
Approximate Range Searching∗

Sunil Arya†

Department of Computer Science

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

David M. Mount‡

Department of Computer Science and

Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742

Abstract

The range searching problem is a fundamental problem in compu-
tational geometry, with numerous important applications. Most re-
search has focused on solving this problem exactly, but lower bounds
show that if linear space is assumed, the problem cannot be solved in
polylogarithmic time, except for the case of orthogonal ranges. In this
paper we show that if one is willing to allow approximate ranges, then
it is possible to do much better. In particular, given a bounded range
Q of diameter w and ǫ > 0, an approximate range query treats the
range as a fuzzy object, meaning that points lying within distance ǫw
of the boundary of Q either may or may not be counted. We show that
in any fixed dimension d, a set of n points in Rd can be preprocessed
in O(n log n) time and O(n) space, such that approximate queries can
be answered in O(log n + (1/ǫ)d) time. The only assumption we make
about ranges is that the intersection of a range and a d-dimensional
cube can be answered in constant time (depending on dimension). For
convex ranges, we tighten this to O(log n + (1/ǫ)d−1) time. We also
present a lower bound for approximate range searching based on par-
tition trees of Ω(log n+(1/ǫ)d−1), which implies optimality for convex
ranges (assuming fixed dimensions). Finally we give empirical evidence
showing that allowing small relative errors can significantly improve
query execution times.

∗A preliminary version of this paper appeared in the Proc. of the 11th Annual ACM

Symp. on Computational Geometry, 1995, 172–181.
†Email: arya@cs.ust.hk. The work of this author was partially supported by HK

RGC grant HKUST 736/96E. Part of this research was conducted while the author was
visiting the Max-Planck-Institut für Informatik, Saarbrücken, Germany.

‡Email: mount@cs.umd.edu. This author was supported by the National Science Foun-
dation under grant CCR–9712379 .

1

1 Introduction.

The range searching problem is among the fundamental problems in com-
putational geometry. A set P of n data points is given in d-dimensional real
space, Rd, and a space of possible ranges is considered (e.g., d-dimensional
rectangles, spheres, halfspaces, or simplices). The goal is to preprocess the
points so that, given any query range Q, the points in P ∩Q can be counted
or reported efficiently. More generally, one may assume that the points
have been assigned weights, and the problem is to compute the accumu-
lated weight of the points in P ∩Q, weight(P ∩Q), under some commutative
semigroup.

There is a rich literature on this problem. In this paper we consider the
weighted counting version of the problem. We are interested in applications
in which the number of data points is sufficiently large that one is limited
to using only linear or roughly linear space in solving the problem. For
orthogonal ranges, it is well known that range trees can be applied to solve
the problem in O(logd−1 n) time with O(n logd−1 n) space (see e.g., [15]).
Chazelle and Welzl [9] showed that triangular range queries can be solved in
the plane in O(

√
n log n) time using O(n) space. Matouŝek [13] has shown

how to achieve O(n1−1/d) query time for simplex range searching with nearly
linear space. This is close to Chazelle’s lower bound of Ω(n1−1/d/ log n) [8]
for linear space. For halfspace range queries, Brönnimann et al. [5] gave a
lower bound of Ω(n1−2/(d+1)) (ignoring logarithmic factors) assuming linear
space. This lower bound applies to the more general case of spherical range
queries as well.

Unfortunately, the lower bound arguments defeat any reasonable hope of
achieving polylogarithmic performance for arbitrary (nonorthogonal) ranges.
This suggests that it may be worthwhile considering variations of the prob-
lem, which may achieve these better running times. In this paper we consider
an approximate version of range searching. Rather than approximating the
count, we consider the range to be a fuzzy range, and assume that data
points that are “close” to the boundary of the range (relative to the range’s
diameter) may or may not be included in the count.

To make this idea precise, we assume that ranges are bounded sets of
bounded complexity. (Thus our results will not be applicable to halfspace
range searching). Given a range Q of diameter w, and given ǫ > 0, define
the inner range Q− to be the locus of points whose Euclidean distance from
a point exterior to Q is at least wǫ, and define the outer range Q+ to be
the locus of points whose distance from a point interior to Q is at most wǫ.
(Equivalently, Q+ and Q− can be defined in terms of the Minkowski sum
and difference, respectively, of a ball of radius wǫ with Q.) Define a legal
answer to an ǫ-approximate range query to be weight(P ′) for any subset P ′

such that
P ∩ Q− ⊆ P ′ ⊆ P ∩ Q+.

2

(See Fig. 1).

Q+

Q-
Q

Must be included

May be included

Must not be included

Figure 1: Approximate range searching queries.

This definition allows for two-sided errors, by failing to count points that
are barely inside the range, and counting points barely outside the range.
It is trivial to modify the algorithm so that it produces one-sided errors
(thus forbidding either sins of omission or sins of commission, but obviously
not both). Our results can be generalized to other definitions Q− and Q+

provided that the minimum boundary separation distance with Q is at least
wǫ. We assume that the following range-testing primitives are provided:

Point membership in Q: whether a point p lies within Q,

Box intersection with Q−: whether an axis-aligned rectangle has a non-
empty intersection with Q−, and

Box containment in Q+: whether an axis-aligned rectangle is contained
within Q+.

Our running times are given assuming each of these can be computed in
constant time. (In general it is the product of the maximum time for each
primitive and our time bounds.) Our algorithm can easily be generalized
to report the set of points lying within the range, and the running time
increases to include the time to output the points.

Approximate range searching is probably of most interest for fat ranges.
Overmars [14] defines an object Q to be k-fat if for any point p in Q, and
any ball B with p as center that does not fully contain Q in its interior, the
portion of B covered by Q is at least 1/k. For ranges that are not k-fat, the
diameter of the range may be arbitrarily large compared to the thickness
of the range at any point. However, there are many applications of range
searching that involve fat ranges.

There are a number of reasons that this formulation of the problem is
worth considering. There are many applications where data are imprecise,
and ranges themselves are imprecise. For example, the user of a geographic
information system that wants to know how many single family dwellings
lie within a 60 mile radius of Manhattan, may be quite happy with an

3

answer that is only accurate to within a few miles. Also range queries are
often used as part of an initial filtering process to very large data sets,
after which some more complex test will be applied to the points within the
range. In these applications, a user may be quite happy to accept a coarse
filter that runs faster. The user is free to adjust the value of ǫ to whatever
precision is desired (without the need to apply preprocessing again), with
the understanding that a tradeoff in running times is involved.

In this paper we show that by allowing approximate ranges, it is possible
to achieve significant improvements in running times, both from a theoretical
as well as practical perspective. We show that for fixed dimension d, after
O(n log n) preprocessing, and with O(n) space, ǫ-approximate range queries
can be answered in time O(log n+1/ǫd). Under the assumption that ranges
are convex, we show that this can be strengthened to O(log n + 1/ǫd−1).
(These expressions are asymptotic in n and 1/ǫ and assume d is fixed. See
Theorems 1 and 2 for the exact dependencies on dimension.) Some of the
features of our method are:

• The data structure and preprocessing time are independent of the
space of possible ranges and ǫ. (Assuming that the above range-testing
primitives are provided at query time.)

• Space and preprocessing time are free of exponential factors in dimen-
sion. Space is O(dn) and preprocessing time is O(dn log n).

• The algorithms are relatively simple and have been implemented. The
data structure is a variant of the well-known quadtree data structure.

• Our experimental results show that even for uniformly distributed
points in dimension 2, there is a significant improvement in the run-
ning time if a small approximation error is allowed. Furthermore, the
average error (defined in Section 5) committed by the algorithm is
typically much smaller than the allowed error, ǫ.

We also present a lower bound of Ω(log n + 1/ǫd−1) for the complexity of
answering ǫ-approximate range queries assuming a partition tree approach
for hypercube range queries in fixed dimension. Thus our approach is op-
timal under these assumptions for convex ranges (up to constant factors
depending on d and ǫ).

2 The Balanced Box-Decomposition Tree.

In this section we review the data structure from which queries will be an-
swered. The structure is a balanced box-decomposition tree (or BBD-tree) for
the point set. The BBD-tree [2] is a balanced variant of a number of well-
known data structures based on hierarchical subdivision of space into recti-
linear regions. Examples of this class of structures include point quadtrees

4

[16], and variants [4], k-d trees [3], or (unbalanced) box-decomposition tree
(also called a fair-split tree) [6, 10, 18]. A related structure is the BAR tree
[11], which partitions space into regions of bounded aspect ratio but may
not be rectilinear. For completeness we review the BBD-tree, emphasizing
the elements that are important for this application.

We begin with a few definitions. By a rectangle in Rd we mean the d-fold
product of closed intervals on the coordinate axes. The size of a rectangle
is the length of its longest side. We define a box to be a rectangle such that
the ratio of its longest to shortest side, called its aspect ratio, is bounded by
some constant, which for concreteness we will take to be 2.

Each node of the BBD-tree is associated with a region of space called
a cell. In particular, define a cell to be either a box or the set theoretic
difference of two boxes, one enclosed within the other. Thus each cell is
defined by an outer box and an optional inner box. Each cell is associated
with the set of data points lying within the cell. Cells are considered to be
closed, and hence points which lie on the boundary between cells may be
assigned to either cell. The size of a cell is the size of its outer box.

Inner boxes satisfy a property called stickiness [2]. Intuitively stickiness
means that an inner box cannot be too close (relative to its own size) to any
face of the outer box, unless it touches this outer face. More formally, an
inner box is sticky if when it is surrounded in a grid-like fashion with 3d − 1
identical boxes, the interior of each of these boxes either lies entirely inside
or outside the outer box. This property is needed for technical reasons in
proving the packing constraint (Lemma 2 below). The main properties of
the BBD-tree are summarized in the following lemma.

Lemma 1 Given a set of n data points P in Rd and a bounding hypercube
C for the points, in O(dn log n) time it is possible to construct a binary tree
representing a hierarchical decomposition of C into cells of complexity O(d)
such that

(i) The tree has O(n) nodes and depth O(log n).

(ii) The cells have bounded aspect ratio, and with every 2d levels of descent
in the tree, the sizes of the associated cells decrease by at least a factor
of 1/2.

(iii) Inner boxes are sticky relative to their outer boxes.

The rest of this section presents the highlights of the BBD-tree and its
construction. The details of the proof are provided in [2]. (We present only
the simpler midpoint split form of the tree here.) The tree is constructed
through the recursive application of two partitioning operations, splits and
shrinks. They represent two different ways of subdividing a cell into two
smaller child cells. A split partitions a cell by an axis-orthogonal hyperplane.

5

A shrink partitions a cell by a box that lies within the original cell. It
partitions a cell into two children, one lying inside this box and one lying
outside. If a cell contains an inner box, then a split will never intersect the
interior of this box. If a shrink is performed on a cell that has an inner
box, then this inner box will lie entirely inside the partitioning box. The
resulting cells clearly have complexity O(d).

The BBD-tree is constructed through a combination of split and shrink
operations. Recall that C is a hypercube that contains all the points of P .
The root of the BBD-tree is a node whose associated cell is C and whose
associated set is the entire set P . The recursive construction algorithm is
given a cell and a subset of data points associated with this cell. Each stage
of the algorithm determines how to subdivide the current cell, either through
splitting or shrinking, and then partitions the points among the child nodes.
This is repeated until the cell has at most one point (or more practically, a
small constant number of points, called the bucket size).

Given a node with more than one data point, we first consider the ques-
tion of whether we should apply splitting or shrinking. A simple strategy
(which we will assume in proving our results) is that splits and shrinks are
applied alternately. This will imply that both the geometric size and the
number of points associated with each node will decrease exponentially as we
descend a constant number of levels in the tree. A more practical approach,
which we have used in our implementation, is to perform splits exclusively,
as long as the cardinalities of the associated data sets decrease by a constant
factor after a constant number of splits. If this condition is violated, then
a shrink is performed instead. Our experience has shown that shrinking is
only occasionally invoked, but it is important to guarantee efficiency with
highly clustered point distributions.

Once it has been determined whether to perform a split or a shrink, the
splitting plane or partitioning box is computed, by a method to be described
later. We store this information in the current node, create and link the two
children nodes into the tree, and then partition the associated data points
between these children. Data points lying on the splitting boundary may
be assigned to either child. This can be done in O(dn) time by a procedure
due to Vaidya [18] (see also [2]).

Splitting is performed by bisecting the box by a hyperplane that is or-
thogonal to its longest side. Ties may be broken arbitrarily. The resulting
cells are called midpoint boxes. (See Fig. 2(a).) This is just a binary variant
of the well-known quadtree/octree splitting rule, which splits a hypercube
cell into 2d identical hypercubes of half the original size [16]. This binary
version is significantly more practical in higher dimensional spaces. It is
easy to see that the resulting boxes will have aspect ratios of either 1 or
2. Stickiness is also easy to verify, since if an inner box has width w along
some coordinate axis and does not intersect a face of the enclosing outer
box, then it is at distance at least w from this face [2].

6

Midpoint Boxes Centroid shrinking

(b)(a)

Figure 2: Midpoint cells and centroid shrinking.

Shrinking is performed as part of a global operation called a centroid
shrink, which will generally produce up to three new nodes in the tree (two
shrinking nodes and one splitting node). Let nc denote the number of data
points associated with the current cell. The goal of a centroid shrink is to de-
compose the current cell into a constant number of subcells, each containing
at most 2nc/3 data points.

We begin with a simplified explanation of how centroid shrinking is per-
formed, assuming the cell has no inner box. Without altering the current
tree, repeatedly apply midpoint splits, always recursing on the child having
the greater number of points. Repeat this until the number of points in the
cell is no more than 2nc/3. The outer box of this cell is the partitioning box
for the shrink operation. (The intermediate splits are discarded.) Observe
that prior to the last split we had a box with at least 2nc/3 data points,
and hence the partitioning box contains at least nc/3 points. Thus, there
are at most 2nc/3 points either inside or outside the partitioning box. (See
Fig. 2(b).)

This procedure is not efficient as described. If the points are clustered
in a very small region, then the number of midpoint splits needed until
this procedure terminates cannot generally be bounded by a function of nc.
To remedy this problem before each split, compute the smallest midpoint
box that contains the data points. (See Clarkson [10] for a solution to this
problem based on floor, logarithm, and bitwise exclusive-or operations.) The
very next split will succeed in producing a nontrivial partition of the points.

Now, suppose that the original cell had an inner box. We replace the
single stage shrink described above with a 3-stage decomposition, which
shrinks, then splits, then shrinks. Let bI denote this inner box. When
we compute the minimum enclosing midpoint box for the data points, we
make sure that it includes bI as well. Now we apply the above iterated
shrinking/splitting combination, until (if ever) we first encounter a split that
separates bI from the box containing the majority of the remaining points.
Let b denote the box that was just split. (See Figure 3(b).) We create a

7

shrinking node whose partitioning box is b. We first shrink to node b, then
apply this split, thus separating the majority points from bI . Now that the
inner box is eliminated, we simply proceed with the above procedure. If no
split separates the bI from the majority, then bI will be nested within the
partitioning box, which is fine.

bI

(a)

Ib

(c)

b

shrink

split

b

(b)

bI
c

c

Figure 3: Midpoint construction: Centroid shrinking with an inner box.

We refer the reader to [2] for details of the O(dn log n) running time
of the construction. The fact that we perform centroid splits every other
level of the tree implies that the total number of nodes in the tree is O(n),
and the tree has O(log n) depth. It is easy to verify that the construction
algorithm never produces two consecutive shrinks (since the 3-stage process
interleaves a split between its shrinks). After any d splits the size of each
node decreases by a factor of 1/2. Thus after descending 2d levels in the
tree, cell sizes decrease by at least 1/2. Finally, by a simple postorder
traversal, it is possible to label each node v in the tree with the weight of
the associated points, denoted weight(v). This will be used in the query
processing algorithm.

Before ending this section, we present some lemmas that form the basis
for our later analysis. The first one is a key property of the BBD-tree, and
follows from the fact that its cells are fat and inner boxes are sticky. It was
proved in [2] for Minkowski balls, but we need a slightly different formulation
for our purposes.

Lemma 2 (Packing Constraint) Consider any set C of cells of the BBD-
tree with pairwise disjoint interiors, each of size at least s, that intersect a

range of diameter w. The size of such a set is at most
(

1 +
⌈

2w
s

⌉)d
.

Proof : From the 2:1 aspect ratio bound, the smallest side length of a box of
size s is at least s/2. We first show that the number of disjoint boxes of side
length at least s/2 that can overlap the range is at most (1 + ⌈2w/s⌉)d. To
see this, first scale space by a factor of 2/s, implying that the range now has
diameter w′ = 2w/s and each box has size at least 1. Consider a subdivision
of Rd into an infinite integer grid of unit hypercubes. Observe that any range

8

of diameter w′ can be enclosed within a closed hypercube H whose vertices
coincide with the integer grid and whose side length is at most 1+⌈w′⌉. (To
see this, observe that the projection of the range onto any coordinate axis is
an interval of length at most w′, which can be contained within an integer
range of width 1 + ⌈w′⌉.) There are (1 + ⌈w′⌉)d = (1 + ⌈2w/s⌉)d cubes of
the grid enclosed within H. This is the desired upper bound, since no set
of axis-aligned disjoint boxes of side length at least 1 can be packed more
densely.

The above argument cannot be applied directly when shrinking cells are
involved, because the outer box of a shrinking cell is not disjoint from its
inner box. To complete the proof, we modify the set C, replacing each
shrinking cell in the set with a box of size at least s, such that the resulting
boxes are disjoint. Then the above argument is applied to complete the
proof.

Ib

Ob

replacement H

Figure 4: Packing constraint.

For each shrinking cell in C, if its inner box bI is not in C, then we
may replace this cell with its outer box, bO. If bI is in C, then consider
the 3d − 1 identical boxes surrounding this box in a grid-like manner. (See
Fig. 4.) All of these boxes are of size at least s. By the stickiness property,
the interior of each of these boxes either lies entirely inside or outside bO.
Since H intersects both boxes, it must (by convexity) intersect at least one
of the surrounding 3d − 1 boxes that lies within bO. Replace bO with this
box in C. The replacement is of size at least s, it intersects H, and it is
disjoint from bI . After applying this to all shrinking cells, the resulting set
of boxes are disjoint and satisfy the requirements of the lemma. Applying
the above argument proves the result. ⊓⊔

In most applications of range searching, the range is a convex set. Next
we show that if we add this restriction, the exponential dependence on d
decreases slightly. The relevant quantity for our later analysis will be the
number of cells that intersect the boundary of the range.

Lemma 3 Consider any set C of cells of the BBD-tree with pairwise disjoint
interiors, each of size at least s, that intersect the boundary of a convex range

of diameter w. The size of such a set is at most 2d2
(

1 +
⌈

2w
s

⌉)d−1
.

9

Proof : Let Q denote the range, and let ∂Q denote its boundary. Following
the same reasoning as in the proof of Lemma 2, it suffices to bound the
number of cells of an infinite square d-dimensional grid of side length s/2 that
intersect ∂Q (and then apply the same replacement argument to generalize
this to shrinking cells). As before we scale by 2/s so that the diameter
of Q is w′ = 2w/s, and enclose Q in an axis-aligned hypercube H with
integer coordinates, whose width is W = 1 + ⌈w′⌉. It suffices to show that
∂Q intersects at most 2d2W d−1 grid cells within H. Our proof is based on
covering ∂Q with at most 2dW d−1 covering sets, such that each covering set
intersects at most d grid cubes.

H has 2d faces each of dimension (d− 1). Let u1,u2, . . . ,u2d denote the
outward pointing normal unit vectors for each of these faces. Each of these
vectors has exactly one nonzero coordinate, which is either 1 or −1. The
grid naturally subdivides each of the faces of H into exactly W d−1 subfaces,
where each is a (d − 1)-dimensional unit hypercube, for a total of 2dW d−1

subfaces.
Because Q is convex, each point p ∈ ∂Q can be associated with a sup-

porting hyperplane passing through p. (If there are many then take any
one.) Let vp denote the outward pointing unit normal vector for this hyper-
plane. Given any other point on q ∈ ∂Q, the angle between vectors vp and
q − p (the vector directed from p to q) is at least π/2. Let 6 uv denote the
angle (in the range 0 to π) between vectors u and v. We will make use of
the fact that the angle between two nonzero unit vectors (i.e., the geodesic
distance on a unit d− 1 sphere) defines a metric on unit vectors. Hence the
triangle inequality holds: 6 wu + 6 uv ≥ 6 wv.

The construction of the covering sets on ∂Q arises from the orthogonal
projection of each subface onto Q in a direction parallel to the face’s normal.
To prevent each patch from intersecting many grid cubes, we first partition
∂Q into 2d regions, R1, R2, . . . , R2d, where each region is associated with a
face of H. A point p is assigned to region Ri for which the angle 6 vpui is
minimum. Ties may be broken arbitrarily. These regions are illustrated in
Fig. 5(a). (Note that these regions may not be connected in general.)

First we claim that if p is assigned to region Ri, then the angle 6 vpui

is at most arccos 1/
√

d. That is, the angular distance from any unit vector
to its nearest vector ui cannot exceed this angle. To see this, first observe
that by symmetry we may consider only vectors with positive coordinates.
The closest coordinate vector (in angle) to any unit vector v corresponds to
the largest coordinate of v. To maximize the angle to the nearest coordi-
nate vector, we should minimize its maximum coordinate. The unit vector
achieving the maximum has all coordinates equal to 1/

√
d. This vector

forms the angle arccos 1/
√

d with its closest coordinate vector.
Consider the ith face Fi of H and any subface f lying on this face.

Consider the set of points of Ri whose orthogonal projection onto Fi lies
within f . The covering set associated with f is defined to be this set of

10

cover()1

2u

3u

3

R

u

R 1

R2

4

v

4

R

p

u

p

H

(a)

x

ui

(b)

Q p

q

Q f

f

F

Figure 5: Proof of packing lemma for convex ranges.

points. Thus, ∂Q is covered by these 2dW d−1 sets.
All that remains to be shown is that each covering set overlaps at most

d cubes of the grid. Consider the covering set for subface f and face Fi of
H. The set lies within an infinite cylinder whose orthogonal cross section is
f . (This is the shaded region in Fig. 5(b).) Let q and p be the closest and
furthest points, respectively, of the covering set from f (or more formally,
the limit points achieving these distances). Let x denote the difference in
distances of q and p from f . We claim that it suffices to show that x ≤ d−1,
since if so, Ri cannot intersect more than 1 + ⌈x⌉ = d grid cubes within the
cylinder.

To show that x ≤ d− 1, let z denote the vector from p to q, normalized
to unit length. From the facts that the orthogonal projection of pq onto F
lies within the subface f of diameter

√
d − 1, and the orthogonal projection

of pq onto ui has length x, we have

6 uiz ≤ arctan

√
d − 1

x
.

Because p and q are both boundary points, from the observation above
it follows that the angle 6 vpz ≥ π/2. Since p is in region Ri, we have
6 vpui ≤ arccos 1/

√
d. Using this and the triangle inequality for angles we

have

arccos
1√
d

≥ 6 vpui ≥ 6 vpz− 6 uiz ≥ π

2
− arctan

√
d − 1

x
.

Using the fact that arccos 1/
√

d = arctan
√

d − 1, and some straightforward
manipulations, we have x ≤ d − 1 as desired.

⊓⊔

11

3 Range Searching Algorithm.

In this section we present the algorithm for answering range queries using
the BBD-tree. Let Q denote the range and w its diameter. Recall from the
introduction, that the inner range Q− and outer range Q+ are the erosion
and dilation, respectively, of Q by distance wǫ. Although we assume that
ǫ > 0 for the purposes of analysis, the algorithm runs correctly even if ǫ = 0.

We generalize the standard range search algorithms for partition trees.
The main idea of the algorithm is to simply descend the tree and classify
nodes as lying completely inside the outer range or completely outside the
inner range. If a node cannot be classified, because it overlaps both ranges,
then we recursively explore its children. The initial call to the recursive
procedure is at the root of the BBD-tree. The procedure is shown in the
Fig. 6.

Algorithm 1 [Query Processing]

Arguments: A range Q, given with an inner range QI and an outer
range QO, and a node v in the BBD-tree.

Returns: The total weight of points in the approximate range.

function Query(Q, v):
if cell(v) ⊆ QO then return weight(v);
if cell(v) ∩ QI = ∅ then return 0;
if v is a leaf then

w = 0;
for each p ∈ points(v) do

if p ∈ Q then w+= weight(p);
return w;

else return Query(Q, left(v)) + Query(Q, right(v));

Figure 6: Query Processing Algorithm.

Observe that the algorithm can easily be modified to report the set of
points (rather than their weight). The correctness of this algorithm follows
immediately from the following lemma, and the observation that no point
is counted twice because of the disjointness of the subtrees counted.

Lemma 4 The query processing algorithm returns a count which includes
all the points lying inside the inner range and excludes all the points lying

12

outside the outer range.

Proof : To establish the claim, let T denote the set of nodes visited for which
the algorithm does not make a recursive call. The disjoint union of the cells
corresponding to the set of nodes in T covers the hypercube C containing
all the data points. Let p be some point lying inside the inner range Q− and
let v be the node of T which contains it. Then if v is a leaf node, p would
be included in the count since it lies within Q. Otherwise if v is a non-leaf
node, then, since node v does not result in a recursive call, cell(v) must lie
completely inside Q+. The point p would therefore have been included in
the count returned in the algorithm’s first step. In an analogous way, we
can also show that the points outside the outer range are not included in
the count, which proves the claim. ⊓⊔

The main result of this section is the following theorem, which establishes
the running time of the range counting algorithm. Here we assume that the
range-testing primitives can be executed in constant time.

Theorem 1 Given a BBD-tree for a set of n data points in Rd, given a
query range Q of diameter w, and ǫ > 0, ǫ-approximate range counting
queries can be answered in O(2d log n + d(3

√
d/ǫ)d) time. For fixed d this is

O(log n + (1/ǫ)d).

Proof : We start with some definitions. A node v is said to be visited if
the algorithm is called with node v as an argument. A node v is said to be
expanded if the algorithm visits the children of node v.

It will simplify matters to assume that everything has been scaled so that
the enclosing hypercube C for the point set is a unit hypercube, implying
that the cells of the BBD-tree have sizes that are positive integer powers
of 1/2. We distinguish between two kinds of expanded nodes depending
on size. An expanded node v for which size(v) ≥ 2w is large and other-
wise it is small. We will show that the number of large expanded nodes is
bounded by O(2d log n) and the number of small expanded nodes is bounded
by O(d(3

√
d/ǫ)d). Since each node can be expanded and its children visited

in constant time, it follows that the total running time is the sum of these
two quantities.

We first show the bound on the number of large expanded nodes. In the
descent through the BBD-tree, the sizes of nodes decrease monotonically.
Consider the set of all expanded nodes of size greater than 2w. These nodes
induce a subtree in the BBD-tree. Let L denote the leaves of this tree. The
cells associated with the elements of L have pairwise disjoint interiors and
they intersect the range (for otherwise they would not be expanded). It
follows from Lemma 2 (applied to the cells associated with L) that there
are at most (1 + ⌈2w/2w⌉)d = 2d, such boxes. By Lemma 1 the depth of
the tree is O(log n), and hence the total number of expanded large nodes is
O(2d log n), as desired.

13

Next we bound the number of small expanded nodes. First we claim
that any node of size less than 2wǫ/

√
d cannot be expanded. For a node

to be expanded its cell must intersect both the inner range Q− and the
complement of the outer range Q+. Since the boundaries of Q− and Q+

are each separated from the boundary of Q by a distance of wǫ, they are
separated from each other by a distance of 2wǫ. Since the diameter of a cell
of size s is at most s

√
d, a cell of size less than 2wǫ/

√
d cannot intersect

both range boundaries and hence cannot be expanded.
Thus, it suffices to count the number of expanded nodes of sizes from 2w

down to 2wǫ/
√

d. To do this we group nodes in groups according to their
size. For i ≥ 0, define size group i to be the set of nodes whose cell size is 1/2i.
Since small nodes are of size less than 2w, the first size group of interest is
a+1, where 1/2a+1 < 2w ≤ 1/2a, and hence a = ⌊− lg 2w⌋. Since nodes that
are smaller than 2wǫ/

√
d are not expanded, the last size group of interest is

b, where 1/2b+1 < 2wǫ/
√

d ≤ 1/2b, and hence b =
⌊

− lg(2wǫ/
√

d)
⌋

. Because

a node and its child may have the same size, we cannot apply the packing
lemma directly to each size group. Define the base group for the ith size
group to be the subset of nodes in the size group that are leaves or whose
children are both in the next smaller size group. The cells corresponding to
the nodes in a base group have pairwise disjoint interiors, since none of their
descendents can be in the same base group. Applying Lemma 2, it follows
that the number of nodes in the ith base group is at most

(

1 +

⌈

2w

1/2i

⌉)d

=
(

1 +
⌈

w2i+1
⌉)d

.

From claim (ii) of Lemma 1 we know that at most 2d levels of ancestors
above the base group can be in the same size group, and thus the number
of nodes in any size group is at most 2d times the above quantity.

Thus, the total number of expanded nodes over all of the base groups is

Ed(w, ǫ) ≤
b
∑

i=a+1

(

1 +
⌈

w2i+1
⌉)d

.

Observe that for i ≥ a + 1, we have w2i+1 ≥ w2a+2 ≥ 1. For any x ≥ 1,
note that 1 + ⌈x⌉ ≤ 3x, and hence we have

Ed(w, ǫ) ≤
b
∑

i=a+1

(

3w2i+1
)d

≤ (6w)d
b
∑

i=0

(2d)i.

Solving this geometric series yields

Ed(w, ǫ) ≤ (6w)d
(2d)b+1 − 1

2d − 1
≤ (6w)d

2d(
√

d/(2wǫ))d

2d − 1

=
2d

2d − 1

(

3
√

d

ǫ

)d

≤ 2

(

3
√

d

ǫ

)d

.

14

This completes the proof. ⊓⊔
As mentioned earlier, range reporting queries can be answered in the

same time, plus O(m), where m is the number of points reported. Observe
that the above proof is based on counting expanded nodes, which intersect
both the inner and outer range, and hence intersect the boundary of Q. For
convex ranges, we can use the same proof, but apply Lemma 3 to reduce
the exponential dependence on dimension slightly.

Theorem 2 Given a BBD-tree for a set of n data points in Rd, given a
convex query range Q of diameter w, and ǫ > 0, ǫ-approximate range count-
ing queries can be answered in O(2d log n + d3(3

√
d/ǫ)d−1) time. For fixed d

this is O(log n + (1/ǫ)d−1).

4 Lower Bounds for Approximate Range Search-

ing

The method we use in this paper to solve the approximate range counting
problem falls under the partition tree paradigm. This paradigm is also
commonly used for solving the exact version of this problem. In the context
of exact range counting, Chazelle and Welzl [9] have developed an interesting
lower bound argument for any algorithm that uses partition trees. In this
section we develop a similar argument for the approximate problem, which
will establish the optimality of our algorithm in this paradigm.

We start by reviewing the notion of a partition tree [17, 9]. We are given
a set P of n data points. A partition tree is a rooted tree of bounded degree
in which each node v of the tree is associated with a set of points P (v),
according to the following rules.

(a) The leaves of the tree have a one-to-one correspondence with the data
points.

(b) The subset of points associated with an internal node v is formed by
taking the union of all the points in the leaves of the subtree rooted
at v.

For simplicity we will assume that the degree is at least two; it will
be easy to see that the argument we develop here also holds without this
assumption. With each node v we also store its weight(v) defined as the
cardinality of the set P (v). Given a range Q we can search the partition
tree to count the number of points inside Q by a simple recursive procedure.
Chazelle and Welzl [9] have shown that in the worst case the number of nodes
visited is Ω(n1−1/d) for any partition tree. Using similar techniques, we show
a lower bound on the number of nodes visited for the approximate version of

15

the problem. We use the same natural generalization of the recursive range
search procedure that was presented in Fig. 6.

Define the visiting number of a partition tree to be the maximum number
of nodes visited by the above algorithm over all query ranges. We show that
a lower bound of Ω(log n + (1/ǫ)d−1) holds in the worst case on the visiting
number of any partition tree. First we modify some of the definitions of
Chazelle and Welzl [9] to apply to the approximate problem. We say that
a set P (v) is stabbed if neither P (v) ⊆ Q+ nor P (v) ∩ Q− = ∅ is true. In
other words, P (v) contains both a point inside Q− and a point outside Q+.
We define the stabbing number of a spanning path as the maximum number
of edges on the path (each edge is a set of its two end points) that can be
stabbed by some query range. Along the lines of Lemma 3.1 in [9], we can
easily establish the following.

Lemma 5 If T is any partition tree for P , then there exists a spanning path
whose stabbing number does not exceed the visiting number of T .

We now exhibit a data set P1 in d dimensions and a set of query ranges
X such that any spanning path will have a stabbing number of at least
Ω(1/ǫd−1) with respect to some query range in X. We assume that the
dimension d is fixed. Consider an axis-aligned infinite grid with grid spacing
4ǫ. Assume that the origin is a vertex of the grid. The set P1 consists of
a data point at each vertex of the grid that lies within the unit hypercube
[0, 1]d. Clearly, the number of data points is at least Ω(1/ǫd). Let ǫ′ = 4ǫ.
The query ranges in set X are balls in the L∞ metric of unit radius. The
centers of these balls are located along the d principal axis at distances from
the origin of −1+ ǫ′/2,−1+3ǫ′/2, . . . ,−ǫ′/2, respectively. This gives a total
of O(1/ǫ) query ranges.

4ε

Figure 7: Lower bound for approximate range searching. Data points are
shown in black. Ranges have been offset slightly for clarity.

Now consider any spanning path on the set of points P1. From the
construction it is easy to verify that every edge on this spanning path is

16

stabbed by some query range in X. Since the number of edges on the
spanning path is Ω(1/ǫd) and |X| is O(1/ǫ), it follows that the average
number of edges stabbed by a query range in X is Ω(1/ǫd−1). Therefore
there must exist a query range which stabs Ω(1/ǫd−1) edges. Thus the
stabbing number of any spanning path exceeds this quantity. By Lemma 5,
this is also a lower bound on the visiting number of any partition tree for
P1.

Let P2 be any set of n distinct data points. We next show an Ω(log n)
lower bound on the visiting number of any partition tree T for P2. Clearly,
T must have a leaf at depth Ω(log n). Let p be a data point in any such
leaf. Let Q be an L∞ ball centered at p. We choose the radius of Q to be
sufficiently small to ensure that its (1 + ǫ) expansion contains no other data
point. It is easy to see that the range Q stabs the point sets corresponding
to every proper ancestor of p. All such nodes are visited by the algorithm,
hence this is also a lower bound on the visiting number of T .

Combining this with the results of the last paragraph, we have the fol-
lowing lower bound on the visiting number of any partition tree in the worst
case. In fact, the lower bound holds even under the restriction to L∞ balls.

Theorem 3 For the set of query ranges consisting of balls in the L∞ met-
ric, the visiting number of any partition tree in the worst case is Ω(log n +
1/ǫd−1).

The theorem implies the optimality of our algorithm in the partition tree
paradigm for convex ranges, and near optimality for the more general class
of query ranges discussed in the introduction.

5 Experimental Results

To show the savings possible if one is willing to settle for approximations
instead of requiring exact counts, we implemented our algorithm and tested
it on a number of data sets of various sizes, various distributions, and with
various sizes and types of ranges. To enhance performance, we implemented
a variation of the data structure described in Section 2. Rather than us-
ing the strict midpoint rule, we use a somewhat more flexible decompo-
sition method, called the fair-split rule [2]. Intuitively, this splitting rule
attempts to partition the point set of each box as evenly as possible, subject
to maintaining boxes with bounded aspect ratio. Our decomposition process
attempts to avoid centroid shrinking whenever it is not warranted. The rea-
son is that there are optimizations that can be performed at splitting nodes
that are not possible at shrinking nodes [2]. Our experience with the related
approximate nearest neighbor searching problem has shown that, while these
features are needed for highly clustered data sets, they are rarely needed in
the sorts of naturally arising distributions we consider here. Throughout we

17

used a bucket size (the maximum number of points associated with any leaf
cell) of eight.

We ran our program for approximate range counting for ǫ ranging from
0 (exact searches) to 0.5. Our experiments were conducted for data points
drawn from a number of distributions. We present the following, since they
were most representative.

Uniform: Each coordinate was chosen uniformly from the interval [0, 1].

Clustered Gaussian: Ten points were chosen from the uniform distribu-
tion over the unit hypercube and a Gaussian distribution with stan-
dard deviation 0.05 centered at each.

Correlated Laplacian: An autoregressive source using the following re-
currence to generate successive outputs Xn = ρXn−1 + Wn, where Wn

was chosen so that the marginal density of Xn is Laplacian with unit
variance. The correlation coefficient ρ was taken to be 0.9. See [12]
for more information.

For each distribution we generated data sets ranging in size from 26 = 64
to 216 = 65, 536. Experiments were run in dimensions 2 and 3, and the query
ranges were either L2 balls (circles) or L∞ balls (squares). We only show
the results for dimension 2 and for circular ranges. We tested radii, ranging
in size from 1/256 to 1/2. For each experiment, we fixed ǫ and the radius
of the query balls and measured a number of statistics, averaged over 1,000
queries. The center of the query ball was chosen from the same distribution
as the data points.

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
od

es
 V

is
ite

d

Epsilon

r=1/2
r=1/4
r=1/8
r=1/16
r=1/64
r=1/256

Figure 8: Number of nodes visited versus ǫ for the uniform distribution.

In Figures 8, 9, and 10, we show the average number of nodes visited as
a function of ǫ, for each of the distributions. The number of data points is
65,536. Since the algorithm does a constant amount of work for each node
visited, the number of nodes visited accurately reflects its running time. (We

18

0

100

200

300

400

500

600

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
od

es
 V

is
ite

d

Epsilon

r=1/2
r=1/4
r=1/8
r=1/16
r=1/64
r=1/256

Figure 9: Number of nodes visited versus ǫ for the clustered Gaussian dis-
tribution.

0

50

100

150

200

250

300

350

400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
od

es
 V

is
ite

d

Epsilon

r=1/2
r=1/4
r=1/8
r=1/16
r=1/64
r=1/256

Figure 10: Number of nodes visited versus ǫ for the correlated Laplacian
distribution.

19

also measured floating point operations, and found that in dimension 2 on
the average there were from 10 to 20 floating point operations for each node
visited.) As predicted in our analysis, as ǫ increases from 0 to even a small
value such as 0.1, there are significant improvements in running time (factors
as high as 10 to 1, and often around 4 to 1) for larger ranges. In light of the
results of this paper, the reason is obvious, namely, that the complexity of
the approximate range searching problem grows logarithmically with n. In
contrast the best known algorithms for the exact problem have running times
that grow as n1/2 in dimension 2 (even under the assumption of uniformly
distributed data).

As ǫ grows, the running times tend to converge, irrespective of radius.
Improvements for smaller ranges were not as significant, because the running
times on small ranges are uniformly small. Results for square ranges were
similar, and results in 3-space were similar, although the improvements were
not quite as dramatic.

We measured the actual average error committed by the algorithm,
which is defined as follows. Consider a range of radius r and a point at
distance r′. If r′ < r but the point was classified as being outside the
range, the associated misclassification error is defined to be the relative er-
ror, (r−r′)/r. Otherwise if r′ > r but the point was classified as being inside
the range, the associated misclassification error is (r′ − r)/r. By definition,
there can be no classification error greater than ǫ. But the algorithm may do
better than this. To see how much better it does on average, we measured
this relative error for every misclassified point, and averaged this over all
the points which were eligible for misclassification (that is, points lying in
the difference of the outer and inner ranges). This quantity is the average
error of the query. If no points were eligible for misclassification, then this
quantity is zero.

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 E
rr

or

Epsilon

r=1/2
r=1/4
r=1/8
r=1/16
r=1/64
r=1/256

Figure 11: Average error versus ǫ for the uniform distribution.

In Figures 11, 12, and 13, we show the average error as a function of ǫ,
for 65,536 data points. The key observation is that average error appears to

20

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 E
rr

or

Epsilon

r=1/2
r=1/4
r=1/8
r=1/16
r=1/64
r=1/256

Figure 12: Average error versus ǫ for the clustered Gaussian distribution.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 E
rr

or

Epsilon

r=1/2
r=1/4
r=1/8
r=1/16
r=1/64
r=1/256

Figure 13: Average error versus ǫ for the correlated Laplacian distribution.

21

vary almost linearly with ǫ (depending on distribution, dimension, and other
factors). In dimension 2, average errors were frequently less than 0.06ǫ, and
in all distributions average error was never greater than 0.1ǫ. These bounds
were observed across all distributions tested, for both circular and square
ranges, and in both dimensions 2 and 3. This explains in part, one of the
reasons that we ran experiments with such large values of ǫ. Even with ǫ
as large as 0.5 (allowing a maximum 50% error), we were often observing
much smaller average errors in the range of 1.5% to 3%.

6 Conclusions

We have presented a data structure for answering approximate range queries,
where the error allowed by the algorithm is a function of the diameter of
the range. We have shown that in any fixed dimension d, a set of n points
in Rd can be preprocessed in O(n log n) time and O(n) space, such that
approximate queries can be answered in O(log n + (1/ǫ)d) time, and for
convex ranges the running time is O(log n + (1/ǫ)d−1). We also presented a
lower bound of Ω(log n+(1/ǫ)d−1) for approximate range searching based on
the partition tree model. This implies that our algorithm is asymptotically
optimal for convex ranges (assuming fixed dimensions). The algorithm is
quite practical, and has been implemented.

There are a number of interesting open problems to be considered. The
first involves the relatively high exponential dependence on dimension. Can
these exponential factors be reduced, say down the lines of recent research in
the area of approximate nearest neighbor searching? An intriguing question
is the fact that the algorithm’s observed average error tends to be much
lower than the allowed error factor ǫ. Is there a good explanation for this
phenomenon?

References

[1] S. Arya, D. M. Mount. Algorithms for fast vector quantization. In
Proc. of DCC ’93: Data Compression Conference, eds. J. A. Storer
and M. Cohn, IEEE Press, pages 381–390, 1993.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An
optimal algorithm for approximate nearest neighbor searching. Journal
of the ACM, 45:891–923, 1998.

[3] J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Ann.
ACM Sympos. Comput. Geom., pages 187–197, 1990.

[4] M. Bern. Approximate closest-point queries in high dimensions. Inform.
Process. Lett., 45:95–99, 1993.

22

[5] H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range
searching. Discrete Comput. Geom., 10:143–155, 1993.

[6] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and n-body
potential fields. Journal of the ACM, 42:67–90, 1995.

[7] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest pair
and n-body potential fields. In Proc. 6th ACM-SIAM Sympos. Discrete
Algorithms, 1995.

[8] B. Chazelle. Lower bounds on the complexity of polytope range search-
ing. J. Amer. Math. Soc., 2:637–666, 1989.

[9] B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of
finite VC-dimension. Discrete Comput. Geom., 4:467–489, 1989.

[10] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem.
In Proc. 24th Ann. IEEE Sympos. on the Found. Comput. Sci., pages
226–232, 1983.

[11] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect
ratio trees: Combining the advantages of k-d trees and octrees. In Proc.
10th ACM-SIAM Sympos. Discrete Algorithms, 1999.

[12] N. Farvardin and J. W. Modestino. Rate-distortion performance of
DPCM schemes for autoregressive sources. IEEE Transactions on In-
formation Theory, 31:402–418, 1985.

[13] J. Matoušek. Range searching with efficient hierarchical cuttings. Dis-
crete Comput. Geom., 10(2):157–182, 1993.

[14] M. H. Overmars. Point location in fat subdivisions. Inform. Process.
Lett., 44:261–265, 1992.

[15] F. P. Preparata and M. I. Shamos. Computational Geometry: an In-
troduction. Springer-Verlag, New York, NY, 1985.

[16] H. Samet. The Design and Analysis of Spatial Data Structures. Addison
Wesley, Reading, MA, 1990.

[17] D. E. Willard. Polygon retrieval. SIAM J. Comput., 11:149–165, 1982.

[18] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors
problem. Discrete Comput. Geom., 4:101–115, 1989.

23

