Groups, Rings and Fields

Cunsheng Ding

HKUST, Hong Kong

November 17, 2015

Cunsheng Ding (HKUST, Hong Kong)

Groups, Rings and Fields

November 17, 2015 1 / 17

э

イロト イポト イヨト イヨト

Contents

Euclidean Domains

Cunsheng Ding (HKUST, Hong Kong)

-

э

Definition of Groups

Definition 1

A group is a set G together with a binary operation * on G such that the following three properties hold:

- $a * b \in G$ for all $a \in G$ and $b \in G$ (i.e., G is closed under "*").
- 2 * is associative; that is, for any $a, b, c \in G$, a * (b * c) = (a * b) * c.
- There is an *identity* (or *unity*) element e in G such that for all $a \in G$, a * e = e * a = a.
- So For each $a \in G$, there exists an inverse element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$.

Remarks

- If a * b = b * a for all $a, b \in G$, then G is called <u>abelian</u> (or <u>commutative</u>).
- For simplicity, we frequently use the notation of ordinary multiplication to designate the operation in the group, writing simply *ab* instead of *a* * *b*. But by doing so we do not assume that the operation actually is the ordinary multiplication.

Cunsheng Ding (HKUST, Hong Kong)

Order of Elements and Groups

Definition 2

Let (G, *) be a group with identity e. Due to the associativity of *, we define

$$a^n = \underbrace{a * a * \cdots * a}_{n \text{ copies of } a}$$

for any $n \in \mathbb{N}$. The least positive integer *n* such that $a^n = e$, if it exits, is called the <u>order</u> of $a \in G$, and denoted by $\operatorname{ord}(a)$. If every element *a* of *G* can be expressed as q^k for some integer k > 0, then

 $g \in G$ is called a generator of G. In this case, (G, *) is called a cyclic group.

Definition 3

A group is called a finite group if it has finitely many elements. The number of elements in a finite group *G* is called its <u>order</u>, denoted by |G|.

イロト 不得 トイヨト イヨト 一日

Subgroups of a Group

Definition 4

A subset *H* of a group *G* is called a <u>subgroup</u> of *G* if *H* is itself a group with respect to the operation of *G*. Subgroups of *G* other than the trivial subgroups $\{e\}$ and *G* itself are called nontrivial subgroups of *G*.

Example 5

Let (G,*) be any group. Define $\langle a \rangle = \{a^i \mid i = 0, 1, 2, \dots, \}$. Then it is easy to verify that $\langle a \rangle$ is a subgroup of *G* and $|\langle a \rangle| = \operatorname{ord}(a)$.

イロト 不得 トイヨト イヨト 二臣

Examples of Groups and Subgroups

Example 6

Let n > 1 be an integer. Then (\mathbb{Z}_n, \oplus_n) is an abelian group with *n* elements.

- The identity element of this group is 0.
- The inverse of any $a \in \mathbb{Z}_n$ is n a.
- $\operatorname{ord}(1) = n$.
- (\mathbb{Z}_n, \oplus_n) is cyclic and 1 is a generator.
- If $n = n_1 n_2$, then $\langle n_1 \rangle = \{0, n_1, 2n_1, \cdots, (n_2 1)n_1\}$ is a subgroup of (\mathbb{Z}_n, \oplus_n) .

Examples of Groups

Example 7

Let *p* be a prime. Then $(\mathbb{Z}_p^*, \otimes_p)$ is an abelian group with p-1 elements, where $\mathbb{Z}_p^* = \{1, 2, 3, \dots, p-1\}.$

- The identity element of this group is 1.
- The inverse of any $a \in \mathbb{Z}_p^*$ is the multiplicative inverse of *a* modulo *p*.
- The group is cyclic, and has φ(p−1) generators. Each generator is called a primitive root of p or modulo p, where φ(n) is the Euler totient function.

Recall of definition

For any $n \in \mathbb{N}$, the **Euler totient function** $\phi(n)$ is the total number of integers *i* such that $1 \le i \le n-1$ and gcd(i, n) = 1.

イロト イポト イヨト イヨト

Lagrange's Theorem

Theorem 8 (Lagrange)

The order of every subgroup H of a finite group G divides the order of G.

Proof.

Define a binary relation R_H on G by $(a,b) \in R_H$ if and only if a = bh for some $h \in H$. Since H is a subgroup, it is easily verified that R_H is an equivalence relation. Hence, the equivalence classes, $\{aH \mid a \in G\}$, called <u>left cosets</u> of H, form a partition of G.

Now we define a map $f : aH \to bH$ by $f(x) = ba^{-1}x$. Then f is bijective as its inverse is given by $f^{-1}(y) = ab^{-1}y$. Hence, all the left cosets have the same number of elements, i.e., |H|.

If we use [G : H] to denote the number of distinct left cosets, we have then |G| = [G : H]|H|.

The desired conclusion then follows.

Order of Elements and Groups

Corollary 9

Let G be a finite group. Then ord(a) divides |G| for every $a \in G$.

Proof.

By Example 5, $\operatorname{ord}(a) = |\langle a \rangle|$, which is the order of the subgroup $\langle a \rangle$. The desired conclusion then follows from Theorem 8.

Rings

Definition 10

A ring $(R, +, \cdot)$ is a set *R*, together with two binary operations, denoted by + and \cdot , such that:

- (R,+) is an abelian group.
- 2 · is associative, i.e., $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
- Ite distributive laws hold; that is, for all $a, b, c \in R$ we have

 $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.

Remarks on the Definition of Rings

- We use 0 (called the <u>zero element</u>) to denote the identity of the group (R, +).
- -a denotes the inverse of a with respect to +.
- By a-b we mean a+(-b).
- Instead of a · b, we write ab.
- a0 = 0a = 0.

Note a(0+0) = a0 + a0 by the distribution law. But 0+0 = 0. Hence a0 = a0 + a0 and a0 = 0.

We shall use *R* as a designation for the ring (*R*,+, ·), and stress that the operations + and · are not necessarily the ordinary operations with numbers.

Integral Domains, Division Rings and Fields

Definition 11

- A ring is called a <u>ring with identity</u> if the ring has a multiplicative identity, i.e., if there is an element *e* such that ae = ea = a for all $a \in R$.
- A ring is <u>commutative</u> if · is commutative.
- A ring is called an integral domain if it is a commutative ring with identity $e \neq 0$ in which ab = 0 implies a = 0 or b = 0.
- A ring is called a division ring (or <u>skew field</u>) if the nonzero elements of R form a group under "."
- A commutative division ring is called a <u>field</u>.

Examples of Rings, Integral Domains and Fields

Example 12

 $(\mathbb{Z},+,\times)$ is commutative ring with identify 1 and an integral domain, but not a division ring, not a field.

Example 13

Let n > 1 be an integer. Then $(\mathbb{Z}_n, \oplus_n, \otimes_n)$ is a commutative ring with identity 1. In particular, $(\mathbb{Z}_n, \oplus_n, \otimes_n)$ is a field if and only if *n* is a prime.

Notation

Let *p* be any prime. We use GF(p) or \mathbb{F}_p to denote the field $(\mathbb{Z}_p, \oplus_p, \otimes_p)$, which is called a prime field.

 $GF(\rho)$ is called a <u>finite field</u>, as it has finitely many elements.

イロト 不得 トイヨト イヨト 二臣

Examples of Rings, Integral Domains and Fields

Example 14

Let \mathbb{Q} denote the set of all rational numbers. Then $(\mathbb{Q}, +, \times)$ is a field.

Example 15

Let \mathbb{R} denote the set of all real numbers. Then $(\mathbb{R}, +, \times)$ is a field.

Example 16

Let \mathbb{C} denote the set of all complex numbers. Then $(\mathbb{C}, +, \times)$ is a field.

不得下 イヨト イヨト

Euclidean Domains

Definition 17

A <u>Euclidean domain</u> is an integral domain $(R, +, \cdot)$ associated with a function g from R to the set of nonnegative integers such that

C1: $g(a) \leq g(ab)$ if $b \neq 0$; and

C2: for all $a, b \neq 0$, there exist q and r ("quotient" and "remainder") such that a = qb + r, with r = 0 or g(r) < g(b).

Examples of Euclidean Domains

Proposition 18

 $(\mathbb{Z},+,\cdot,g)$ is a Euclidean domain, where g(a)=|a| and \mathbb{Z} is the set of all integers.

Proof.

It is easily verified that $(\mathbb{Z}, +, \cdot, g)$ is an integral domain. For any integers *a* and $b \neq 0$, we have

$$|\mathbf{a}| \leq |\mathbf{a}\mathbf{b}| = |\mathbf{a}||\mathbf{b}|.$$

This means that Condition C1 is met.

For any *a* and b > 0, let $q = \lfloor a/b \rfloor$ and r = a - qb. Then $0 \le r < b$. Hence, r = 0 or g(r) < g(b).

For any *a* and *b* < 0, let $q = \lfloor -a/b \rfloor$ and r = -a - qb. Then $0 \le r < -b$. Hence, r = 0 or g(r) < g(b) = g(-b).

Summarizing the conclusions in the two cases above proves that C2 is also satisfied. The desired conclusion then follows.

Examples of Euclidean Domains

Example 19

Let $R = \{a + b\sqrt{-1} \mid a, b \text{ integers }\}$. Define $g(a + b\sqrt{-1}) = a^2 + b^2$. Then $(R, +, \cdot, g)$ is an Euclidean domain.

Proof.

Left as an exercise. A proof is also available on the course web page.