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properties. We achieve these results in large partbecause of a new structure, called the dumbbell treewhich provides a method of decomposing a spannerinto a constant number of trees, so that each of theO(n2) spanner paths is mapped entirely to a pathin one of these trees.1 IntroductionLet G = (V;E) be a weighted graph, and letdG(u; v) be the length of a shortest path betweenvertices u and v in G. Let t > 1 be any constant. Asubgraph G0 is a t-spanner for G if, for all pairs ofvertices u and v, dG0(u; v)=dG(u; v) � t. When Vis a set of n points in IRk , G is the complete graph,and the length of edge (u; v) is the Euclidean dis-tance between these points, we call G a completeEuclidean graph and G0 a Euclidean t-spanner. Forthe purposes of deriving asymptotic bounds, we as-sume that the dimension k and the spanner factor tare constants independent of n. It is known how toconstruct a Euclidean t-spanner having O(n) edgesin O(n logn) time [5, 13, 14].Spanners are important geometrical structures,since they provide a mechanism for approximatingthe complete Euclidean graph in a much more eco-nomical form. Of course, a spanner should have asmall number of edges (ideally O(n)), but for manyapplications, it is quite important that the spannerbe endowed with other properties. These includethe following:Low weight: The total sum of the edge lengthsin the spanner should be as small as possible.The best that can be hoped for is some con-stant times the weight of the minimum span-ning tree, O(w(MST)).



Bounded degree: The number of edges incidentto any vertex should be bounded.Small spanner diameter: The spanner diame-ter (or simply diameter) is de�ned as thesmallest integer D such that for any pair ofvertices, u and v, there is a t-spanner pathbetween u and v containing at most D edges.For spanners of bounded degree the best thatcan be hoped for is logarithmic diameter. Insome applications even smaller diameters maybe desirable, but this comes at the expense ofincreasing degree.A natural analogy can be made between span-ners and a transportation network of roads con-necting a large number of locations. Low weightmeans that the amount of concrete needed to buildthe roads is small, bounded degree means that nolocation in the network has more than a boundednumber of roads incident to it, and small diame-ter means that it is possible to describe any span-ner path concisely. Existing work on spanners hasfocused on achieving one property or the other.However, a transportation network which achievessmall diameter by massively increasing total weightis of little practical value. This suggests the impor-tant question of whether there exist spanners thatsimultaneously achieve some or all of these proper-ties.In this paper we present a strong positive answerto this question. We present a number of new con-structions for spanners. In almost all cases theseconstructions are provably optimal from the per-spectives of computation time, space, and perfor-mance on the properties listed above. The prob-lem is complicated by the fact that there are ob-vious tradeo�s between these properties. (For ex-ample, reducing diameter requires the creation oflong edges, which in turn increases total weight, ormay increase the number of edges needed in thespanner.) For this reason, we consider all possiblecombinations of these properties.The results of this paper arise from a numberof improved techniques in spanner constructions,but one deserves particular mention. An importantdata structure used in the construction of span-ners is the well-separated pair decomposition, in-troduced by Callahan and Kosaraju [4]. This struc-ture represents the O(n2) pairs of points using only

O(n) pairs of geometrically \well-separated" pairsof subsets of points (de�nitions will be given later).In this paper, we present a novel method of furtherdecomposing a well-separated pair decompositioninto a constant number of hierarchically organizedsets of well-separated pairs. (The constant dependson the dimension and the separation factor.) Usingthis decomposition, we show that a class of span-ners can be viewed as being the union of a con-stant number of trees, which we call dumbbell trees.Moreover, each of the O(n2) spanner paths arises asthe unique path between two leaves in one of thesetrees. The fact that the O(n2) spanner paths canbe partitioned among a constant number of treesis a rather remarkable fact in itself, and suggests agreat deal about special structure of these graphs.Because of the importance of well-separated pairdecompositions to a variety of geometric problems,we suspect that this decomposition may be of use toother geometric problems. The idea of dumbbellshas appeared before [7], but their use in decompos-ing spanner paths is new to this paper.Here is a summary of the results in this paper.All of the spanner constructions described belowrun in optimal O(n logn) time and O(n) space forany �xed dimension k.Degree: We present an optimal O(n logn) timeconstruction for spanners of bounded degree.This improves the best known algorithm,due to Arya and Smid [3], which runs inO(n logk n) time.Weight: We present an optimal O(n logn) timespanner construction that has optimal weightO(w(MST)). This improves the best knownconstruction for spanners of low weight, whichwas due to Das and Narasimhan [8], and whichruns in O(n log2 n) time.Diameter: Arya, Mount and Smid [2] give ran-domized and deterministic constructions ofspanners with O(n) edges and O(logn) span-ner diameter. We show that it is possible toachieve diameter �(n)+2 with the same num-ber of edges, where �(n) is the inverse of Ack-ermann's function. Furthermore, we presenta spectrum of tradeo�s between size and di-ameter. For example, we construct spannersof diameter 2 with O(n logn) edges, diameter



3 with O(n log logn) edges, diameter 4 withO(n log� n) edges, and so on. All these span-ners have an optimal number of edges for thegiven diameter.Degree and weight: The low-weight construc-tion mentioned already has bounded degree,and hence provides an optimal solution to thisproblem as well. There are no previous resultson this problem.Weight and diameter: By using a new analy-sis tool, we show that the deterministic low-diameter construction of Arya, Mount andSmid [2] has weight O(w(MST) logn) as wellas diameter O(logn). This combination is op-timal. No simultaneous bounds were previ-ously known.Degree and diameter: We show how to con-struct a spanner with bounded degree andO(logn) diameter. This is optimal with re-spect to both diameter bound and construc-tion time. No simultaneous bounds wereknown for this problem.Degree, weight and diameter: We show howto construct a spanner with bounded de-gree, weight O(w(MST) log2 n), and diameterO(logn). No simultaneous bounds were previ-ously known.In summary, all of our results are optimal in termsof providing the best tradeo�s between these prop-erties, except for the spanner having simultane-ously bounded degree, low weight, and low diam-eter, which is possibly suboptimal by at most anO(logn) factor in weight.The rest of this paper is organized as follows. InSection 2, we brie
y recall the well-separated pairdecomposition. In Section 3, we de�ne the dumb-bell tree, and show that there exists a spanner thatcan be decomposed into a constant number of suchtrees. In Section 4, we give a simple optimal algo-rithm for constructing a t-spanner of bounded de-gree. In Section 5, we show that the spanner thatresults from the well-separated pair decompositioncan be pruned in such a way that we get a spannerof weight O(w(MST)). Section 6 considers span-ners of low diameter. Our results of Section 3 implythat it su�ces to add edges to a constant number

of bounded degree trees in order to get a spannerof low diameter. This is done by using a techniquedue to Alon and Schieber[1]. In Section 7, we showhow to combine the dumbbell tree with topologytrees [10] in order to get a spanner of bounded de-gree and O(logn) diameter. In Section 8, we showthat spanners that result from the well-separatedpair decomposition have weight O(w(MST) logn).Combining this fact with a result of [2] gives at-spanner of weight O(w(MST) logn) and diame-ter O(logn). Finally, in Section 9, we consider allproperties degree, weight and diameter simultane-ously.2 Split trees and well-separatedpairsVirtually all of our spanner constructions will relyon the notion of a split tree and a well-separatedpair decomposition of a set of points [4, 13, 14]. Inthis section, we review these data structures.A split tree is a tree that stems from a hierarchi-cal decomposition of a point set into regions thatare k-dimensional rectangles of bounded aspect ra-tio. There are a number of variants on a split tree.We outline the fair split tree, due to Callahan andKosaraju [4]. Place a smallest-possible k-rectangleR0 about the point set V . The root of the splittree is R0. Choose the longest side of R0 and di-vide it into two at its bisector. Rectangle R0 istherefore split into two smaller rectangles, R1 andR2. Then the left subtree of R0 is the split tree forR1 \ V , and the right subtree is the split tree forR2\V . The process is repeated until a single pointremains.In order to simplify some of our arguments, it isconvenient to think of a fair split tree in an idealform, which we call the idealized box split tree. Inthis tree, rectangles are k-dimensional hypercubes,each split recursively into 2k identical hypercubesof half the side length. Actual constructions will becarried out using the fair split tree, but the ideal-ized box split tree provides a clean way of concep-tualizing the fair split tree for purposes of analysis.Next we consider well-separated pair decompo-sitions. Let s > 0 be a constant. Two point sets Aand B are well separated if they can be enclosed ink-spheres of radius r, whose distance of closest ap-



proach is at least sr. A well-separated pair decom-position is a set of pairs of nonempty subsets of S,ffA1; B1g; fA2; B2g; : : : ; fAm; Bmgg, such that (1)the sets Ai and Bi are disjoint, (2) for each paira; b 2 S, there is a unique pair fAi; Big such thata 2 Ai and b 2 Bi, and (3) Ai and Bi are well-separated. Callahan and Kosaraju use a split treeto compute a set of O(skn) well-separated pairs inO(n logn+ skn) time.Given these well-separated pairs, Callahan andKosaraju show that a spanner can be constructedeasily. For each pair fAi; Big in the well-separatedpair decomposition, choose arbitrary points, calledrepresentatives, ai 2 Ai and bi 2 Bi, and connectai and bi with an edge in the spanner. Similarconstructions were previously given by Vaidya[14]and Salowe[13].3 The dumbbell treeOne of the major di�culties in establishing the re-sults of this paper is the lack of structure in well-separated pair decompositions and the spannersthat are derived from them. Unlike the split tree,well-separated pair decompositions do not possessany obvious hierarchical structure. One of the ma-jor innovations of this paper is the observation thatwell-separated pair decompositions, and hence thespanners derived from them, can be decomposedinto a constant number of hierarchically organizedstructures. This greatly simpli�es the analysis andconstruction of spanners, by reducing problems ongeneral graphs to much simpler problems on trees.This decomposition may have applications to anumber of other problems where sparse geometricgraphs are used.Space does not permit a complete presentationof the decomposition, but the intuition is rela-tively straightforward. First observe that eachwell-separated pair fAi; Big can be viewed as a ge-ometrical object, consisting of two rectangles con-taining Ai and Bi, respectively, joined by a linesegment. The resulting shape, is called a dumb-bell and the rectangles (or in fact, small perturba-tions of these rectangles) are called the heads of thedumbbell. The length of a dumbbell is de�ned asthe distance between the centers of its heads. Thesize of a head is de�ned to be half its diameter.

Das, He�ernan and Narasimhan [7] introducedthe concept of the dumbbell. We claim that it ispossible to partition the set of dumbbells arisingfrom the well-separated pair decomposition into aconstant number of groups, such that within eachgroup, dumbbell heads are either disjoint, or onedumbbell is nested entirely within the head of theother dumbbell. In particular, we can show thefollowing (proofs will appear in the full paper):Theorem 1 Consider the dumbbells resultingfrom a well-separated pair decomposition of a setof n points in dimension k with separation factors. In O(n) time it is possible to partition thesedumbbells into O(s)k classes, such that within eachclass:(1) two dumbbells either have lengths that arewithin a factor of 2 of one another, or elsethey di�er by a factor of at least s,(2) any two dumbbells within the same lengthinterval [x; 2x], are separated by a distancegreater than 2x=s, and(3) we may deform the heads of each dumbbell(forming pseudo-dumbbells) such that a dumb-bell of length x has a head of size at most 4x=s,and such that the heads of any two pseudo-dumbbells are either disjoint or else one isnested within a head of the other.The nesting of dumbbells provides us with a treestructure, which we call a dumbbell tree. The im-portant fact about the dumbbell tree decomposi-tion is that spanners can be derived from the well-separated pair decomposition which inherit thisstructure. Thus, they can be viewed as consistingof the union of a constant number of trees. Further-more, we show that each spanner path is mappedentirely to one tree. Our main result is summarizedin the following theorem:Theorem 2 Given a set V of n points in dimen-sion k, and given t > 1, a forest consisting of O(1)rooted binary trees can be built in O(n logn) timeand O(n) space, having the following properties:(1) For each tree in the forest, there is a 1{1 cor-respondence between the leaves of this tree andthe points of V .



(2) Each internal node has a unique representativepoint, which can be selected arbitrarily fromthe points in any of its descendent leaves.(3) Given any two points u; v 2 V , there is atree T of the forest, so that the path formedby walking from representative to representa-tive along the unique path in T between thesenodes, is a t-spanner path for u and v.The constant factors for the number of trees, pre-processing time and space are O(sk log s), where sis O(k=(t� 1)). With the addition of an augment-ing data structure of size O(n), we can compute a t-spanner path between any two points in O(p+logn)time, where p is the number of edges on the path.4 Spanners of bounded degreeIn this section, we prove the following general re-sult, which will be used to construct in O(n logn)time a t-spanner of bounded degree.Theorem 3 Let V be a set of n points in IRkand let t0 > t > 1. Let G be a t-spanner forV and assume that the edges of G can be di-rected such that each point has outdegree at most �.In O(n logn) time, we can construct a t0-spannerfor V in which each point has degree bounded byO(� (ct=(t0 � t))k�1), for some constant c.In order to prove this result, we need the notionof single-sink spanner. Let V be a set of points inIRk, let x be a point of V , and let t > 1. A directedgraph having the points of V as its vertices is calledan x-single-sink t-spanner for V if for every pointy in V there is a t-spanner path from y to x.Let � be a �xed angle such that 0 < � < �=4and 1=(cos � � sin �) � t. Let C be a collectionof k-dimensional cones such that (i) each cone hasits apex at the origin, (ii) each cone has angulardiameter at most �, and (iii) the union of thesecones covers IRk. For each point p 2 IRk and C 2 C,let Cp be the cone C + p := fa+ p : a 2 Cg.Now consider the set V and the point x. Let nbe the size of V . For each C 2 C, let VC be theset of all points of V n fxg that are contained inthe cone Cx. If a point is contained in more thanone cone, then we put it in only one subset. If asubset VC contains more than n=2 points, then we

partition it (arbitrarily) into two subsets VC;1 andVC;2, each of size at most n=2.The x-single-sink t-spanner for V is obtained asfollows. For each subset VC|or in case this setcontains more than n=2 points, for each subset VC;i,i = 1; 2|we take a point y in this subset that isclosest to x, and we add an edge from y to x. Thenwe recursively construct a y-single-sink t-spannerfor this subset. The recursion stops if a subset hassize one.Using exactly the same analysis as in [12], it fol-lows that the graph is a single-sink t-spanner.Lemma 1 Let V be a set of n points in IRk, letx 2 V , and let t > 1. In O(n logn) time, we canconstruct an x-single-sink t-spanner for V , suchthat each point has outdegree at most 1 and indegreebounded by O((c=(t� 1))k�1), for some constant c.Now we are ready to give the transformation thatwill prove Theorem 3. Let V be a set of n pointsin IRk and let t0 > t > 1. Let G be a t-spanner forV and assume that the edges of G can be directedsuch that each point has outdegree at most �. Wedenote this directed version of G by ~G.For each point x of V , we do the following. Con-sider all points of V that have an edge in ~G towardsx. Let W be the set of these points. We replaceall edges from W to x by an x-single-sink (t0=t)-spanner for the set W [ fxg.This gives a directed graph ~G0. We removethe direction from each edge and call the result-ing graph G0. We claim that G0 is a t0-spanner forV in which each point has a degree bounded by aconstant.To prove this, let p and q be any two points of V .There is a t-spanner path p = p0; p1; p2; : : : ; pm = qin G between p and q. Consider any edge fpi; pi+1gon this path. Assume w.l.o.g. that in ~G this edgeis directed from pi to pi+1. The directed graph ~G0contains a pi+1-single-sink (t0=t)-spanner with pi asone of its vertices. Hence, in the graph G0 thereis a (t0=t)-spanner path between pi and pi+1. Theconcatenation of all these paths has length at mostPm�1i=0 (t0=t) jpipi+1j � (t0=t) t jpqj = t0 jpqj.Consider the directed graphs ~G and ~G0. It fol-lows from Lemma 1 that the outdegrees of boththese graphs are the same. Hence, each pointin ~G0 has outdegree at most �. Let x be any



point of V . We bound the indegree of x in ~G0.This graph contains an x-single-sink spanner hav-ing O(( ct0=t�1)d�1) = O(( ctt0�t )d�1) edges with sinkx. Now let y be any point such that ~G contains anedge from x to y. (There are at most � such pointsy.) Then x occurs in a y-single-sink spanner, and ithas indegree bounded by O((ct=(t0� t))d�1) in thisspanner. Hence, in the directed graph ~G0, point xhas indegree bounded by O((1+�) (ct=(t0�t))d�1).This proves that in the undirected t0-spanner G0,each point has a degree bounded by a constant.This proves Theorem 3. It turns out that severalknown spanners have the property that their edgescan be directed such that each point has boundedoutdegree. For example, for any 0 < � < �=4, the�-graph (see [12, 2]) is a t-spanner for t � 1=(cos��sin �). This spanner is directed already and eachpoint has outdegree bounded by O((c=�)d�1). Itcan be constructed in O(n logk�1 n) time.Spanners based on well-separated pair decom-positions also have the property we need. Essen-tially, the construction is to enumerate O(n) sets of\box pairs." For each well-separated pair of boxesfA;Bg, choose an arbitrary point a 2 A and b 2 Band add an edge fa; bg to the spanner. This edgeis directed from a to b if the parent box of A is notlarger than the parent box of B, then the result-ing graph has bounded outdegree. (For details, seeCallahan and Kosaraju [5].) The entire graph canbe constructed in O(n logn) time.Now we can prove the main result of this sec-tion. Let V be any set of n points in IRk and lett0 > 1. To construct a t0-spanner for V havingbounded degree, we set t = pt0 and t0 = t0. InO(n logn) time, we construct a t-spanner G sat-isfying the condition of Lemma 3. Then we applythe given transformation and obtain the desired t0-spanner. This proves:Theorem 4 Let V be a set of n points in IRk andlet t > 1. In O(n logn) time, we can construct at-spanner for V in which each point has a degreethat is bounded by a constant only depending on tand k.5 Spanners of low weightIn this section, we give an O(n logn) time construc-tion of a t-spanner that has weight O(w(MST)). In

order to bound the weight of this graph, we use atheorem from Das, Narasimhan and Salowe[9].Let c > 0 be a constant, let A be a set of edges,and let e 2 A be an edge of weight l. If it is possibleto place a cylinder B of radius and height c � l each,such that the axis of B is a subedge of e and B \(A n feg) = ;, then e is said to be isolated. The setA has the isolation property if all edges are isolated.Theorem 5 ([9]) If A has the isolation property,then w(A) = O(w(MST)), where MST is a mini-mum spanning tree with respect to the endpoints ofA.It is easy to see that in the de�nition of the iso-lation property, one can replace the cylinder with asphere, box, etc., without a�ecting the above the-orem.The low-weight spanner is constructed in the fol-lowing way. Let C be a cone, and let E(C) be theset of edges in the box well-separated pair construc-tion, that, when translated such that one of theirendpoints coincide with the apex of C, lie insideof C. We change the endpoints of an edge to en-sure that the edge does not intersect the interior ofthe convex hull of the points within the respectiveboxes. These endpoints are chosen from among thepoints with maximum or minimum coordinates in aparticular dimension. For each point p, mark edgee 2 E(C) if it is the shortest edge in E(C) withone endpoint in a box ancestor of p. The spannerG1 consists of the union of the marked edges.We claim that G1 is a spanner and that its edgessatisfy the isolation property. The fact that G1 isa spanner can be proved by a straightforward in-duction proof. To show that G1 has the isolationproperty, we use some of the pruning techniques ofDas, He�ernan, and Narasimhan[7]. We may as-sume that edges have been placed into a constantnumber of groups so that each edge has either ap-proximately the same length or di�ers in length bya su�ciently large amount (but bounded by a con-stant factor).We now show that edge e = (a; b) has the iso-lation property. Edge e corresponds to some well-separated pair, say fA;Bg, in the idealized boxsplit tree. Note that the length w(e) of e is re-lated by a constant factor to the diameter d ofthese boxes. Place a box � of diameter d about



the center point of e; we �rst claim that � does notcontain any points.To show this, edge e is present because there issome point p 2 A, say, for which (a; b) is a shortestwell-separated pair in direction C. If there was apoint q in �, this would imply that p and q wouldbe in a well-separated pair. However, the lengthof this well-separated pair would be smaller thanw(e), and it would be in the direction of C. (Wenote that this new well-separated pair edge maybe in a nearby cone as well; this detail can be �xedusing some pruning techniques.)We now claim that at most a constant numberof edges intersect a slightly-shrunken version of �.Suppose that an edge that is signi�cantly shorterthan w(e) intersects �. Then we can shrink � bya small amount. Note there are no points inside of�, so � will not be shrunken by more than a smallpercentage.Suppose that an edge e0 = (a0; b0) that is sig-ni�cantly longer than w(e) intersects �. Then, ifthe idealized box A0 containing a0 is su�ciently faraway, any point in A0 would be in a well-separatedpair with a, and the edge corresponding to thiswell-separated pair would be shorter than w(e0)and in approximately the same direction. (Again,the proof is only sketched. Note that this is wherewe need to choose the box representatives in a care-ful way.)Finally, consider an edge that has approximatelythe same length as w(e). Then these edges mustcorrespond to idealized boxes within distance w(e)ofA orB. Packing arguments that use the fact thatw(e) is related to the width of A imply that thereare only a constant number of idealized boxes inthis area. Therefore, there are only at most a con-stant number of edges that can intersect �. Again,using the decomposition technique of Das et al.[7],one can partition the group of edges into a constantnumber of edge sets, each possessing the isolationproperty. The following theorem is proved.Theorem 6 In any dimension, for any t > 1, t-spanner G1 can be constructed in O(n logn) time,and it has weight O(w(MST)).Our construction actually has bounded degree aswell. This is because any set of edges possessing theisolation property has bounded degree (a straight-forward proof). We therefore have the following:

Corollary 6.1 In any dimension and for any t >1, t-spanner G1 can be constructed in O(n logn)time, and it has weight O(w(MST)) and boundeddegree.6 Spanners of small diameterWe �rst consider the case of the 1-dimensionalspanner, and then we show that all the higher-dimensional cases are closely related to the 1-dimensional case.In the 1-dimensional case, the input is a set ofn points on a line, and the output is a graph withsmall diameter. Surprisingly, a useful constructionhas already been discovered. It was devised byAlon and Schieber[1]. Among other results, thisconstruction implies that there is a linear-sized 1-spanner with diameter �(n) + 2.Here are the essential aspects of the Alon andSchieber construction (they are tailored somewhatto enhance the analogy to our problem). Supposewe want a spanner of diameter d that contains asfew edges as possible. Alon and Schieber divide upthe point set into ` pieces, each piece of size n=`.For each piece, recursively construct a spanner ofdiameter d; this accounts for spanner paths withinthe pieces. In order to account for the spannerpaths between the pieces, select the points in eachgroup with smallest and largest values. Each of thepoints in a particular group are connected directlywith the two group representatives; the represen-tatives themselves are connected with a spanner ofdiameter d� 2.The number of edges T (n; d) used in the Alonand Schieber construction is given by the recur-rence:T (n; d) = O(n) + T (2`; d� 2) + `T (n=`; d)T (n; 1) = O(n2):By choosing the values of ` appropriately, it is pos-sible to show that T (n; 2) = O(n logn), T (n; 3) =O(n log logn), T (n; 4) = O(n log� n), and so on. Itis also possible to show that the diameter is �(n)+2if one allows only O(n) edges.In order to generalize this idea to the k-dimensional case, we use the fact that there existsa spanner which can be represented as the union ofa constant number of bounded degree trees. (See



Theorem 2.) Let T be one of these trees. Weconstruct a modi�ed version of T whose degreeis bounded by a constant, and we endow it withsome additional geometric properties. Speci�cally,this modi�ed dumbbell tree T 0 is a tree whose ver-tices are original points and whose edges are Eu-clidean edges. The important geometric propertyof T 0 is the following: if a pair of points a and b arein a well-separated pair that actually appears as adumbbell in T , then the path between a and b inT 0 is a t-spanner path.The actual construction of T 0 is done in the fol-lowing way. A dumbbell � in T contains severalchildren dumbbells �1;�2; : : : ;�m and several iso-lated points p1; p2; : : :pj . Consider these isolatedpoints to be degenerate dumbbells and thereforechildren of �. This possibly large set of edges willbe replaced by a tree T 000 whose degree is boundedby a constant, described below.For each box in �i, choose a representativepoint. Let tree T 00 be the minimal tree (with re-spect to edge inclusion) in the fair-split tree thatconnects these representative points. This tree T 00is a Steiner tree: it consists of original points (therepresentative points), Steiner points (degree-3 ver-tices), and paths connecting these two types ofpoints. T 000 is the tree that results from replacingeach of the paths in T 00 with a single edge.The proof that T 0 has the t-spanner path prop-erty stems from the fact that the children dumb-bells are much smaller than the parent dumbbelland the fact that the diameter of a box is halvedin the fair-split tree within a constant number oflevels. A detailed proof is omitted.We apply a construction akin to the one ofAlon and Schieber to shortcut the paths. LetP = x1; x2; : : : ; xj be a path in T 0. By the trian-gle inequality, any path P 0 = x1; xp(2); xp(3); : : : ; xj,where 1 < p(2) < p(3) < � � � < j has lengthless than or equal to the length of P . Appropri-ate shortcuts, therefore, have spanner properties.The details of how these shortcuts are constructedis omitted.Theorem 7 For any t > 1, and any dimension k,there is a t-spanner containingO(n) edges and con-structible in O(n logn) time with diameter �(n)+2.If one allows more space, the diameter can bereduced. Here are some of our results.

Theorem 8 For any t > 1, and any dimension k,1. there is a t-spanner containing O(n logn)edges and constructible in O(n logn) time withdiameter 2,2. there is a t-spanner containing O(n log logn)edges and constructible in O(n logn) time withdiameter 3,3. there is a t-spanner containing O(n log� n)edges and constructible in O(n logn) time withdiameter 4.7 Spanners of bounded degreeand small diameterTheorem 9 For any t > 1, and any dimensionk, in O(n logn) time, a t-spanner whose degree isbounded by a constant and whose diameter is atmost O(logn) can be constructed.Our low-diameter constructions of the previoussection have high degree. On the other hand, it isdi�cult to bound the diameter of our bounded-degree constructions. Note, however, that ourdiameter results are closely related to the one-dimensional results.Consider the following strategy to produce aspanner of O(logn) diameter and bounded degreefor a set of n points on a horizontal line. Withoutloss of generality, assume that n is a power of 2 andthat they are numbered 0 through n � 1 from leftto right.Include an edge (i; i+ 1), 0 � i < n. The result-ing graph is a spanner, but its diameter is n � 1.Select the set of even-numbered points, 0; 2; 4; : : :,and connect them by a set of edges, (2i; 2i + 2),0 � i < n=2. Repeat this process. The resultingset of edges has logn diameter, but several of thepoints have degree logn as well.In order to reduce the degree, note that O(logn)diameter would have been preserved if the odd-numbered points were chosen at the second \level,"or if either 2i or 2i+1 was \promoted" to the secondlevel. A similar statement can be made at the `-thlevel (2`i through 2`(i+1)�1 can be promoted). Ifone is careful about alternating \promotions," the



resulting structure, reminiscent of a bounded de-gree skip-list, has bounded degree and logarithmicdiameter.In order to generalize this proof to all dimen-sions, we need to apply the same strategy to trees,speci�cally the modi�ed dumbbell tree of Section6. Here, the appropriate analogue to the levelingidea seems to be Frederickson's topology trees[10].We provide a rough outline of the method andthe properties we need to maintain. Suppose wehave a rooted tree T whose degree is bounded bya constant. Furthermore, assume that every leafnode has a unique label and that any internal nodecan be labeled with the label of an arbitrary leafnode. The �rst step is to choose representativesfor the nodes in T . To do this, we propagate leaflabels. A node chooses one of the propagated labelsand propagates the other up the tree. Each labelis used at most twice, once at a leaf, and once atan internal node.We then perform a layering approach, groupingsets of nodes into a single node at the next layer.An important issue is the maintenance of a treewhose maximum degree is bounded by a constantat every level.Given this layered tree, labels are again dis-tributed so that no label is used more than a con-stant number of times. Roughly, the labeling pro-cedure ensures that points (corresponding to thelabels) have degree bounded by a constant, andthe leveling process ensures that the path has link-distance O(logn). Full details will be included inthe �nal paper.8 Spanners of low weight andsmall diameterWe use the following spanner construction, due toArya, Mount, and Smid[2]: Start with a fair-splittree, and designate some nodes as heavy and someas light. A node is heavy if it contains more pointsin its subtree than its sibling, and it is light other-wise (if both subtrees contain an equal number ofpoints, the left child is heavy and the right childis light). We use this designation to determine boxrepresentatives for the well-separated pairs; speci�-cally, a parent box inherits the representative of itsheavy child. Arya et al.[2] show that if the repre-

sentatives are chosen in this way, then the resultingspanner has diameter O(logn).We now show that the weight of well-separatedpair constructions is O(w(MST) logn), which istight[11]. This improves the results of Lenhof etal.[11], who prove that the sum D of the diametersof the boxes in a box split tree is O(w(MST) log2 n)and that the length of the well-separated pair edgesis O(D). Our techniques can be used to show thatD = O(w(MST) logn).Rather than focus on the split tree, we focuson the dumbbell tree. Recall the gap propertyof Chandra et al.[6]: A set of edges E has thegap property if for every pair e1 and e2, the dis-tance between the closest endpoints of e1 and e2is at least the length of the smaller edge. Chan-dra et al. prove that if E has the gap property,w(E) = O(w(MST) logn).In our case, let E be the set of well-separatededges represented by a dumbbell tree. We showthat there is a set of edges E 0 � E such that E 0has the gap property and w(E 0) = �(w(E)). Thisproves that w(E) = O(w(MST) logn).To select E 0, initially let E 0 = E, and considerany pair of edges e1 and e2 in E 0. If they violatethe gap property, remove the shorter one, say e1,and continue with E 0 n fe1g. Eventually, E 0 willhave the gap property.In order to show that w(E 0) = �(w(E)), buildthe following directed forest: when e1 is eliminatedbecause of e2, direct an edge from e2 to e1. Notethat only the root e of a tree t(e) in the forestwill remain in E 0, so we want to show that w(e) =�(w(t(e))).Consider the children of edge e0 in t(e). Re-call the length grouping property of Theorem 1.The children of e0 are of length approximatelyci � w(e0), where i > 0 indicates the length group,and 0 < c � 1 is a constant. From dumbbell treeproperties, only a constant number � of edges oflength ` may be within a distance ` of a �xed point,so the number of children of e0 in group i is at most2�, � for each endpoint. The parameter c can bechosen independently of �, so that �c < 1=2. It fol-lows that the total weight of the children of e0 is atmost 2c1�c�w(e0). This implies that w(t(e)) � w(e)1�� ,where � = 2c1�c�, which in turn implies the maintheorem in this section.



Theorem 10 For any t > 1, and any dimen-sion k, there is a t-spanner, constructible inO(n logn) time, with O(logn) diameter and weightO(w(MST) logn).9 Spanners of bounded degree,low weight and small diameterIt turns out that our bounded degree, O(logn)diameter spanner also possesses some interest-ing weight properties. Our analysis above showsthat the sum of the diameters D of the boxesin an appropriate box split tree construction isO(w(MST) logn), so one layer of the construc-tion has weight O(w(MST) logn). Since there areO(logn) layers, the weight is O(w(MST) log2 n).We conclude with the following result:Theorem 11 For any t > 1, and any dimensionk, there is a t-spanner, constructible in O(n logn)time, with bounded degree, O(logn) diameter, andweight O(w(MST) log2 n).Conjecture 1 For any t > 1, and any dimensionk, there is a t-spanner, constructible in O(n logn)time, with bounded degree, O(logn) diameter, andweight O(w(MST) logn).References[1] N. Alon and B. Schieber. Optimal prepro-cessing for answering on-line product queries.Tech. report 71/87, Tel-Aviv University, 1987.[2] S. Arya, D. M. Mount, and M. Smid. Ran-domized and deterministic algorithms for geo-metric spanners of small diameter. In Proc.35th Annu. IEEE Sympos. Found. Comput.Sci., pages 703{712, 1994.[3] S. Arya and M. Smid. E�cient constructionof a bounded degree spanner with low weight.In Proc. 2nd Annu. European Sympos. Algo-rithms (ESA), volume 855 of Lecture Notes inComputer Science, pages 48{59, 1994.[4] P. B. Callahan and S. R. Kosaraju. A de-composition of multi-dimensional point-setswith applications to k-nearest-neighbors and
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