Groups, Rings and Fields

Cunsheng Ding

HKUST, Hong Kong

November 17, 2015

Contents

(9) Groups

(2) Rings

(3) Integral Domains, Division Rings and Fields

(4) Euclidean Domains

Definition of Groups

Definition 1

A group is a set G together with a binary operation $*$ on G such that the following three properties hold:
(1) $a * b \in G$ for all $a \in G$ and $b \in G$ (i.e., G is closed under "*").
(2) $*$ is associative; that is, for any $a, b, c \in G, a *(b * c)=(a * b) * c$.
(3) There is an identity (or unity) element e in G such that for all $a \in G$, $a * e=e * a=a$.
(a) For each $a \in G$, there exists an inverse element $a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$.

Remarks

- If $a * b=b * a$ for all $a, b \in G$, then G is called abelian (or commutative).
- For simplicity, we frequently use the notation of ordinary multiplication to designate the operation in the group, writing simply ab instead of $a * b$. But by doing so we do not assume that the operation actually is the ordinary multiplication.

Order of Elements and Groups

Definition 2

Let $(G, *)$ be a group with identity e. Due to the associativity of $*$, we define

$$
a^{n}=\underbrace{a * a * \cdots * a}_{n \text { copies of } a}
$$

for any $n \in \mathbb{N}$. The least positive integer n such that $a^{n}=e$, if it exits, is called the order of $a \in G$, and denoted by ord(a). If every element a of G can be expressed as g^{k} for some integer $k \geq 0$, then $g \in G$ is called a generator of G. In this case, $(G, *)$ is called a cyclic group.

Definition 3

A group is called a finite group if it has finitely many elements. The number of elements in a finite group G is called its order, denoted by $|G|$.

Subgroups of a Group

Definition 4

A subset H of a group G is called a subgroup of G if H is itself a group with respect to the operation of G.
Subgroups of G other than the trivial subgroups $\{e\}$ and G itself are called nontrivial subgroups of G.

Example 5

Let $(G, *)$ be any group. Define $\langle a\rangle=\left\{a^{i} \mid i=0,1,2, \cdots,\right\}$. Then it is easy to verify that $\langle a\rangle$ is a subgroup of G and $|\langle a\rangle|=\operatorname{ord}(a)$.

Examples of Groups and Subgroups

Example 6

Let $n>1$ be an integer. Then $\left(\mathbb{Z}_{n}, \oplus_{n}\right)$ is an abelian group with n elements.

- The identity element of this group is 0 .
- The inverse of any $a \in \mathbb{Z}_{n}$ is $n-a$.
- $\operatorname{ord}(1)=n$.
- $\left(\mathbb{Z}_{n}, \oplus_{n}\right)$ is cyclic and 1 is a generator.
- If $n=n_{1} n_{2}$, then $\left\langle n_{1}\right\rangle=\left\{0, n_{1}, 2 n_{1}, \cdots,\left(n_{2}-1\right) n_{1}\right\}$ is a subgroup of $\left(\mathbb{Z}_{n}, \oplus_{n}\right)$.

Examples of Groups

Example 7

Let p be a prime. Then $\left(\mathbb{Z}_{p}^{*}, \otimes_{p}\right)$ is an abelian group with $p-1$ elements, where $\mathbb{Z}_{p}^{*}=\{1,2,3, \ldots, p-1\}$.

- The identity element of this group is 1 .
- The inverse of any $a \in \mathbb{Z}_{p}^{*}$ is the multiplicative inverse of a modulo p.
- The group is cyclic, and has $\phi(p-1)$ generators. Each generator is called a primitive root of p or modulo p, where $\phi(n)$ is the Euler totient function.

Recall of definition

For any $n \in \mathbb{N}$, the Euler totient function $\phi(n)$ is the total number of integers i such that $1 \leq i \leq n-1$ and $\operatorname{gcd}(i, n)=1$.

Lagrange's Theorem

Theorem 8 (Lagrange)

The order of every subgroup H of a finite group G divides the order of G.

Proof.

Define a binary relation R_{H} on G by $(a, b) \in R_{H}$ if and only if $a=b h$ for some $h \in H$. Since H is a subgroup, it is easily verified that R_{H} is an equivalence relation. Hence, the equivalence classes, $\{a H \mid a \in G\}$, called left cosets of H, form a partition of G.
Now we define a map $f: a H \rightarrow b H$ by $f(x)=b a^{-1} x$. Then f is bijective as its inverse is given by $f^{-1}(y)=a b^{-1} y$. Hence, all the left cosets have the same number of elements, i.e., $|H|$. If we use $[G: H]$ to denote the number of distinct left cosets, we have then $|G|=[G: H]|H|$.
The desired conclusion then follows.

Order of Elements and Groups

Corollary 9

Let G be a finite group. Then ord (a) divides $|G|$ for every $a \in G$.

Proof.

By Example 5, ord $(a)=|\langle a\rangle|$, which is the order of the subgroup $\langle a\rangle$. The desired conclusion then follows from Theorem 8.

Rings

Definition 10

A ring $(R,+, \cdot)$ is a set R, together with two binary operations, denoted by + and \cdot, such that:
(1) $(R,+)$ is an abelian group.
(2) - is associative, i.e., $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in R$.
(3) The distributive laws hold; that is, for all $a, b, c \in R$ we have

$$
a \cdot(b+c)=a \cdot b+a \cdot c \text { and }(b+c) \cdot a=b \cdot a+c \cdot a .
$$

Remarks on the Definition of Rings

- We use 0 (called the zero element) to denote the identity of the group $(R,+)$.
- $-a$ denotes the inverse of a with respect to + .
- By $a-b$ we mean $a+(-b)$.
- Instead of $a \cdot b$, we write $a b$.
- $a 0=0 a=0$.

$$
\text { Note } a(0+0)=a 0+a 0 \text { by the distribution law. But } 0+0=0 . \text { Hence }
$$

$$
a 0=a 0+a 0 \text { and } a 0=0
$$

- We shall use R as a designation for the ring $(R,+, \cdot)$, and stress that the operations + and \cdot are not necessarily the ordinary operations with numbers.

Integral Domains, Division Rings and Fields

Definition 11

(1) A ring is called a ring with identity if the ring has a multiplicative identity, i.e., if there is an element e such that $a e=e a=a$ for all $a \in R$.
(2) A ring is commutative if \cdot is commutative.
(3) A ring is called an integral domain if it is a commutative ring with identity $e \neq 0$ in which $a b=0$ implies $a=0$ or $b=0$.
(다 A ring is called a division ring (or skew field) if the nonzero elements of R form a group under ".".
(5) A commutative division ring is called a field.

Examples of Rings, Integral Domains and Fields

Example 12

$(\mathbb{Z},+, \times)$ is commutative ring with identify 1 and an integral domain, but not a division ring, not a field.

Example 13

Let $n>1$ be an integer. Then $\left(\mathbb{Z}_{n}, \oplus_{n}, \otimes_{n}\right)$ is a commutative ring with identity 1. In particular, $\left(\mathbb{Z}_{n}, \oplus_{n}, \otimes_{n}\right)$ is a field if and only if n is a prime.

Notation

Let p be any prime. We use $\operatorname{GF}(p)$ or \mathbb{F}_{p} to denote the field $\left(\mathbb{Z}_{p}, \oplus_{p}, \otimes_{p}\right)$, which is called a prime field.
$\mathrm{GF}(p)$ is called a finite field, as it has finitely many elements.

Examples of Rings, Integral Domains and Fields

Example 14
Let \mathbb{Q} denote the set of all rational numbers. Then $(\mathbb{Q},+, \times)$ is a field.

Example 15

Let \mathbb{R} denote the set of all real numbers. Then $(\mathbb{R},+, \times)$ is a field.

Example 16

Let \mathbb{C} denote the set of all complex numbers. Then $(\mathbb{C},+, \times)$ is a field.

Euclidean Domains

Definition 17

A Euclidean domain is an integral domain $(R,+, \cdot)$ associated with a function g from R to the set of nonnegative integers such that

C1: $g(a) \leq g(a b)$ if $b \neq 0$; and
C2: for all $a, b \neq 0$, there exist q and r ("quotient" and "remainder") such that $a=q b+r$, with $r=0$ or $g(r)<g(b)$.

Examples of Euclidean Domains

Proposition 18

$(\mathbb{Z},+, \cdot, g)$ is a Euclidean domain, where $g(a)=|a|$ and \mathbb{Z} is the set of all integers.

Proof.

It is easily verified that $(\mathbb{Z},+, \cdot, g)$ is an integral domain. For any integers a and $b \neq 0$, we have

$$
|a| \leq|a b|=|a||b| .
$$

This means that Condition C 1 is met.
For any a and $b>0$, let $q=\lfloor a / b\rfloor$ and $r=a-q b$. Then $0 \leq r<b$. Hence, $r=0$ or $g(r)<g(b)$.
For any a and $b<0$, let $q=\lfloor-a / b\rfloor$ and $r=-a-q b$. Then $0 \leq r<-b$. Hence, $r=0$ or $g(r)<g(b)=g(-b)$.
Summarizing the conclusions in the two cases above proves that C 2 is also satisfied. The desired conclusion then follows.

Examples of Euclidean Domains

Example 19

Let $R=\{a+b \sqrt{-1} \mid a, b$ integers $\}$. Define $g(a+b \sqrt{-1})=a^{2}+b^{2}$. Then $(R,+, \cdot, g)$ is an Euclidean domain.

Proof.

Left as an exercise. A proof is also available on the course web page.

