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Abstract. We consider a restricted version of the general Set Covering
problem in which each set in the given set system intersects with any
other set in at most 1 element. We show that the Set Covering problem
with intersection 1 cannot be approximated within a o(logn) factor in
random polynomial time unless NP C ZTIME(n®(°¢'°¢™)) We also
observe that the main challenge in derandomizing this reduction lies in
finding a hitting set for large volume combinatorial rectangles satisty-
ing certain intersection properties. These properties are not satisfied by
current methods of hitting set construction.

An example of a Set Covering problem with the intersection 1 property is
the problem of covering a given set of points in two or higher dimensions
using straight lines; any two straight lines intersect in at most one point.
The best approximation algorithm currently known for this problem has
an approximation factor of 8(log n), and beating this bound seems hard.
We observe that this problem is Max-SNP-Hard.

1 Introduction

The general Set Covering problem requires covering a given base set B of size
n using the fewest number of sets from a given collection of subsets of B. This
is a classical NP-Complete problem and its instances arise in numerous diverse
settings. Thus approximation algorithms which run in polynomial time are of
interest.

Johnson[12] showed that the greedy algorithm for Set Cover gives an O(logn)
approximation factor. Much later, following advances in Probabilistically Check-
able Proofs [4], Lund and Yannakakis [15] and Bellare et al. [7] showed that
there exists a positive constant ¢ such that the Set Covering problem can-
not be approximated in polynomial time within a clogn factor unless NP C
DTIME(n®U81087)) Feige [10] improved the approximation threshold to (1 —
o(1)) logn, under the same assumption. Raz and Safra[19] and Arora and Su-
dan[5] then obtained improved Probabilistically Checkable Proof Systems with
sub-constant error probability; their work implied that the Set Covering problem
cannot be approximated within a clogn approximation factor (for some constant
¢) unless NP = P.



Note that all the above hardness results are for general instances of the Set
Covering problem and do not hold for instances when the intersection of any pair
of sets in the given collection is guaranteed to be at most 1. Our motivation for
considering this restriction to intersection 1 arose from the following geometric
instance of the Set Covering problem.

Given a collection of points and lines in a plane, consider the problem of
covering the points with as few lines as possible. Megiddo and Tamir[16] showed
that this problem is NP-Hard. Hassin and Megiddo[11] showed NP-Hardness
even when the lines are axis-parallel but in 3D. The best approximation factor
known for this problem is @(logn). Improving this factor seems to be hard, and
this motivated our study of inapproximability for Set Covering with intersection
1. Note that any two lines intersect in at most 1 point.

The problem of covering points with lines was in turn motivated by the prob-
lem of covering a rectilinear polygon with holes using rectangles [13]. This prob-
lem has applications in printing integrated circuits and image compression[9].
This problem is known to be Max-SNP-Hard even when the rectangles are con-
strained to be axis-parallel. For this case, an O(y/logn)-factor approximation
algorithm was obtained recently by Anil Kumar and Ramesh[2]. However, this
algorithm does not extend to the case when the rectangles need not be axis-
parallel. Getting a o(log n)-factor approximation algorithm for this case seems
to require solving the problem of covering points with arbitrary lines, though we
are not sure of the exact nature of this relationship.

Our Result. We show that there exists a constant ¢ > 0 such that ap-
proximating the Set Covering problem with intersection 1 to within a factor of
clogn in random polynomial time is possible only if NP C ZTIM E(n®(cglogn))
(where ZTIM E(t) denotes the class of languages that have a probabilistic algo-
rithm running in expected time ¢ with zero error). We also give a sub-exponential
derandomization which shows that approximating the Set Covering problem with

intersection 1 to within a factor of clog"ﬁ)gn in deterministic polynomial time is

possible only if NP C DTIME(Q”I%), for any constant € < 1/2.

The starting point for our result above is the Lund-Yannakakis hardness
proof[15] for the general Set Covering problem. This proof uses an auxiliary set
system with certain properties. We show that this auxiliary set system necessarily
leads to large intersection. We then replace this auxiliary set system by another
carefully chosen set system with additional properties and modify the reduction
appropriately to ensure that intersection sizes stay small. The key features of
the new set system are partitions of the base set into several sets of smaller size
(instead of just 2 sets as in the case of the Lund-Yannakakis system or a constant
number of sets as in Feige’s system; small sets will lead to small intersection)
and several such partitions (so that sets which “access” the same partition in
the Lund-Yannakakis system and therefore have large intersection now “access”
distinct partitions).

We then show how the new set system above can be constructed in random-
ized polynomial time and also how this randomized algorithm can be d1erand0m—
ized using conditional probabilities and appropriate estimators in O(2” ) time,



where € is a positive constant, specified in Section 5. This leads to the two condi-

tions above, namely, NP C DTIME(2" ) (but for a hardness of O(lolg"{gogn))

and NP C ZTIM E(n®U°81°87)) " A deterministic polynomial time construction
of our new set system will lead to the quasi-NP-Hardness of approximating the
Set Covering problem with intersection 1 to within a factor of clogn, for some
constant ¢ > 0.

While the Lund-Yannakakis set system can be constructed in deterministic
polynomial time using e-biased limited independence sample spaces, this does
not seem to be true of our set system. One of the main bottlenecks in construct-
ing our set system in deterministic polynomial time is the task of obtaining a
polynomial size hitting set for Combinatorial Rectangles, with the hitting set sat-
isfying additional properties. One of these properties (the most important one)
is the following: if a hitting set point has the elements i, j among its coordinates,
then no other hitting set point can have both i,j among its coordinates. The
only known construction of a polynomial size hitting set for combinatorial rect-
angles is by Linial, Luby, Saks, and Zuckerman [14] and is based on enumerating
walks in a constant degree expander graph. In the full version of this paper, we
show that the hitting set obtained by [14] does not satisfy the above property
for reasons that seem intrinsic to the use of constant degree expander graphs.

In the full version, we also note that if the proof systems for NP obtained
by Raz and Safra[19] or Arora and Sudan[5] have an additional property then
the condition NP C ZTIM E(n®(°81°&™)) can be improved to NP = ZPP.
Similarly, the statement that approximating the Set Covering problem with in-

tersection 1 to within a factor of clognlgngn in deterministic polynomial time is

possible only if NP C DTIME(Q"PF) can be strengthened to approximation

factor clogn instead of clololgn . The property needed of the proof systems is
glogn

that the degree, i.e., the total number of random choices of the verifier for which

a particular question is asked of a particular prover, be O(n?), for some small

enough constant value §. The degree influences the number of partitions in our

auxiliary proof system and therefore needs to be small. It is not clear whether

existing proof systems have this property [20].

The above proof of hardness for Set Covering with intersection 1 does not
apply to the problem of covering points with lines, the original problem which
motivated this paper; however, it does indicate that algorithms based on set
cardinalities and small pairwise intersection alone are unlikely to give a o(logn)
approximation factor for this problem.

Further, our result shows that constant VC-dimension alone does not help
in getting a o(logn) approximation for the Set Covering problem. This is to be
contrasted with the result of Bronnimann and Goodrich[8] which shows that
if the VC-dimension is a constant and an O(1) sized (weighted) e-net can be
constructed in polynomial time, then a constant factor approximation can be
obtained.

The paper is organized as follows. Section 2 will give an overview of the
Lund-Yannakakis reduction. Section 3 shows why the Lund-Yannakakis proof
does not show hardness of Set Covering when the intersection is constrained to



be 1. Section 4 describes the reduction to Set Covering with intersection 1. This
section describes a new set system we need to obtain in order to perform the
reduction and shows hardness of approximation of its set cover, unless NP C
ZTTM E(n®U°81081)) Section 5 will sketch the randomized construction of this
set system. Section 6 sketches the sub-exponential time derandomization, which
leads to a slightly different hardness result, unless NP C DTIME(Q”PF), €<
1/2. Section 7 enumerates several interesting open problems which arise from
this paper.

2 Preliminaries: The Lund-Yannakakis Reduction

In this section, we sketch the version of the Lund-Yannakakis reduction described
by Arora and Lund [3]. The reduction starts with a 2-Prover 1-Round proof
system for Max-3SAT(5) which has inverse polylogarithmic error probability,
uses O(lognloglogn) randomness, and has O(loglogn) answer size. Here n is
the size of the Max-3SAT(5) formula F. Arora and Lund[3] abstract this proof
system into the following Label Cover problem.

The Label Cover Problem. A bipartite graph G having n' + n' vertices and
edge set E is given, where n' = n@0081087) Al vertices have the same degree
deg, which is polylogarithmic in n. For each edge e € FE, a partial function
fe 1 [d] = [d'] is also given, where d > d', and d,d’ are polylogarithmic in n.
The aim is to assign to each vertex on the left, a label in the range 1...d, and
to each vertex on the right, a label in the range 1...d', so as to maximize the
number of edges e = (u, v) satisfying f.(label(u)) = label(v). Edge e = (u,v) is

said to be satisfied by a labelling if the labelling satisfies f.(label(u)) = label(v).

The 2-Prover 1-Round proof system mentioned above ensures that either all
the edges in G are satisfied by some labelling or that no labelling satisfies more
than a log]—gn fraction of the edges, depending upon whether or not the Max-
3SAT(5) formula F is satisfiable. Next, in time polynomial in the size of G,
an instance SC of the Set Covering problem is obtained from this Label Cover
problem £C with the following properties: if there exists a labelling satisfying
all edges in G then there is a set cover of size 2n', and if no labelling satisfies
more than a ﬁ fraction of the edges then the smallest set cover has size
£2(2n'logn'). The base set in SC will have size polynomial in n'. It follows that
the Set Covering problem cannot be approximated to a logarithmic factor of the
base set size unless NP C DTTM E(n©®U°glogn)),

Improving this condition to NP = P requires using a stronger multi-prover
proof system [19,5] which has a constant number of provers (more than 2),
O(log n) randomness, O(log log n) answer sizes, and inverse polylogarithmic error
probability. The reduction from such a proof system to the Set Covering problem
is similar to the reduction from the Label Cover to the Set Covering problem
mentioned above, with a modification needed to handle more than 2 provers
(this modification is described in [7]).



In this abstract, we will only describe the reduction from Label Cover to
the Set Covering problem and show how we can modify this reduction to hold
for the case of intersection 1. This will show that Set Covering problem with
intersection 1 cannot be approximated to a logarithmic factor unless NP C
ZTTM E(n®Uglogn)) The multi-prover proof system of the previous paragraph
with an additional condition can strengthen the latter condition to NP = ZPP;
this is described in the full version.

We now briefly sketch the reduction from an instance £C of Label Cover to
an instance SC of the Set Covering problem.

2.1 Label Cover to Set Cover

The following auxiliary set system given by a base set N = {1...n'} and its
partitions is needed.

The Auxiliary System of Partitions. Consider d’' distinct partitions of N

into two sets each, with the partitions satisfying the following property: if at
logn’
2

most sets in all are chosen from the various partitions with no two sets
coming from the same partition, then the union of these sets does not cover
N. Partitions with the above properties can be constructed deterministically in
polynomial time [1,17]. Let P!, P? respectively denote the first and second sets
in the ith partition. We describe the construction of SC next.

Using P/s to construct SC. The base set B for SC is defined to be
{(e,i)le € E,1 < i < n'}. The collection C of subsets of B contains a set
C(v,a), for each vertex v and each possible label a with which v can be labelled.
If v is a vertex on the left, then for each a, 1 < a < d, C(v,a) is defined as
{(e,i)|e incident on v A i € Pfl,,(a)}' And if v is a vertex on the right, then for
each a, 1 <a <d', C(v,a) is defined as {(e,i)|e incident on v Ai € P?}.

That SC satisfies the required conditions can be seen from the following facts.

1. If there exists a vertex labelling which satisfies all the edges, then B can be
covered by just the sets C(v, a) where a is the label given to v. Thus the size
of the optimum cover is 2n’ in this case.

2. If the total number of sets in the optimum set cover is at most some suitable
constant times n'logn’, then at least a constant fraction of the edges e =
(u,v) have the property that the number of sets of the form C(u, ) plus the
number of sets of the form C(v, *) in the optimum set cover is at most logn’

Then, for each such edge e, there must exist a label a such that C(u,a) and

C(v, fe(a)) are both in this optimum cover. It can be easily seen that choosing

a label uniformly at random from these sets for each vertex implies that there

exists a labelling of the vertices which satisfies an Q(Mg]Trﬂ) > —L— fraction

log3n
of the edges.

3 &SC has Large Intersection

There are two reasons why sets in the collection C' in SC have large intersections.



Parts in the Partitions are Large. The first and obvious reason is that
the sets in each partition in the auxiliary system of partitions are large and
could have size "7’; therefore, two sets in distinct partitions could have 2(n')
intersection. This could lead to sets C(v,a) and C(v,b) having 2(n') common
elements of the form (e, i), for some e incident on v.

Clearly, the solution to this problem is to work with an auxiliary system
of partitions where each partition is a partition into not just 2 large sets, but
into several small sets. The problem remains if we form only a constant number
of parts, as in [10]. We choose to partition into (n')1™¢ sets, where € is some
non-zero constant to be fixed later. This ensures that each set in each partition
has size 6((n')¢ polylog(n)) and that any two such sets have O(1) intersection.
However, smaller set size leads to other problems which we shall describe shortly.

Functions f.() are not 1-1. Suppose we work with smaller set sizes as
above. Then consider the sets C'(v,a) and C(v,b), where v is a vertex on the left
and a,b are labels with the following property: for some edge e incident on v,
fe(a) = fo(b). Then each element (e, *x) which appears in C(v, a) will also appear
in C(v,b), leading to an intersection size of up to 2((n')¢xdeg), where deg is the
degree of v in G. This is a more serious problem. Our solution to this problem is
to ensure that sets C(v,a) and C(v,b) are constructed using distinct partitions
in the auxiliary system of partitions.

Next, we describe how to modify the auxiliary system of partitions and the
construction of SC in accordance with the above.

4 LC to SC with Intersection 1

Our new auxiliary system of partitions P will have d' * (deg + 1) * d partitions,
where deg is the degree of any vertex in G. Each partition has m = (n')}~¢
parts, for some € > 0 to be determined. These partitions are organized into d’
groups, each containing (deg + 1) % d partitions. Each group is further organized
into deg + 1 subgroups, each containing d partitions. The first m/2 sets in each
partition comprise its left half and the last m/2 its right half.

Let P, s, denote the pth partition in the sth subgroup of the gth group and
let P, 5 px denote the kth set (i.e., part) in this partition. Let By, denote the set
Ug.s.pPg.spk if 1 <k <m/2, and the set Uy sPy 5.1k, if m/2 < k < m. We also
refer to By, as the kth column of P.

We need the following properties to be satisfied by the system of partitions
P.

1. The right sides of all partitions within a subgroup are identical, i.e., Py s px =
P, 51k, for every k> m/2.

2. P(g,s,p, k)N P(g',s",p' k) = ¢ unless either g = ¢',s = s',p = p/, or,
k> m/2 and g = ¢',s = s'. In other words, no element appears twice
within a column, modulo the fact that the right sides of partitions within a
subgroup are identical.

3. |BrNBy| <1lforall k,k', 1<k k' <m, k#Ek.



4. Suppose N is covered using at most Sm logn' sets in all, disallowing sets on
the right sides of those partitions which are not the first in their respective
subgroups. Then there must be a partition in some subgroup s such that the
number of sets chosen from the left side of this partition plus the number of
sets chosen from right side of the first partition in s together sum to at least
3

Zm,.

e and f§ are constants which will be fixed later. Let Ay = Ug Py s p.k;
for each p,k, 1 < p < d,1 < k < m/2. Let Dy = UsPy 51, for each g,k,
1<g<d,m/2+1<k<m. Property 2 above implies that:

5. [Apr N Ap | =0 for all p #p', where 1 < p,p' <d and k < m/2.
6. [Dgx N Dy | =0forall g#g', where 1 <g,¢' <d and k > m/2.

We will describe how to obtain a system of partitions P satisfying these
properties in Section 5 and Section 6. First, we show how a set, system SC with
intersection 1 can be constructed using P.

4.1 Using P to construct SC

The base set B for SC is defined to be {(e,i)|le € E,1 < i < n'} as before. This
set has size (n')? x deg = O((n')? polylog(n)).

The collection C' of subsets of B contains m/2 sets C1(v,a)...Cp,/2(v,a),
for each vertex v on the left (in graph G) and each possible label a with which v
can be labelled. In addition, it contains m/2 sets C,,/211(v,0a)...Cp(v,a), for
each vertex v on the right in G and each possible label a with which v can be
labelled. These sets are defined as follows.

Let E, denote the set of edges incident on v in G. We edge-colour G using
deg + 1 colours. Let col(e) be the colour given to edge e in this edge colouring.
For a vertex v on the left side, and any number k between 1 and m /2, Cy(v,a) =
Ueer, 1(€,7)]i € Pf_(a),col(e),a,k }- FOr a vertex v on the right side, and any number
k between m /2 + 1 and m, Cy(v,a) = Ueer, {(€,9)]i € Py coie) 1,1}

We now give the following lemmas which state that the set system SC has
intersection 1 and that it has a set cover of small size if and only if there exists
a way to label the vertices of G satisfying several edges simultaneously. The
hardness of approximation of the set cover of SC is given in Corollary 1, whose
proof will appear in the full version.

Lemma 1. The intersection of any two distinct sets Cy(v,a) and Cy (w,b) is
at most 1.

Proof. Note that for |Cy(v,a) N Cy (w,b)] to exceed 1, either v, w must be iden-
tical or there must be an edge between v and w. The reason for this is that each
element in Cy(v,a) has the form (e,*) where e is an edge incident at v while
each element in Cy (w,b) has the form (e’, %), where €’ is an edge incident at w.
We consider each case in turn.

Case 1. Suppose v = w. Then either k # k' or k = k',a £ b.



First, consider Ci(v,a) and Cy/ (v,b) where k # k' and v is a vertex in the left
side. If a = b, observe that Ct(v,a) N Cy (v,a) = ¢. So assume that a # b. The
elements in the former set are of the form (e, i) where i € Py, (4),coi(e),a,rx and the
elements of the latter set are of the form (e, j) where j € Pf_ (4, coi(e),p,17- NOte
that UeEE‘,,Pfe(a),col(e),rL,k C By, and UeEE‘,,Pfe(b),col(e),b,k’ C By By Property 3
of P, the intersection By, By is at most 1. However, this alone does not imply
that Cp(v,a) and Cy (v,b) have intersection at most 1, because there could
be several tuples in both sets, all having identical second entries. This could
happen if there are edges e;, e; incident on v such that f., (a) = fe,(a), fe, (b) =
fes(b) and there had been no colouring on edges. Property 2 and the fact that
col(er) # col(es) for any two edges ey, es incident on v rule out this possibility,
thus implying that |Ck(v,a) N Cy (v,b)| < 1. The proof for the case where v is a
vertex on the right is identical.

Second, consider Ck(v,a) and Ck(v,b), where v is a vertex on the left and
a # b. Elements in the former set are of the form (e,i) where e is an edge
incident on v and i € Py_(4),col(e),a,k- Similarly, elements in the latter set are of
the form (e, j) where j € Pfﬁ(b),col(e)7b,k- Note that UEEEvaF(a),col(e)7a7k CAx
and Uee g, Py, (1), col(e) b,k € Abk- The claim follows from Property 5 in this case.

Third, consider Cy (v, a) and Cy(v,b), where v is a vertex on the right, a # b,
and k > m/2. Elements in the former set are of the form (e, i) where e is an
edge incident on v and i € P, .0i(¢),1,5- Similarly, elements in the latter set are
of the form (e, j) where j € Py coi(e),1,1- Note that Ucer, Py core),1,6 € Da,k and
UeeE, Py cot(e)1,k € Do k- The claim follows from Property 6 in this case.

Case 2. Finally consider sets Cy(v,a) and Cy (w,b) where e = (v,w) is an
edge, v is on the left side, and w on the right. Then C} (v, a) contains elements
of the form (e’,i) where i € Pr, (a) col(e').a,k- Crr (w, D) contains elements of the
form (', j) where j € Py oi(ery,1,1r- The only possible elements in Cy(v,a) N
Cr (w,b) are tuples with the first entry equal to e. Since Py, (4 coi(e),ar C Br
and Py co(e),1,6 € Br and k <m/2,k" > m/2, the claim follows from Properties
2 and 3 in this case. U

Lemma 2. If there exists a way of labelling vertices of G satisfying all its edges
then there exists a collection of n'm sets in C which covers B.

Proof. Let label(v) denote the label given to vertex v by the above labelling. Con-
sider the collection C' C C' comprising sets C1(v,label(v)) ..., Cm (v, label(v))
for each vertex v on the left and sets C'm 41 (w, label(w)) ..., Cp (w, label (w)) for
each vertex w on the right. We show that these sets cover B. Since there are
m/2 sets in C' per vertex, |C'| = 2n' * F = n'm.

Consider any edge e = (v, w). It suffices to show that for every i, 1 <i < n',
the tuple (e, ) in B is contained in either one of Cy (v, label(v)) ..., C= (v, label(v))
or in one of Cm 41 (w, label(w)) ..., Cp (w,label(w)). The key property we use is
that f.(label(v)) = label (w).

Consider the partitions Pfe(label(v)),col(e),lrzbel(v) and Babel(w)),col(e),l- Since
fe(label(v)) = label(w), the two partitions belong to the same group and sub-
group. Since all partitions in a subgroup have the same right hand side, the



element i must be present either in one of the sets Papei(w),col(e),tabel(v), k> Where
k < m/2, or in one of the sets Papei(w),coi(e),1,k, Where k > m/2. We consider
each case in turn.

First, suppose i € Plapei(w),col(e),label(v),k; for some k < m/2. Then, from
the definition of Cy(v,label(v)), (e,i) € Ck(v,label(v)). Second, suppose i €
Piapei(w),cot(e) 1,k for some k > m /2. Then, from the definition of Cy,(w, label(w)),
(e,i) € Cy(w,label(w)). The lemma follows. u

Lemma 3. If the smallest collection C' of sets in C covering the base set B has
size at most gn’mlog n' then there exists a labelling of G which satisfies at least
a W fraction of the edges. Recall that B was defined in Property 4 of P.
Proof. Given C', we need to demonstrate a labelling of G with the above prop-
erty. For each vertex v, define L(v) to be the collection of labels a such that
Ck(v,a) € C' for some k. We think of L(v) as the set of “suggested labels” for v
given by C’ and this will be a multiset in general. The labelling we obtain will
ultimately choose a label for v from this set. It remains to show that there is
a way of assigning each vertex v a label from L(v) so as to satisfy sufficiently
many edges.

We need some definitions. For an edge e = (v,w), define #(e) = |L(v)| +
|L(w)|. Since the sum of the sizes of all L(v)s put together is at most 5n'm logn’
and since all vertices in G have identical degrees, the average value of #(e) is
at most %mlog n'. Thus half the edges e have #(e) < Smlogn'. We call these
edges good.

We show how to determine a subset L'(v) of L(v) for each vertex v so that
the following properties are satisfied. If v has a good edge incident on it then
L'(v) has size at most 481logn’. Further, for each good edge e = (v, w), there
exists a label in L'(v) and one in L'(w) which together satisfy e. Clearly, random
independent choices of labels from L'(v) will satisfy a good edge with probability
Woggn,, implying a labelling which will satisfies at least a W fraction
of the edges (since the total number of edges is at most twice the number of
good edges), as required.

For each label a € L(v), include it in L'(v) if and only if the number of sets

of the form C,(v,a) in C' is at least m /4. Clearly, |L'(v)| < B%‘;i”, =4plogn’,
for vertices v on which good edges are incident. It remains to show that for
each good edge e = (v,w), there exists a label in L'(v) and one in L'(w) which
together satisfy e.

Consider a good edge e = (v, w). Using Property 4 of P, it follows that there
exists a label a € L(v) and a label b € L(w) such that the f.(a) = b and the
number of sets of the form C, (v, a) or C,(w, b) in C’ is at least 3m /4. The latter
implies that the number of sets of the form C,(v,a) in C' must be at least m/4,
and likewise for C,(w,b). Thus a € L'(v) and b € L'(w). Since f.(a) = b, the
claim follows. u

Corollary 1. Set Cover with intersection 1 cannot be approzimated within a

factor of Blng"I in random polynomial time, for some constant 5, 0 < 8 < %,
unless NP C ZTIME(nO(loglng "’)). Further, if the auziliary system of partitions



P can be constructed in deterministic polynomial (in n') time, then approzimat-
ing to within a Blo% factor is possible only if NP = DTIM E(nCUoglegn)),

5 Randomized Construction of the Auxiliary System P

The obvious randomized construction is the following. Ignore the division into
groups and just view P as a collection of subgroups. For each partition which is
the first in its subgroup, throw each element i independently and uniformly at
random into one of the m sets in that partition. For each partition P which is
not the first in its subgroup, throw each element i which is not present in any
of the sets on the right side of the first partition () in this subgroup, into one
of the first m/2 sets in P. Property 1 is thus satisfied directly. We need to show
that Properties 2,3,4 are together satisfied with non-zero probability.

It can be shown quite easily that Property 4 holds with probability at least
1- (%)””723‘9, provided e > 22f. Slightly weak versions of Properties 2 and 3
(intersection bounds of 2 instead of 1) also follow immediately. This can be im-
proved in the case of intersection 1 using the Lovasz Local Lemma, but this does
not give a constant success probability and also leads to problems in derandom-
ization. The details of these calculations appear in the full version.

To obtain a high probability of success, we need to change the randomized
construction above to respect the following additional restriction (we call this

7‘1’*(“"’7;])*“’, for all g,s,p,k,

Property 7): each set P, , ) has size at most
1<g<d,1<s<deg+1,1<p<d,1<k<m.

The new randomized construction proceeds as in the previous random ex-
periment, fixing partitions in the same order as before, except that any choice of
throwing an element i € N which violates Properties 2,3,7 is precluded. Prop-
erty 7 enables us to show that not too many choices are precluded for each
element, and therefore, this experiment stays close in behaviour to the previous
one (provided 228 < € < 1/2), except that Properties 2,3,7 are all automatically
satisfied. The details appear in the full version.

6 Derandomization in O(2" ") Time

The main hurdle in derandomizing the above randomized construction in poly-

1—¢’

nomial time is Property 4. There could be up to O(2m*rolvles(n)y = O(2(n)' ")
ways of choosing fmlogn' sets from the various partitions in P for a constant
€' slightly smaller than e, and we need that each of these choices fails to cover
N for Property 4 to be satisfied.

For the Lund-Yannakakis system of partitions described in Section 2.1, each
partition was into 2 sets and the corresponding property could be obtained deter-
ministically using small-bias log n-wise independent sample space constructions.
This is no longer true in our case. Feige’s [10] system of partitions, where each
partition is into several but still a constant number of parts, can be obtained
deterministically using anti-universal sets [17]. However, it is not clear how to



apply either Feige’'s modified proof system or his system of partitions to get
intersection 1.

We show in the full version that enforcing Property 4 in polynomial time cor-
responds to constructing hitting combinatorial rectangles with certain restricted
kinds of sets, though we do not know any efficient constructions for them. In
this paper, we take the slower approach of using Conditional Probabilities and
enforcing Property 4 by checking each of the above choices explicitly. However,
note that the number of choices is superexponential in n (even though it is sub-
exponential in n'). To obtain a derandomization which is sub-exponential in n,
we make the following change in P: the base set is taken to be of size n instead
of n'. We use an appropriate pessimistic estimator and conditional probabilities
to construct P with parameter n instead of n' (details will be given in the full
version). This will give a gap of @(logn) (instead of @(logn')) in the set cover
instance SC). But since the base set size in SC is now O((n' * n) polylog(n)),

logn'

we get a hardness of only ©(logn) = O(; 250

) (note that the approximation
1—e

factor must be with respect to the base set size) unless NP ¢ DTIME(2™ ),
for any constant € such that 226 < e < 1/2.

7 Open Problems

A significant contribution of this paper is that it leads to several open problems.

1. Is there a polynomial time algorithm for constructing the partition system
in Section 47 In the full version, we show its relation to the question of construc-
tion of hitting sets for combinatorial rectangles with certain constraints. Can
a hitting set for large volume combinatorial rectangles, with the property that
any two hitting set points agree in at most one coordinate, be constructed in
polynomial time? Alternatively, can a different proof system be obtained, as in
[10], which will require a set system with weaker hitting properties?

2. Are there instances of the problem of covering points by lines, with an
integrality gap of @(logn)? In the full version, we show that the an integrality
gap of 2 and we describe a promising construction, which might have a larger
gap.

3. Are there such explicit constructions for the the Set Covering problem
with intersection 1?7 Randomized constructions are easy for this but we do not
know how to do an explicit construction.

4. Is there a polynomial time algorithm for the problem of covering points
with lines which has an o(logn) approximation factor, or can super-constant
hardness (or even a hardness of factor 2) be proved? In the final version, we
observe that the NP-Hardness proof of Megiddo and Tamir[16] can be easily
extended to a Max-SNP-Hardness proof.
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