space;
tiway join that involves four relations. The query can be processedt.he excessive numper of execution plans makgs query op§|m|za-
by applying several combinations of pairwise join algorithms. For 0N @ time-consuming task, and several hill-climbing techniques
instance, the plan in Figure 9(c) may involve the execution of RJ that discover sub-optimal plans in reasonable time have been pro-
for determining RX R,. The intermediate result may then be posed (e.g., [IK90]).

joined with R (using SISJ), and finally with R On the other The techniques available for relational joins, however, are not
hand, the plan of 9(d) corresponds to executing<{R, and readily applicable to multiway spatial joins. The main difference
R; M R, using RJ, and joining the intermediate results using HJ. between relational and spatial queries is the non-transitivity of the
In this section we provide cost models and optimization tech- most common spatial predicatgerlap as opposed to the transi-
niques for the processing of multiway spatial joins. tivity of the equal (=) predicate in relational natural and equi-

X X % joins. As a result, the following apply for multiway spatial joins:
M/ \R4 Rl/ \N M/ \M - Cycles cannot be eliminated in the same way as in the relational
VAN PN VAN model. Cycle elimination in relational queries is based on the
M R Ry, M Ri R Ry Ry transitivity of theequalpredicate [BC81]. For instance, consider
/N VRN three relations R Ry, R; and the cycle ((RA = R..B), (Rx.B =
R R R Ry R3.C) and (R.A = R;.C)). As the third clause is implied by the

(a) query graph (b) left-deep plan (c) right-deep plan  (d) bushy plan  firSt two, it can be safely ignored. On the other hand, if A,B,C
are spatial relations and the predicatevisrlapinstead okequal

the third clause is not inferred from the first two and, therefore, it
cannot be removed.

Figure 9: a query and some alternative ways of processing

4.1 Special issues about multiway spatial joins
Many techniques that deal with the optimization and execution of - The number of possible execution plans does not explode as fast
complex relational queries in centralized and distributed environ- as in relational joins. For instance, the relational query. AR
ments have been proposed during the last 20 years (see [Gra93RzB) and (B.B = Rs.C)), can be executed using the plan
and [JK84] for two surveys). Early query optimization methods (R1P{Rs) MRy, which is not valid for the corresponding spatial
considered only left-deep plans, because the first join algorithms duery ((R overlapR,) and (R overlapRy)). The total number of
(nested loops and merge join) made other plans either impossible, Plans when joiningr spatial inputs depends on the form of the

or very expensive. Furthermore, they did not allow for concurrent query graph. Complete graphs (cliques) may lead to a number of
execution of multiple joins. For instance, merge join calls for join plans comparable to the corresponding number for relational
writing and sorting of intermediate results, thus pipelining and dueries, but in general, queries are simpler (i.e., with fewer edges



Iterator Open Next Close

RJ open tree files return next tuple close tree files

SISJ (assuming that left open left tree file; construct slot indexpenright | perform hash-join and | close tree file; deallo-

input is the R-tree input) (probe) input; calinexton right input and hash return next tuple cate slot index and
results into slotsgloseright input hash buckets

HJ (assuming that left input open left input; call next on left and write thel perform hash-join and | deallocate hash buckets
is the build input and right results into intermediate file while determininjgreturn next tuple
input the probe input) the extents of the hash bucketépseleft input;
hash all results from intermediate file into lgft
buckets;openright input; callnexton right and
hash all results into right bucketsjose right
input

Table 2 Iterator functions for spatial join algorithms

than complete graphs). Moreover, joining a large number of spa-performed at the upper operator. Thus, given a memory buffer of
tial inputs (e.g., >10) is uncommon, as opposed to relational que-M pages, the operator which is currently performing join Ms&s
ries which have a broader number of applications. Thus, exhauspages and the upper operator, which performs hashing,Suses
tive search in the whole space of possible plans is feasible. pages, wheré& is the number of slots/buckets. In this way, the

. . . utilization of the memory buffer is maximized.
4.2 Execution of multiway spatial joins o
Following the relational query processing paradigm, multiway 4.3 Plan cost estimation
spatial joins can be processed by implementing a set of join op-In order to determine the optimal plan for a multiway spatial join,
erators. The algorithm used for a spatial join operator depends orwe need accurate formulae for estimating the costs of the join
whether an index exists for the underlying inputs. Thus, RJ can beoperators and the size and distribution of intermediate results. For
applied only when the inputs are leaves in the execution plan, i.e.SISJ and HJ we use the cost formulae given in section 3.2. The
datasets indexed by R-trees. SISJ is employed when only oneost of RJ is difficult to estimate due to the implication of the
input is indexed by an R-treeeBause of the symmetry of RJ and LRU buffer. Theodoridis et al. [TSS98] provide an analytical
SISJ, we only consider right-deep plans, where the left input isformula that predicts the cost of RJ in terms of nadeesses,
indexed by an R-tree (each left-deep plan can be transformed tdased on the properties (density, cardinality) of the joined data-
an equivalent right-deep plan). In all other cases (i.e., bushysets. In their analysis, no buffer, or a trivial buffer scheme is as-
plans), a spatial join algorithm which joins inputs with no index is sumed. In practice, however, the existence of a buffer affects the
used. For simplicity, we employ HJ due to its common modules number of page accesses significantly. Here dapathe formula
with SISJ, even though other algorithms (e.g., PBSRa, &hd provided in [HIR97b], which predicts actual pageesses in the
SSSJ) could also be applied. presence of an LRU buffer:

Multiway joins with cycles can be executed by transforming them  Cgy=Ta + Tg + (NA(Ra, Rg) - Ta - Tg)[P(node M) @)

to tree expressions using the most selective edges of the graph a’Where NA(R., Rs) is the total number of R-tree nodescessed by
filtering the results with respect to the other relations in memory. RJ. and P(nc;debll) is the probability that a requested R-tree node
For instance, consider the cycle, @erlapR,), (R, overlapR;), will not be in the buffer (of siz®) and will result in a page fault.

(Rs overlap R;) and the query execution plan IR (R, X Ry). M i h : N P
When joining the tuples of @& R3) with R; we can use either M;’Li:if;iuizoil:‘t[LSJ%%?]pUtauon of NA(RRs) and P(node,

the predicate (edge) {RverlapR,), or (R; overlapR;) as the join _ )
condition. If (R, overlapR,) is the most selective one (i.e., results We tested the accuracy of eq. (4), (5) and (7) by calculating esti-

in the minimum cost), it is applied for the join and the qualifying Mated and actual I/O costs for the join pairs of Figure 7 using the

tuples are filtered with respect tog@verlapR;). same experimental settings. When estimating the cost of HJ and

SISJ (eq (4) and (5)), we sgt£ 0 and g = 20% (typical ratios

for good hash buckets). Figure 10 illustrates the differences be-

tween the estimated and experimental values. The formulae for HJ

h 0 .

employed for he leaves, it just executes the join and passes thog Gom i FTRERERE BB B AR (8 CELEE B0 02

results to the upper operator. SISJ flrst.consyructs .the slot 'ndexbover the same area, the error is between 10% and 20% (in accor-

then h.aSheS the result§ of the probe (rlgh.t)_lnput Into the COI€-yance with the corresponding experiments in [HIR97b]). There-

fg?ﬁ:'ggpt;l:c:i‘:‘a?gﬁj mangsxig:tﬁ;vt:i Agulggsz'g%;zf tLe:liJrl]tﬁore, the analytical cost formulae for HJ, SISJ and RJ are precise
. - . . . . . - 4

tial buckets where the results of the left join will be hashed; thus, enough for inclusion in spatial query optimizers

it cannot avoid writing the results of its left input to disk. At the In addition to the join cost, a query optimizer for multiway spatial

same time it performs sampling to determine the initial extents of joins needs formulae for the expected size (i.e., number of solu-

the hash buckets. Then the results from the intermediate file are

read and hashed to the buckets. The results of the probe input are

immediately hashed to buckets.

Table 2 shows the iterator functions [Gra93] for all three spatial
join algorithms in an execution engine running on a centralized,
uni-processor environment that applies pipelining. Since RJ is

4 The original formulas are slightly modified to capture pipelin-
ing; in particular, for HJ and SISJ, we exclude the cost of read-
ing the right input, and charge one extra write for the left input
of HJ, because it must be materialized.

Notice that in this implementation, the system buffer is shared
between at most two operatoMextfunctions never run concur-
rently; when join is executed at one operator, only hashing is
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tions) of a join, in order to estimate the input size of upper joins. |Pair GSXIGR|ASXAL [T1XT2 [UIXIU2|GIXIG2 |G2XU2lerror
The size of a join output is determined by the following: size 51617 | 20518 | 86094 | 292080 281649 401416
Size estimation

- The size of the sets to be joined. If Qiznd Sizg are the sizes

of the inputs, the join may produce up to SiBizes tuples No grid [34392 [ 10050 | 94084] 302041 302031 408400 §.17
(Cartesian product). 20x20 (31521 [11483 | 69475| 302018 289090 412816 (.18

. . . 50x50 (38495 ([13154 | 78312 302801 291332 413522 (.13
- The density of the sets. Datasets with large density have rectant;goco0la5253 | 15539 | 83706| 3052677 201547 414979 d.08

i%:teesrsvgggolség.ger average area, thus producing larger number o Table 3 Join output size estimation using grids

tIn order to compute the output size of a join which takes interme-
diate results as input, we may apply eq. (8)dfach pair of cells,

but nowSizecorresponds to the number of estimated intermediate
results in a cell, antectis the average rectangle size in the cell of
the corresponding joined relation. Consider, for instance, the
FOIIOWing the analys.islirjl [TSSQS] and [HJR97b], the.numb.er of multiway join ((R overlapR,) and (R overlapRs)), and the exe-
output tuples when joining two datasets A and B with uniform . ... plan R (R, X Rs): Size in eq. (8) becomes Sie<irs,

distribution is: and rect = recky.

Size\ 5 = Sizg[Size\[rech, + rect)’ (8) Although eq. (8) isaccurate for pairwise joins and acyclic multi-
where regt is the average side length of a rectangle in A, and the Way joins, if the query graph contains cycles, it only provides an
rectangle co-ordinates are normalized to take values from [0,1). Inupper bound for the size of the output. Analytical formulae that
other words, the size of B is the number of rectangles in A  estimate the output size of multiway spatial joins with tree and
intersected by an average rectangle in B, multiplied by the numberclique graphs are provided in [PMT99]. These formulae can be
of rectangles in B. Given the density, Bf set A, the average side  Used in our case to estimate the intermediate results of query sub-

. The distribution of the rectangles inside the sets. This is the mos
difficult factor to estimate, as in many cases the distribution is
not known, and even if known, its characteristics are very diffi-
cult to capture.

length of a rectangle in A is: graphs that can be decomposed to trees and cliques. For instance,
: all decompositions of a query that involves four inputs in a cycle
rech, = /DA /Size, 9) are tree subgraphs, thus (8) can be used to estimate their output

When joining files with non-uniform distributions, eq. (8) is not

expected to provide an accurate join size estimation. Motivated by4 4 Query Optimization

an idea from [TSS98], we use statistical information for the distri- | this section we show how the above analytical formulae can be
bution of the datasets in order to estimate the join size. In par-incorporated in a dynamic programming algorithm that generates
ticular, we partition the workspace into a grid of equal sized cells. {he optimal execution plan for multiway spatial joins. Even
The criterion for assigning a rectangle to a cell is the enclosure ofihough the proposedptimal_planalgorithm can be applied for

the rectangle’s center, thus no rectangle is assigned to more thafhe general case where spatial relations may not be indexed, for

one cells. For each cell, the number of rectangles and the normalgjmp|icity of the pseudo-code we assume that all datasets are in-
ized average rectangle size is kept. The estimation of the joingeyed by R-trees.

output size is then done using eq. (8) éach cell and summing

up the results. The optimal plan for a query is determined in a bottom-up fashion

. L ) ) from its subgraphs. Initially, the cost and output size of each
Table 3 shows the estimated join sizes for various grids and thepairwise join (i.e., each graph edge) is computed, using equations
average relative error, where relative error is defing@stgnated (7) and (8), respectively. At stepfor each onnected subgraph; Q
I/O-actual I/O|/actual I/O For joins involving highly skewed data  yip i nodes optimal_plandetermines the best decomposition of
(i.e. GSXI GR) the accuracy of the join size grows with the size of . to two connected_parts, based on the optimal cost of executing
the grid, whereas in other cases even a small grid provides a googhese parts and their size. When one of the parts consists of a sin-
prediction. The size of the grid is however crucial for the applica- gle node, SISJ is considered as the join execution algorithm,
bility of the method. Since the grid is used to compute the size of yhereas if both parts have at least two nodes, HJ is used. The

intermediate join results during query optimization, it should be oytput size is estimated using the size of the plans that formulate
small enough to fit in main memory. In our implementation we ine decomposition.

chose a 5850 grid because it provides reasonable precision with-
out introducing significant overhead.



Algorithm optimal_plarfQuery Q, int n) /i = number of inputs
For Each connected subgraph@Q Q of size 2Do
Qo.cost = QRyA, B); I*eq. (7¥/
Qo.size = Size(A, B); /&q. (8)/
EndFor /* Q2 */
For i=3 to nDo
For Each connected subgraph Q Q with i nodeDo
/*Find optimal plan for ¢/
Qi.cost =o0; Q.plan = NULL;
For Each decomposition Q- {Qx, Qk}, Qk Q-k connectedo

If (k=1) Then /*Qis a single node; SISJ will be uséd
{Qx, Quk}.cost=Q.k.cost+Gis{Qk, Q); /*eq. (4)/

Else/*both components are sub-plans; HJ will be dsed
{Qk Qi}-coSt=Q.COSt+Qy.COStHG1(Qr, Qui); /*eq.(5)/

EndIf /*k=1*/

If {Qk Qik}.cost<Q.costThen /*better than former optimal*/
Q.plan={Qx, Q«}; /*mark decomp. as (@ optimal plan*/
Qi.cost={Q, Qk}.cost; *mark so far optimal cost of i€}

EndIf /*mincost*/

EndFor /*decomposition*/
[*Estimate @s output size from optimal decomposition*/
Qi.size = Size(@plan);
EndFor /*Qi*/
EndFor /*i*/
End /*optimal_plan*/

At the end of the algorithn@Q.planwill be the optimal plan, and

size are estimated using a grid, this grid should be maintained and
updated foeach onnected subgraph. Typical queries 18 are

able to support a 3®0 grid, given a reasonably large memory
buffer.

4.5 Experimental evaluation

We tested the accuracy of the cost formulae and the optimization
algorithm for several types of queries. We used the datasets pre-
sented in section 3, and created some extra synthetic sets, in order
to produce a variety of queries with reasonable output. ddata-

sets U3, U4 (G3, G4) were generated in the same way as U1, U2
(G1, G2) but contain 50,000 rectangles, of density 0.1 and 0.5,
respectively. All datasets were indexed by R*-trees with the same
parameters as in section 3. The buffer size was set to 512K. We
did not consider non-connected query graphs since they can be
processed by computing the results of eashnected subgraph
and then their Cartesian product.

In the experiments we ran 30 queries that involved 3 to 7 syn-
thetic datasets, and several queries with the four Germany layers.
We applied both cyclic and acyclic queries includiahgins(e.g.,

“find all supermarkets which arext toa bank, which isext toa
government building”) andstar queries (e.g., “find all cities
crossed bya river which alsacrossessome industrial area and
some forest”). The difference between estimated and experimental

Q.costandQ.sizewill hold its expected cost and size. Due to the COSt never exceeded 15%, showing that the cost estimation, which
bottom-up computation of the optimal plans, the cost and size foris & crucial factor for query optimization, is very accurate. In gen-
a Speciﬁc query Subgraph is Computed 0n|y once. The price to payeral, the average prediCtion error grew with the number of joined
is the storage requirements for the algorithm, which is manageabldnputs due taccumulation of errors in the estimation of interme-
for typ|ca| query graphs_ The worst case of time and space re_diate jOin results. For qUerieS inVOIVing SynthetiC sets the estima-

quirements, is when the graph is complele¢e). Then at level
i, the number of subgraphs to be teste@(i;) and the total stor-
age cost is:

C'SpaC@ptimal_plan()= ; E:E <2 (10)

Initially, optimal_planwill compute the costs of all pairwise joins

(C(2,n)for clique topology). Then aach levei, 2<i<n, all com-

binationsC(i,n) of connected subgraphs must be decomposed in
order to find the optimal decomposition. Thus, the worst case time

requirement for the algorithm is:

C-tiMespimal plang = %E» 2 %‘%decomposimswc(i) E(ll)

where the (worst case) number of possible decompositidns: at

O i-1
O ;E_Eifiisodd
#decompositiongd(i) :E ifradd (12)

E;:% % E/izﬁif iiseven

For a clique query with 10 variables, eq. (10) results in 1013, an

tion was very precise, because they are less skewed than real ones.

Table 4 illustrates some example queries, and their optimal exe-
cution plan, as calculated byptimal_planusing a 5850 statistics

grid. The output size of the queries, the estimated and experi-
mental I/O cost, the (actual) overall cost (I/O cost + CPU time) in
seconds and query optimization time are provided. Notice that
optimization never exceeded 2% of the total cost (usually it
ranged between 0.5% and 1%). All right deep plans were proven
1/0 bound, whereas for some bushy plans the CPU-cost was found
comparable to the 1/O cost (e.g. query 1). This is due to the HJ
algorithm which in some cases is CPU-bound (e.g., se& GR

in Figure 7). In general, bushy plans (that use HJ) were preferred
to right-deep plans (where SISJ is applied), only when the number
of intermediate results that have to be hashed in slots created by
SISJ is very large and their materialization introduces significant
I/O overhead. Table 5 illustrates the above observation by pre-
senting the execution costs (/0 and overall time) of some plans of
the £ query.

In this query, right-deep plans perform worse than the optimal

bushy plan due to the large size of intermediate results before the
last (SISJ) join. For instance, plan 5(d) is more expensive than
5(a), because the intermediate result PG34X G1X U1 is

glarge. Considering the significant cost difference between alterna-

eq. (11) gives 24,070, which implies that optimization is very fast tive plans_, optimization may achieve Iarge_ performance gains
compared to query execution time. In practice, query graphs usu\Vhile adding minimal overhead. In the optimal plan 5(a), al-
ally contain fewer edges (than cliques) and the actual numbers ar&hough ULXIU3 produces more tuples than B354 G1, it is

much smaller than the above bounds. Among acyclic queries with

10 variables, the one that generates the largest number of sub- ) ) )
graphs (=511) has star topology, while the one that generates ® Synthetic datasets U2 and G2 produced an excessive number (in

the smallest number (=45) haslaain topology. When cost and the order of millions) of output tuples when included with U1
and G1 in multiway joins.
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output: 110907 output: 92061 | output: 110366( output: 23970 | output: 7007 output: 14735 | output: 2068 output: 832
Est1/0: 3958 | Est1/O: 3875 | Estl/O: 4642 | Estl/O: 2766 | Est. 1/0: 835 Est I/0: 821 Est. 1/O: 777 Est. 1/0: 683
Exp. 1/0: 4082 | Exp. I/O: 3707 | Exp. I/O: 4731 | Exp. I/0O: 2868 | Exp. I/0: 987 | Exp. I/0: 924 | Exp. 1/0: 960 [ Exp. I/O: 813
total time: 80.1 | total time: 65.7 | total time: 86.58 total time: 54.48 total time: 16.3] total time: 16.0% total time: 17.19 total time: 14.79
opt. time: 0.45 | opt. Time: 0.48/ opt. time: 0.46 | opt. time: 0.5 | opt. time: 0.24 | opt. time: 0.27 | opt. time: 0.25 | opt. time: 0.29
Table 4 Optimal execution plans for various queries
683801~ 48938 55481 P 117130 o1 104952 Y vann1s /4 104952
/M\ /M\45511 /M\ /M\145792 485117 68380 us /M\ 48938 Gl /N\ 117130
ut usel /M\ Gl G3us /M\ AP u1 45511 3 X 1as792
G3 G4 Ul G4 G3G4UsUL Gl/ \M U3/ \M
N\ /N
G3 G4 Ul G4
1/0: 4082 1/0: 5587 1/10: 7274 1/0: 5653 1/0: 6790
total time: 80.1 total time: 96.07 total time: 138.4 total time: 105.8 total time: 132.71
@ (b) (© (d) (e)

Table 5 Costs of some execution plans for query 1 (the numbers over joins are the sizes of intermediate results)

used as the build input (left),ebause the tuples have smaller bucket extents from the R-tree structure, without hashing the build
length and, as a result, actual size of the materialized results isnput, and (iii) it guarantees partitions of equal size for the build

smaller. Notice that if a semi-join was required (the intermediate input, which, for typical buffers, fit in memory, and thus handles

results were projected to a single column),PGB4 X G1 could skewed data very efficiently.

be the build input. Finally, we demonstrate how SISJ and other join algorithms can
In order to test the accuracy optimal_plan we executed all be implemented as modules of a query execution engine that uses
alternative plans for 20 of the tested queries. The algorithm foundpipelining to process multiple spatial inputs. In addition to ana-
the best plan in 18 cases. Whenever there was a better plan thagtical formulae that accurately predict the cost of execution plans,
the generated one, the difference between the actual optimal andve provide a dynamic programming algorithm that determines the
the estimated plan was trivial, and it was due to size estimationoptimal plan of multiway spatial joins. The precision of the cost
errors of intermediate results. formulae and query optimization is confirmed through extensive

We also tested the effects of the statistical grid in the optimization ©XPeriments with synthetic and real data.

process. The cost and the optimal plan was estimated for variousSISJ can be applied for relational joins, provided that the build
grid sizes (No grid, 2€0, 50<50, 10x100). As expected, the input is indexed by a B+-tree. The entries of a high B+-tree level
existence of the grid was of little importance for queries with are split intoS partitions, and the hash-function for the probe
synthetic datasets. When real datasets were involved the differinput is decided upon the bounds of these partitions. It is not clear
ence was large, due to data skew and different area covered, withvhether this method is faster than sorting the probe input and
the largest grids (50, 10x100) achieving moreccurate cost applying merge-sort. A straightforward advantage of SISJ in com-
and size predictions. In some queries with many inputs and multi-parison to merge-sort approaches, is when the probe input is an
ple join conditions, the 16A00 grid for all possible subgraphs, output of an underlying database operator and merge-sort requires
could not fit in main memory, rendering optimization inapplica- Materialization of the probe input prior to sorting.

ble. On the other hand, with the 8D grid the optimization
process was successful for all tested queries.

Currently, we study the combination of pairwise join algorithms
with a generalization of RJ, that synchronously traverses more
than two R-trees [PMD98]. Some results [MP99] show that in
S. CONCLUS!ONS ) ) ) many cases this method is superior to cascading executions of
The goal of this paper is to provide an integrated approach topajrwise join algorithms. We are also interested in investigating
processing pairwise and multiway spatial joins. First, we describethe inter-parallelism between spatial join operators. So far, PBSM
and analyze previous work on spatial join algorithms, with and has been parallelized Paradiseproject [PYK97], while intra-
without indexes on the input relations. Second, we propose aparallelism of RJ has been shown in [BKS96]. In addition, we
novel spatial join algorithmslot index spatial joinfor the case  pjlan to test the applicability of relational query decomposition

where only one of the two inputs is indexed by an R-tree. SISImethods (e.g. [BC81]) for spatial query processing.
achieves very good performancechuse (i) it avoids the expen-

sive building of an on-the-fly R-tree, (ii) determines the hash-
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