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1. Introduction

Let q be a prime power, Fq be the finite field of order q, and Fq[x] be the ring of polynomials in
a single indeterminate x over Fq . A polynomial f ∈ Fq[x] is called a permutation polynomial (PP) of Fq

if it induces a one-to-one map from Fq to itself.
Permutation polynomials over finite fields have been an interesting subject of study for many

years, and have applications in coding theory [12], cryptography [20,19], combinatorial design the-
ory [10], and other areas of mathematics and engineering. Information about properties, constructions,
and applications of permutation polynomials may be found in Lidl and Niederreiter [13,14], and
Mullen [17].
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The trace function Tr(x) from Fqn to Fq is defined by

Tr(x) = x + xq + xq2 + · · · + xqn−1
.

A number of classes of permutation polynomials related to the trace functions were constructed [6,5,4,
11,15,25]. Recently, Akbary, Ghioca and Wang proved a lemma about permutations on finite sets [1,2],
which contains two results of Zieve ([23, Lemma 2.1] and [25, Proposition 3]) as special cases [16],
and used this lemma to unify some earlier constructions and developed new constructions of per-
mutation polynomials over finite fields. In this paper, we will employ this lemma to derive several
theorems about permutation polynomials over finite fields. These theorems give not only a further
unified treatment of some of the earlier constructions of permutation polynomials, but also new spe-
cific permutation polynomials. The main contributions of this paper are Theorems 3.1, 5.1, 6.1, 6.4,
their corollaries and specific permutation polynomials described in the corollaries.

2. Auxiliary results and the powerful lemma

In this section, we present some auxiliary results that will be needed in the sequel. Throughout
this paper p is a prime and q = pe for a positive integer e.

A polynomial of the form

L(x) =
n−1∑
i=0

ai x
qi ∈ Fqn [x]

is called a q-polynomial over Fqn , and is a permutation polynomial on Fqn if and only if the circulant
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · an−1

aq
n−1 aq

0 aq
1 · · · aq

n−2

aq2

n−2 aq2

n−1 aq2

0 · · · aq2

n−3· · ·
aqn−1

1 aqn−1

2 aqn−1

3 · · · aqn−1

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.1)

has nonzero determinant (see [9, p. 362]). In most cases it is not convenient to use this result to
find out permutation q-polynomials, as it may be hard to determine if the determinant of this matrix
is nonzero [9]. Hence it would be interesting to develop other approaches to the construction of
permutation q-polynomials.

We shall use the following trivial fact in the sequel.

Lemma 2.1. Let L(x) = ∑n−1
i=0 ai xqi ∈ Fq[x] be a q-polynomial and let Tr(x) be the trace function from Fqn

to Fq. Then, for each α ∈ Fqn , we have

L
(
Tr(α)

) = Tr
(
L(α)

) =
(

n−1∑
i=0

ai

)
Tr(α).

Definition 2.2. (See [14, p. 115].) The polynomials

l(x) =
m∑

aix
i and L(x) =

m∑
aix

qi
i=0 i=0
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over Fqn are called the q-associate of each other. More specifically, l(x) is the conventional q-associate
of L(x) and L(x) is the linearized q-associate of l(x).

The following lemma is also needed in the sequel.

Lemma 2.3. (See [14, p. 109].) Let L1(x) and L2(x) be two q-polynomials over Fq, and let l1(x) and l2(x) be
the q-associate polynomials over Fq. Then the common roots of L1(x) = 0 and L2(x) = 0 are all the roots of
the linearized q-associate of gcd(l1(x), l2(x)). In particular, x = 0 is the only common root of L1(x) = 0 and
L2(x) = 0 in any finite extension of Fq if and only if gcd(l1(x), l2(x)) = 1.

The following lemma is taken from Akbary, Ghioca, and Wang [1, Lemma 1.1], and will be em-
ployed in the sequel. For completeness and an easy understanding of later applications, we provide
its proof here.

Lemma 2.4. (See [1, Lemma 1.1].) Let A, S and S̄ be finite sets with �S = � S̄ , and let f : A → A, h : S → S̄ ,
λ : A → S, and λ̄ : A → S̄ be maps such that λ̄ ◦ f = h ◦ λ. If both λ and λ̄ are surjective, then the following
statements are equivalent:

(i) f is bijective (a permutation of A); and
(ii) h is bijective from S to S̄ and if f is injective on λ−1(s) for each s ∈ S.

Proof. We have the following commutative diagram

A

λ

f
A

λ̄

S
h

S̄

Assume first that f is bijective. Then f is injective on each λ−1(s). Furthermore, because λ̄ and f are
surjective and λ̄ ◦ f = h ◦ λ, then h : S → S̄ is surjective and thus bijective (because S and S̄ are finite
sets of the same cardinality).

Conversely, assume f (a1) = f (a2) for some a1,a2 ∈ A. Then h(λ(a1)) = λ̄( f (a1)) = λ̄( f (a2)) =
h(λ(a2)). As h is a bijection, we obtain λ(a1) = λ(a2). Hence a1, a2 are in λ−1(s) for some s ∈ S .
Since f is injective on each λ−1(s), we conclude that a1 = a2. So f is injective and in fact bijective
(because A is a finite set). �
3. The first theorem about permutation polynomials

Our objective in this section is to present a general result on permutation polynomials which
contains some earlier results as special cases. This gives a uniform treatment of some earlier con-
structions of permutation polynomials and also new permutation polynomials. The following theorem
is derived from Lemma 2.4, and is a generalization of Theorems 1.5 and 6.1 in [1].

Theorem 3.1. Let q be a prime power, and let r � 1 and n � 1 be positive integers. Let B(x), L1(x), . . . , Lr(x) ∈
Fq[x] be q-polynomials, g(x) ∈ Fqn [x], h1(x), . . . ,hr(x) ∈ Fq[x] and δ1, . . . , δr ∈ Fqn such that B(δi) ∈ Fq and
hi(B(Fqn )) ⊆ Fq. Then

f (x) = g
(

B(x)
) +

r∑
i=1

(
Li(x) + δi

)
hi

(
B(x)

)

is a permutation polynomial of Fqn if and only if
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(1) B(g(x)) + ∑r
i=1(Li(x) + B(δi))hi(x) permutes B(Fqn ); and

(2) for any y ∈ B(Fqn ),
∑r

i=1 Li(x)hi(y) permutes ker(B).

Moreover, (2) is equivalent to gcd(
∑r

i=1 li(x)hi(y),b(x)) = 1 for any y ∈ Fq, where li(x) and b(x) are the
conventional q-associate of Li(x) and B(x).

Proof. Note that B(x) is a q-polynomial over Fq . We have aB(x) = B(ax) for all a ∈ Fq and all
x ∈ Fqn , and B(x + y) = B(x) + B(y) for all x and y in Fqn . Hence B(Fqn ) is a linear subspace of Fqn

over Fq . Since B(x) and Li(x) are q-polynomials over Fq , we have Li(B(x)) = B(Li(x)). By assumption,
B(δi) ∈ Fq for all i. It follows that the following polynomial

h(x) := (B ◦ g)(x) +
r∑

i=1

(
Li(x) + B(δi)

)
hi(x)

induces a mapping from B(Fqn ) to itself.
Since hi(B(Fqn )) ⊆ Fq and B, L1, L2, . . . , Lr are Fq-linear over Fq , we have B ◦ f = h ◦ B . Hence we

have the following diagram

Fqn

B

f
Fqn

B

B(Fqn )
h

B(Fqn )

We would now apply Lemma 2.4 with A = Fqn , f = g ◦ B + ∑r
i=1(Li + δi)hi ◦ B , S = S̄ = B(Fqn ),

λ = λ̄ = B and h as defined above. By Lemma 2.4, f (x) is a permutation polynomial of Fqn if and only
if h(x) induces a permutation of B(Fqn ) and f (x) is injective on each B−1(y) ∈ Fqn for all y ∈ B(Fqn ).

For any given y ∈ B(Fqn ) and α,β ∈ B−1(y), we have β = α + x for some x ∈ ker B . Since

f (β) = f (α + x) = g
(

B(α)
) +

r∑
i=1

(
Li(α + x) + δi

)
hi

(
B(α)

) = f (α) +
r∑

i=1

Li(x)hi(y),

f (x) is injective on each B−1(y) ∈ Fqn for all y ∈ B(Fqn ) if and only if

ker B ∩ ker

(
r∑

i=1

Lihi(y)

)
= {0}

for all y ∈ B(Fqn ).
The last conclusion of this theorem then follows from Lemma 2.3. �
In what follows in this section, we show that some earlier results on permutation polynomials are

special cases of Theorem 3.1 and present new results on permutation polynomials.

Corollary 3.2. (See [1, Theorem 6.1].) Let q be a prime power, and let L1, L2, L3 : Fqn → Fqn be q-polynomials
over Fq. Let w(x) ∈ Fqn [x] such that w(L3(Fqn )) ∈ Fq. Then

f (x) = L1(x) + L2(x)w
(
L3(x)

)
is a permutation polynomial of Fqn if and only if the following two conditions hold:
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(i) ker(F y) ∩ ker(L3) = {0}, for any y ∈ L3(Fqn ), where

F y(x) := L1(x) + L2(x)w(y).

(ii) h(x) := L1(x) + L2(x)w(x) permutes L3(Fqn ).

Proof. The conclusion of this corollary follows from Theorem 3.1 by setting r = 2, g = 0, h1 = 1,
h2 = w , δ1 = δ2 = 0, B = L3. �

The following is a consequence of Theorem 3.1.

Corollary 3.3. Let r � 1 and n � 1 be positive integers. Let L1(x), . . . , Lr(x) ∈ Fq[x] be q-polynomials, g(x) ∈
Fqn [x], h1(x), . . . ,hr(x) ∈ Fq[x] and δ1, . . . , δr ∈ Fqn . Then

F (x) = g
(
Tr(x)

) +
r∑

i=1

(
Li(x) + δi

)
hi

(
Tr(x)

)

is a permutation polynomial of Fqn if and only if

(1) Tr(g(x)) + ∑r
i=1(Li(x) + Tr(δi))hi(x) permutes Fq; and

(2) for any y ∈ Fq,
∑r

i=1 Li(x)hi(y) permutes ker(Tr).

Moreover, (2) is equivalent to gcd(
∑r

i=1 li(x)hi(y),
∑n−1

i=0 xi) = 1 for any y ∈ Fq, where li(x) is the con-
ventional q-associate of Li(x).

Proof. Put B(x) = Tr(x) in Theorem 3.1. We have then B(Fqn ) = Tr(Fqn ) = Fq . Hence B(δi) ∈ Fq . The
conclusion of this corollary follows from Theorem 3.1. �

The following is a consequence of Corollary 3.3 and Lemma 2.3.

Corollary 3.4. Let r � 1 and n � 1 be positive integers. Let Li(x) = ∑n−1
j=1 a(i)

j xq j
, i = 1, . . . , r, be q-

polynomials over Fq, g(x) ∈ Fqn [x], h1(x), . . . ,hr(x) ∈ Fq[x] and δ1, . . . , δr ∈ Fqn . Then

F (x) = g
(
Tr(x)

) +
r∑

i=1

(
Li(x) + δi

)
hi

(
Tr(x)

)

is a permutation polynomial of Fqn if and only if the following two conditions hold:

(1) Tr(g(x)) + ∑r
i=1(

∑n−1
j=1 a(i)

j x + Tr(δi))hi(x) is a permutation polynomial of Fq.

(2) For any y ∈ Fq, the only common solution of the two equations
∑r

i=1 Li(x)hi(y) = 0 and Tr(x) = 0 in
Fqn is x = 0.

Moreover, (2) is equivalent to gcd(
∑r

i=1 li(x)hi(y),
∑n−1

i=0 xi) = 1 for any y ∈ Fq, where li(x) is the con-
ventional q-associate of Li(x).

Proof. By Lemma 2.3, gcd(
∑r

i=1 li(x)hi(y),
∑n−1

i=0 xi) = 1 for any y ∈ Fq if and only if condition (2) is
satisfied. The desired conclusion then follows from Corollary 3.3. �
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Corollary 3.5. Let L(x) = ∑n−1
i=0 ai xqi ∈ Fq[x] be a q-polynomial, and let α ∈ Fqn . Then

Lα(x) = α Tr(x) + L(x)

is a permutation polynomial of Fqn if and only if
∑n−1

i=0 ai +Tr(α) �= 0 and gcd(l(x),
∑n−1

i=0 xi) = 1, where li(x)
is the conventional q-associate of Li(x).

Proof. In Corollary 3.4, put g(x) = αx, r = 1, L1(x) = L(x), δ1 = 0, and h1(x) = 1. We have then

g
(
Tr(x)

) +
r∑

i=1

(
Li(x) + δi

)
hi

(
Tr(x)

) = α Tr(x) + L(x) = Lα(x).

On the other hand, we have

J (x) := Tr
(

g(x)
) +

r∑
i=1

(
Li(x) + Tr(δi)

)
hi(x) = Tr(αx) + L(x).

Clearly, J (x) maps Fq to Fq . Restricting J (x) on Fq , we have

J (x) := Tr(αx) + L(x) = Tr(α)x +
(

n−1∑
i=0

ai

)
x.

The desired conclusion then follows from Corollary 3.4. �
The following follows from Corollary 3.5 directly.

Corollary 3.6. Let L(x) = ∑n−1
i=0 ai xqi ∈ Fq[x] be a q-polynomial over Fq. Let α ∈ Fqn such that Tr(α) = 0.

Then

Lα(x) = α Tr(x) + L(x)

is a permutation polynomial of Fqn if and only if gcd(l(x), xn − 1) = 1. In particular, L(x) is a permutation
polynomial of Fqn if and only if gcd(l(x), xn − 1) = 1, where l(x) is the conventional q-associate of L(x).

In Theorem 3.1, putting L1(x) = L2(x) = · · · = Lr(x) = L(x), we obtain the following.

Corollary 3.7. Let q be a prime power, and let r � 1 and n � 1 be positive integers. Let B(x), L(x) ∈ Fq[x]
be q-polynomials, g(x) ∈ Fqn [x], h1(x), . . . ,hr(x) ∈ Fq[x] and δ1, . . . , δr ∈ Fqn such that B(δi) ∈ Fq and
hi(B(Fqn )) ∈ Fq. Then

f (x) = g
(

B(x)
) +

r∑
i=1

(
L(x) + δi

)
hi

(
B(x)

)

is a permutation polynomial of Fqn if and only if

(1) B(g(x)) + ∑r
i=1(L(x) + B(δi))hi(x) permutes B(Fqn ); and

(2) gcd((
∑r

i=1 hi(y))l(x),b(x)) = 1 for any y ∈ B(Fqn ), where li(x) and b(x) are the conventional q-
associate of Li(x) and B(x).
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The following result in [1] is a special case of Corollary 3.7.

Corollary 3.8. (See [1, Theorem 5.5].) Let q be a prime power, a ∈ Fq, and let b ∈ Fqn . Let P (x) be a q-
polynomial over Fq which permutes Fqn , and L(x) be a q-linear polynomial over Fq. Let g(x) ∈ Fqn [x] such
that g(L(Fqn )) ⊆ Fq. Then

f (x) = aP (x) + (
P (x) + b

)
g
(
L(x)

)
is a permutation polynomial over Fqn if and only if

(i) −a /∈ g(L(Fqn )); and
(ii) h(x) = aP (x) + (P (x) + L(b))g(x) permutes L(Fqn ).

4. Specific permutation polynomials from the first theorem

In this section, we present a few classes of specific permutation polynomials that are consequences
of Theorem 3.1. The following corollary is a generalization of Theorem 5 in [6].

Corollary 4.1. Assume that gcd(n,k) = 1, gcd(n,q) = 1 and δ ∈ Fqn is an element with Tr(δ) = 0. Then the
polynomial

F (X) = axqk + (x + δ)
(
Tr(x)

)qk−1

is a permutation polynomial of Fqn for all a ∈ Fq \ {0,−1}.

Proof. We apply Corollary 3.4 with g(x) = 0, r = 2, L1(x) = axqk
, L2(x) = x, δ1 = 0, δ2 = δ, h1(x) = 1,

and h2(x) = xqk−1. Then

F (x) := g
(
Tr(x)

) +
r∑

i=1

(
Li(x) + δi

)
hi

(
Tr(x)

) = axqk + (x + δ)
(
Tr(x)

)qk−1
.

Note that

J (x) := Tr
(

g(x)
) +

r∑
i=1

(
Li(x) + Tr(δi)

)
hi(x) = axqk + x

(
Tr(x)

)qk−1
.

Restricting J (x) on Fq , we have

J (x) := (a + 1)x

because gcd(n,q) = 1. Hence J (x) permutes Fq .
On the other hand, we have

r∑
i=1

Li(x)hi(y) = axqk + xyqk−1.

If there is an element y ∈ Fq and an element x ∈ Fqn such that Tr(x) = 0 and

axqk + xyqk−1 = 0
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which implies x = 0 or x = by for some 0 �= b ∈ Fq due to gcd(k,n) = 1. If the latter equality holds,
we have Tr(x) = nby = 0, and thus y = 0 and x = 0.

Therefore the conditions of Corollary 3.4 are satisfied and the desired conclusion follows from
Corollary 3.4. �
Corollary 4.2. Let n be a prime and let q = 2. Define for each i with 0 � i < n

ai =
{

1 if i is a quadratic residue modulo n,
0 otherwise.

Let L(x) = ∑n−1
i=0 ai xqi ∈ Fq[x] and

Lα(x) = α Tr(x) + L(x),

where α ∈ Fqn . Then Lα(x) is a permutation polynomial of Fqn if n ≡ 3 (mod 8) and Tr(α) = 0 or
n ≡ 5 (mod 8) and Tr(α) = 1.

Proof. By definition, Tr(α) + ∑n−1
i=0 ai = 1 in both cases. Let l(x) be the conventional q-associate of

L(x). It was proved in [8] that gcd(xn − 1, l(x)) = 1 if n ≡ 3 (mod 8) and gcd(xn − 1, l(x)) = x − 1 if
n ≡ 5 (mod 8). The desired conclusions then follow from Corollary 3.5. �
Corollary 4.3. Let n = n1n2 , where n1 and n2 are two distinct primes such that gcd(n1 − 1,n2 − 1) = 2, and
let q = 2. Define for each i with 0 � i < n

ai =
⎧⎨
⎩

0, i ∈ {0,n2,2n2, . . . , (n1 − 1)n2},
1, i ∈ {n1,2n1, . . . , (n2 − 1)n1},
(1 − ( i

n1
)( i

n2
))/2, otherwise,

(4.1)

where ( a
n1

) denotes the Legendre symbol. Let L(x) = ∑n−1
i=0 ai xqi ∈ Fq[x] and

Lα(x) = α Tr(x) + L(x),

where α ∈ Fqn with Tr(α) = 1. Then Lα(x) is a permutation polynomial of Fqn if n1 ≡ 1 (mod 8) and
n2 ≡ 3 (mod 8) or n1 ≡ 5 (mod 8) and n2 ≡ 7 (mod 8).

Proof. By definition, Tr(α) + ∑n−1
i=0 ai = 1 in both cases. Let l(x) be the conventional q-associate

of L(x). It was proved in [7] that gcd(xn − 1, l(x)) = x − 1 in both cases. The desired conclusions
then follow from Corollary 3.5. �
5. The second theorem and its applications

The following theorem is another application of Lemma 2.4, and is a multiplication version of
Theorem 1.4 in [1].

Theorem 5.1. Assume that A is a finite field and S is a subset of A such that the map λ : A → S is surjective.
Let g : A → A, h : S → S, and f : A → A be maps such that the following diagram commutes:
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A

λ

f (x)g(λ(x))
A

λ

S
h

S

Then the map p(x) = f (x)g(λ(x)) permutes A if and only if the following conditions hold.

(i) h is a bijection from λ(A) to λ(A).
(ii) g(y) �= 0 for every y ∈ λ(A) with �λ−1(y) > 1.

(iii) f (x) is injective on each λ−1(y) for all y ∈ λ(A).

Proof. By Lemma 2.4 and the assumptions of this theorem, f (x)g(λ(x)) permutes A if and only if h
is a bijection from λ(A) to λ(A) and f (x)g(λ(x)) is injective on each λ−1(y) for all y ∈ λ(A).

For given y ∈ λ(A) and α,β ∈ λ−1(y), we have λ(α) = λ(β) = y. Define p(x) = f (x)g(λ(x)). If
p(α) = p(β), then

p(α) = f (α)g(y) = f (β)g(y) = p(β).

Therefore p(x) is injective on each λ−1(y) for all y ∈ λ(A) if and only if g(y) �= 0 for every y ∈ λ(A)

with �λ−1(y) > 1 and f (x) is injective on each λ−1(y) for all y ∈ λ(A). �
The following is a consequence of Theorem 5.1 and Corollary 11 in [15]. It can be also derived from

Theorem 6.3 in [1]. This demonstrates that Theorem 5.1 is a generalization of Corollary 11 in [15].

Corollary 5.2. If h(x) ∈ Fq[x], h(0) �= 0, then the polynomial p(x) = xh(Tr(x)) permutes Fqn if and only if
u(x) = xh(x) permutes Fq.

Proof. Define A = Fqn and

λ(x) = Tr(x) = x + xq + · · · + xqn−1
.

Since the following diagram

Fqn

Tr

xh(Tr(x))
Fqn

Tr

Fq
xh(x)

Fq

commutes, the desired conclusion follows from Theorem 5.1. �
Corollary 5.2 is related to [3,18,21,24]. Note that the following diagram commutes:

Fq

xs

xr g(xs)
Fq

xs

xs(Fq)
xr g(x)s

xs(Fq)
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Note also that αr = βr,αs = βs implies α = β if and only if gcd(r, s,q − 1) = 1. The following follows
from Corollary 5.2.

Corollary 5.3. (See [1, Proposition 3.1].) Let r and s be positive integers. Then xr g(xs) is a permutation polyno-
mial of Fq if and only if gcd(r, s,q − 1) = 1 and xr g(x)s permutes (F∗

q)s .

Combining Corollaries 5.2 and 5.3, we have the following corollary, which is an improvement of
Proposition 2.12 in [22].

Corollary 5.4. Assume q ≡ 1 (mod d). If h(x) ∈ Fq[x], h(0) �= 0, then the polynomial p(x) = xh(Tr(x)(q−1)/d)

permutes Fqn if and only if xh(x)(q−1)/d permutes μd, which is the set of all dth roots of unity in Fq.

The permutation polynomials in Corollary 5.4 are related to permutation polynomials from cyclo-
tomy [23,25].

For any integer d � 2, define

hd(x) = xd−1 + xd−2 + · · · + x + 1 ∈ Fq[x].

Corollary 5.5. Let 2 � d < q − 1 such that d|(q − 1), u � 1, r � 1 and 0 � ki � d − 1, si ∈ Z, i = 1, . . . , r. Let
bi ∈ Fq, i = 1, . . . , r, and polynomials gi(x) ∈ Fq[x], i = 1, . . . , r, be divisible by hd(x). The polynomial

g(x) = xu
r∏

i=1

(
gi

(
x(q−1)/d) + bix

ki(q−1)/d)si ∈ Fq[x]

is a permutation polynomial if and only if the following four conditions hold:

(1) b1 · · ·br �= 0 in Fq.
(2) gcd(u, (q − 1)/d) = 1.
(3) gcd(u + (

∑r
i=1 ki si)(q − 1)/d,d) = 1.

(4)
∏r

i=1(gi(1)/bi + 1)si is a dth power in F
�
q.

Proof. By convention, we use μd to denote the set of all dth roots of unity in Fq . It is easy to check
that the following diagram commutes:

Fq

xs

g(x)
A

xs

(Fq)
s

h
(Fq)

s

where s = (q − 1)/d and

h(x) = xu
r∏

i=1

(
gi(x) + bix

ki
)si(q−1)/d

.

Since h(1) = ∏r
i=1(gi(1) + bi)

si(q−1)/d and
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h(x) = xu
r∏

i=1

(
bix

ki
)si(q−1)/d =

r∏
i=1

(bi)
si(q−1)/dxu+(

∑r
i=1 ki si)(q−1)/d (5.1)

for any x ∈ μd \ {1}, we have condition (1).
It follows from Corollary 5.3 that gcd(u, (q − 1)/d,q − 1) = 1, i.e., gcd(u, (q − 1)/d) = 1. So we get

condition (2). By (5.1), h(x) permutes xs(Fq) if and only if

gcd

(
u +

(
r∑

i=1

ki si

)
(q − 1)/d,d

)
= 1

and
∏r

i=1(gi(1)/bi + 1)si is a dth power in Fq . These are conditions (3) and (4). We are done. �
Corollary 5.5 above is a generalization of Theorem 1 in [25] and Theorem 2 in [15].

6. Two more theorems on permutation polynomials

The following theorem is another application of Lemma 2.4, and is a variant of Theorem 1.4(c) and
Theorem 5.1(c) in [1].

Theorem 6.1. Assume that A is a finite field and S, S̄ are finite subsets of A with �(S) = �( S̄) such that the
maps ψ : A → S and ψ̄ : A → S̄ are surjective and ψ̄ is additive, i.e.,

ψ̄(x + y) = ψ̄(x) + ψ̄(y), x, y ∈ A.

Let g : S → A, and f : A → A be maps such that the following diagram commutes:

A

ψ

f +g◦ψ

A

ψ̄

S
f

S̄

and ψ̄(g(ψ(x))) = 0 for every x ∈ A. Then the map p(x) = f (x) + g(ψ(x)) permutes A if and only if f
permutes A.

Proof. It follows from Lemma 2.4 and the assumptions of this theorem that f (x) + g(ψ(x)) permutes
A if and only if f is a bijection from S to S̄ and f (x) + g(ψ(x)) is injective on each ψ−1(s) for all
s ∈ S .

On the other hand, by assumption we have ψ̄(g(ψ(x))) = 0 for every x ∈ A. Hence,

ψ̄
(

f (x) + g
(
ψ(x)

)) = ψ̄
(

f (x)
) + ψ̄

(
g
(
ψ(x)

)) = ψ̄
(

f (x)
)

for all x ∈ A. Therefore, the following diagram commutes:

A

ψ

f
A

ψ̄

S
f

S̄
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Applying Lemma 2.4 to this commutative diagram, we know that f (x) permutes A if and only if f is
a bijection from S to S̄ and f (x) is injective on each ψ−1(s) for all s ∈ S .

Let a1 ∈ ψ−1(s) and a2 ∈ ψ−1(s), where s ∈ S . Note that ψ(a1) = ψ(a2) = s. We have then

f (a1) + g
(
ψ(a1)

) = f (a1) + g(s)

and

f (a2) + g
(
ψ(a2)

) = f (a2) + g(s).

It follows that f (x) + g(ψ(x)) is injective on each ψ−1(s) for all s ∈ S if and only if f (x) is injective
on each ψ−1(s) for all s ∈ S .

Summarizing the discussions above proves the desired conclusion. �
We will employ Theorem 6.1 to prove the following corollary.

Corollary 6.2. Let n and k be positive integers such that gcd(n,k) = d > 1, let s be any positive integer with
s(qk − 1) ≡ 0 (mod qn − 1). Let

L1(x) = a0x + a1xqd + a1xq2d + · · · + an/d−1xqn−d
, ai ∈ Fq,

be a qd-polynomial with L1(1) = 0 and let L2(x) ∈ Fq[x] be a linearized polynomial and g(x) ∈ Fqn [x]. Then

f (x) = (
g
(
L1(x)

))s + L2(x)

permutes Fqn if and only if L2(x) permutes Fqn .

Proof. Since gcd(k,n) = d, so gcd(qk − 1,qn − 1) = qd − 1, and thus s(qk − 1) ≡ 0 (mod qn − 1) if and
only if s(qd − 1) ≡ 0 (mod qn − 1). Therefore

sqdr ≡ sqd(r−1) ≡ · · · ≡ s
(
mod qn − 1

)
.

It follows that for any x ∈ Fqn , (g(L1(x)))sqrd = (g(L1(x)))s for any positive integer r. Hence
L1((g(L1(x)))s) = L1(1)(g(L1(x)))s = 0 for every x ∈ Fqn . Now applying Theorem 6.1 with ψ = ψ̄ =
L1(x) and f = L2(x), we obtain the desired conclusion. �

Note that Corollary 6.2 can also be derived from Theorem 2 and Theorem 1 in [11].
In Corollary 6.2 putting L1(x) = xqk − x, g(x) = x + δ, δ ∈ Fqn and L2(x) = x, we obtain the following

corollary, which is a slight generalization of Proposition 2 and Remark 1 in [22] as in the following
corollary q could be any prime power.

Corollary 6.3. Let n and k be positive integers such that gcd(n,k) = d > 1, and let s be any positive integer
with s(qk − 1) ≡ 0 (mod qn − 1). Then

h(x) = (
xqk − x + δ

)s + x

permutes Fqn for any δ ∈ Fqn .

Theorem 6.4. Let q = pe for some positive integer e.
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(a) If k � 2 is an even integer or k is odd and q is even, then fa,b,k(x) := axq + bx + (xq − x)k, a,b ∈ Fq2 with
a + b ∈ F

∗
q , permutes Fq2 if and only if b �= aq.

(b) If k and q are odd positive integers, then fa,k(x) := axq +aqx+(xq −x)k, a ∈ F
∗
q2 and a+aq �= 0, permutes

Fq2 if and only if gcd(k,q − 1) = 1.

Proof. Note that

(
fa,b,k(x)

)q − fa,b,k(x) = ((
b − aq)x

)q − (
b − aq)x + (

x − xq)k − (
xq − x

)k
.

(a) Since k is even or k is odd and q is even, we have

(
fa,b,k(x)

)q − fa,b,k(x) = ((
b − aq)x

)q − (
b − aq)x.

On the other hand, since a + b,a + aq ∈ Fq , then b − aq ∈ Fq , and so

(
b − aq)(xq − x

) = ((
b − aq)x

)q − (
b − aq)x.

Hence in case (a) we have the following commutative diagram

Fq2

xq−x

fa,b,k(x)
Fq2

xq−x

S
(b−aq)x

S̄

where S = {αq − α, α ∈ Fq2 } and S̄ = {(b − aq)s: s ∈ S}. Note that s ∈ S if and only if Tr(s) = 0. It is
obvious that (b − aq)x is a bijection from S to S̄ if and only if bq − a �= 0.

For any x, y ∈ Fq2 with

xq − x = yq − y and axq + bx = ayq + by,

we have

(x − y)q = x − y, a(x − y)q = −b(x − y).

Therefore by Lemma 2.4, fa,b,k(x) := axq + bx + (xq − x)k , a,b ∈ Fq2 with a + b ∈ F
∗
q , permutes Fq2 if

and only if b �= aq .
(b) Since k is odd, we have the following commutative diagram

Fq2

xq−x

fa,b,k(x)
Fq2

xq−x

S
−2xk

S̄

where S = {αq − α, α ∈ Fq2 } and S̄ = {−2sk: s ∈ S}.
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For any x, y ∈ Fq2 , a ∈ Fq2 with a + aq �= 0,

xq − x = yq − y and axq + aqx = ayq + aq y

hold only when x = y. Therefore by Lemma 2.4, fa,k(x) := axq +aqx+ (xq − x)k , a ∈ Fq2 with a+aq �= 0,

permutes Fq2 if and only if −2xk is a bijection from S to S̄ .

Let ε ∈ Fq2 \ Fq such that εq−1 = −1 (since q is odd). Then each α ∈ Fq2 is uniquely written as

u + vε for some u, v ∈ Fq . We compute then easily that αq −α = −2vε . Since k is odd, so (−2vε)k =
(−2dε)k implies v = d if and only if gcd(k,q −1) = 1. Therefore fa,k(x) := axq +aqx+ (xq − x)k , a ∈ F

∗
q2

with a + aq �= 0, permutes Fq2 if and only if gcd(k,q − 1) = 1. This completes the proof. �
Theorem 6.4 above is a generalization of Theorem 5.12 in [1] in the following aspects:

1. In case (a), the constants a and b in Theorem 6.4 belong to Fq2 , while in Theorem 5.12 of [1] the
two elements a and b are in the subfield Fq .

2. In case (b), the constant a in Theorem 6.4 belongs to Fq2 , while in Theorem 5.12 of [1] the
constant a is in the subfield Fq .

3. In Theorem 6.4 above, the case that k is odd and q is even dealt with, while this case is not
considered in Theorem 5.12 of [1].

7. Concluding remarks

Lemma 2.4 does not require the sets A, S and S̄ to have any algebraic structures. As demonstrated
in [1] and this paper, Lemma 2.4 can be employed to construct many types of permutation polynomi-
als over finite fields when the sets A, S and S̄ are finite fields and subsets of finite fields. This clearly
shows the power and potential of Lemma 2.4. Of course, one has to figure out specific techniques of
using Lemma 2.4 in order to construct specific permutation polynomials. All the results presented in
this paper were obtained by using Lemma 2.4 and specific techniques in finite fields.

Acknowledgments

The authors would like to thank the reviewers for their detailed comments that improved the
quality and presentation of this paper.

References

[1] A. Akbary, D. Ghioca, Q. Wang, On constructing permutations of finite fields, Finite Fields Appl. 17 (2011) 51–67.
[2] A. Akbary, Q. Wang, A generalized Lucas sequence and permutation binomials, Proc. Amer. Math. Soc. 134 (2005) 15–22.
[3] A. Akbary, Q. Wang, On polynomials of the form xr f (xq−1/
), Int. J. Math. Math. Sci. (2007), Article ID 23408.
[4] P. Charpin, G. Kyureghyan, When does F (X) + γ Tr(H(X)) permute Fpn ?, Finite Fields Appl. 15 (5) (2009) 615–632.
[5] P. Charpin, G. Kyureghyan, On a class of permutation polynomials over F2n , in: SETA 2008, in: Lecture Notes in Comput.

Sci., vol. 5203, Springer-Verlag, 2008, pp. 368–376.
[6] A. Blokhuis, R.S. Coulter, M. Henderson, C.M. O’Keefe, Permutations amongst the Dembowski–Ostrom polynomials, in:

D. Jungnickel, H. Niederreiter (Eds.), Finite Fields and Applications: Proceedings of the Fifth International Conference on
Finite Fields and Applications, Springer-Verlag, 2001, pp. 37–42.

[7] C. Ding, Linear complexity of generalized cyclotomic binary sequences of order 2, Finite Fields Appl. 3 (1997) 159–174.
[8] C. Ding, T. Helleseth, W. Shan, On the linear complexity of Legendre sequences, IEEE Trans. Inform. Theory 44 (1998)

1276–1278.
[9] C. Ding, Q. Xiang, J. Yuan, P. Yuan, Explicit classes of permutation polynomials over GF(33m), Sci. China Ser. A 53 (2009)

639–647.
[10] C. Ding, J. Yuan, A family of skew Hadamard difference sets, J. Combin. Theory Ser. A 113 (2006) 1526–1535.
[11] G. Kyureghyan, Constructing permutations of finite fields via linear translators, J. Combin. Theory Ser. A 118 (2011) 1052–

1061.
[12] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields Appl. 13 (2007) 58–70.
[13] R. Lidl, H. Niederreiter, Finite Fields, second ed., Encyclopedia Math. Appl., vol. 20, Cambridge University Press, Cambridge,

1997.



574 P. Yuan, C. Ding / Finite Fields and Their Applications 17 (2011) 560–574
[14] R. Lidl, H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1986.
[15] J.E. Marcos, Specific permutation polynomials over finite fields, Finite Fields Appl. 17 (2011) 105–112.
[16] A.M. Masuda, M.E. Zieve, Permutation binomials over finite fields, Trans. Amer. Math. Soc. 361 (2009) 4169–4180.
[17] G.L. Mullen, Permutation polynomials over finite fields, in: Proc. Conf. Finite Fields and Their Applications, in: Lect. Notes

Pure Appl. Math., vol. 141, Marcel Dekker, 1993, pp. 131–151.
[18] Y.H. Park, J.B. Lee, Permutation polynomials and group permutation polynomials, Bull. Aust. Math. Soc. 63 (2001) 67–74.
[19] R.L. Rivest, A. Shamir, L.M. Adelman, A method for obtaining digital signatures and public-key cryptosystems, ACM Com-

mun. Comput. Algebra 21 (1978) 120–126.
[20] J. Schwenk, K. Huber, Public key encryption and digital signatures based on permutation polynomials, Electron. Lett. 34

(1998) 759–760.
[21] Q. Wang, Cyclotomic mapping permutation polynomials over finite fields, in: Sequences, Subsequences, and Consequences,

International Workshop, SSC 2007, Los Angeles, CA, USA, May 31–June 2, 2007, in: Lecture Notes in Comput. Sci., vol. 4893,
2007, pp. 119–128.

[22] X. Zeng, X. Zhu, L. Hu, Two new permutation polynomials with the form (x2k + x + δ)s + x over F2n , Appl. Algebra Engrg.
Comm. Comput. 21 (2010) 145–150.

[23] M.E. Zieve, Some families of permutation polynomials over finite fields, Int. J. Number Theory 4 (2008) 851–857.
[24] M.E. Zieve, On some permutation polynomials over Fq of the form xrh(x(q−1)/d), Proc. Amer. Math. Soc. 137 (2009) 2209–

2216.
[25] M.E. Zieve, Classes of permutation polynomials based on cyclotomy and an additive analogue, in: Additive Number Theory,

Springer-Verlag, 2010, pp. 355–361.


	Permutation polynomials over ﬁnite ﬁelds from a powerful lemma
	1 Introduction
	2 Auxiliary results and the powerful lemma
	3 The ﬁrst theorem about permutation polynomials
	4 Speciﬁc permutation polynomials from the ﬁrst theorem
	5 The second theorem and its applications
	6 Two more theorems on permutation polynomials
	7 Concluding remarks
	Acknowledgments
	References


