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Definition of Groups

Definition 1

A group is a set G together with a binary operation ∗ on G such that the

following three properties hold:

1 a∗b ∈ G for all a ∈ G and b ∈ G (i.e., G is closed under “∗”).

2 ∗ is associative; that is, for any a,b,c ∈ G, a∗ (b ∗ c) = (a∗b)∗ c.

3 There is an identity (or unity) element e in G such that for all a ∈ G,

a∗e = e ∗a = a.

4 For each a ∈ G, there exists an inverse element a−1 ∈ G such that

a∗a−1 = a−1 ∗a = e.

Remarks

If a∗b = b ∗a for all a,b ∈ G, then G is called abelian (or commutative).

For simplicity, we frequently use the notation of ordinary multiplication to

designate the operation in the group, writing simply ab instead of a∗b.

But by doing so we do not assume that the operation actually is the

ordinary multiplication.
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Order of Elements and Groups

Definition 2

Let (G,∗) be a group with identity e. Due to the associativity of ∗, we define

an = a∗a∗ · · · ∗a
︸ ︷︷ ︸

n copies of a

for any n ∈ N. The least positive integer n such that an = e, if it exits, is called

the order of a ∈ G, and denoted by ord(a).
If every element a of G can be expressed as gk for some integer k ≥ 0, then

g ∈ G is called a generator of G. In this case, (G,∗) is called a cyclic group.

Definition 3

A group is called a finite group if it has finitely many elements. The number of

elements in a finite group G is called its order, denoted by |G|.
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Subgroups of a Group

Definition 4

A subset H of a group G is called a subgroup of G if H is itself a group with

respect to the operation of G.

Subgroups of G other than the trivial subgroups {e} and G itself are called

nontrivial subgroups of G.

Example 5

Let (G,∗) be any group. Define 〈a〉= {ai | i = 0,1,2, · · · ,}. Then it is easy to

verify that 〈a〉 is a subgroup of G and |〈a〉| = ord(a).

Cunsheng Ding (HKUST, Hong Kong) Groups, Rings and Fields November 17, 2015 5 / 17



Examples of Groups and Subgroups

Example 6

Let n > 1 be an integer. Then (Zn,⊕n) is an abelian group with n elements.

The identity element of this group is 0.

The inverse of any a ∈ Zn is n−a.

ord(1) = n.

(Zn,⊕n) is cyclic and 1 is a generator.

If n = n1n2, then 〈n1〉= {0,n1,2n1, · · · ,(n2 −1)n1} is a subgroup of

(Zn,⊕n).
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Examples of Groups

Example 7

Let p be a prime. Then (Z∗
p,⊗p) is an abelian group with p−1 elements,

where Z∗
p = {1,2,3, . . . ,p−1}.

The identity element of this group is 1.

The inverse of any a ∈ Z∗
p is the multiplicative inverse of a modulo p.

The group is cyclic, and has φ(p−1) generators. Each generator is called

a primitive root of p or modulo p, where φ(n) is the Euler totient function.

Recall of definition

For any n ∈ N, the Euler totient function φ(n) is the total number of integers i

such that 1 ≤ i ≤ n−1 and gcd(i,n) = 1.
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Lagrange’s Theorem

Theorem 8 (Lagrange)

The order of every subgroup H of a finite group G divides the order of G.

Proof.

Define a binary relation RH on G by (a,b) ∈ RH if and only if a = bh for some

h ∈ H. Since H is a subgroup, it is easily verified that RH is an equivalence

relation. Hence, the equivalence classes, {aH | a ∈ G}, called left cosets of H,

form a partition of G.

Now we define a map f : aH → bH by f (x) = ba−1x . Then f is bijective as its

inverse is given by f−1(y) = ab−1y . Hence, all the left cosets have the same

number of elements, i.e., |H|.
If we use [G : H] to denote the number of distinct left cosets, we have then

|G|= [G : H]|H|.
The desired conclusion then follows.
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Order of Elements and Groups

Corollary 9

Let G be a finite group. Then ord(a) divides |G| for every a ∈ G.

Proof.

By Example 5, ord(a) = |〈a〉|, which is the order of the subgroup 〈a〉. The

desired conclusion then follows from Theorem 8.
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Rings

Definition 10

A ring (R,+, ·) is a set R, together with two binary operations, denoted by +
and · , such that:

1 (R,+) is an abelian group.

2 · is associative, i.e., (a ·b) · c = a · (b · c) for all a,b,c ∈ R.

3 The distributive laws hold; that is, for all a,b,c ∈ R we have

a · (b+ c) = a ·b+a · c and (b+ c) ·a = b ·a+ c ·a.
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Remarks on the Definition of Rings

We use 0 (called the zero element) to denote the identity of the group

(R,+).

−a denotes the inverse of a with respect to +.

By a−b we mean a+(−b).

Instead of a ·b, we write ab.

a0 = 0a = 0.
◮ Note a(0+ 0) = a0+ a0 by the distribution law. But 0+ 0 = 0. Hence

a0 = a0+ a0 and a0 = 0.

We shall use R as a designation for the ring (R,+, ·), and stress that the

operations + and · are not necessarily the ordinary operations with

numbers.
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Integral Domains, Division Rings and Fields

Definition 11

1 A ring is called a ring with identity if the ring has a multiplicative identity,

i.e., if there is an element e such that ae = ea = a for all a ∈ R.

2 A ring is commutative if · is commutative.

3 A ring is called an integral domain if it is a commutative ring with identity

e 6= 0 in which ab = 0 implies a = 0 or b = 0.

4 A ring is called a division ring (or skew field) if the nonzero elements of R

form a group under “·”.
5 A commutative division ring is called a field.
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Examples of Rings, Integral Domains and Fields

Example 12

(Z,+,×) is commutative ring with identify 1 and an integral domain, but not a

division ring, not a field.

Example 13

Let n > 1 be an integer. Then (Zn,⊕n,⊗n) is a commutative ring with identity

1. In particular, (Zn,⊕n,⊗n) is a field if and only if n is a prime.

Notation

Let p be any prime. We use GF(p) or Fp to denote the field (Zp,⊕p,⊗p),
which is called a prime field.

GF(p) is called a finite field, as it has finitely many elements.
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Examples of Rings, Integral Domains and Fields

Example 14

Let Q denote the set of all rational numbers. Then (Q,+,×) is a field.

Example 15

Let R denote the set of all real numbers. Then (R,+,×) is a field.

Example 16

Let C denote the set of all complex numbers. Then (C,+,×) is a field.
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Euclidean Domains

Definition 17

A Euclidean domain is an integral domain (R,+, ·) associated with a function g

from R to the set of nonnegative integers such that

C1: g(a) ≤ g(ab) if b 6= 0; and

C2: for all a,b 6= 0, there exist q and r (“quotient” and “remainder”)

such that a = qb+ r , with r = 0 or g(r) < g(b).
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Examples of Euclidean Domains

Proposition 18

(Z,+, ·,g) is a Euclidean domain, where g(a) = |a| and Z is the set of all

integers.

Proof.

It is easily verified that (Z,+, ·,g) is an integral domain. For any integers a and

b 6= 0, we have

|a| ≤ |ab| = |a||b|.
This means that Condition C1 is met.

For any a and b > 0, let q = ⌊a/b⌋ and r = a−qb. Then 0 ≤ r < b. Hence,

r = 0 or g(r) < g(b).
For any a and b < 0, let q = ⌊−a/b⌋ and r =−a−qb. Then 0 ≤ r <−b.

Hence, r = 0 or g(r) < g(b) = g(−b).
Summarizing the conclusions in the two cases above proves that C2 is also

satisfied. The desired conclusion then follows.
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Examples of Euclidean Domains

Example 19

Let R =
{

a+b
√
−1 | a,b integers

}
. Define g(a+b

√
−1) = a2 +b2. Then

(R,+, ·,g) is an Euclidean domain.

Proof.

Left as an exercise. A proof is also available on the course web page.
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