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t. We 
onsider a restri
ted version of the general Set Coveringproblem in whi
h ea
h set in the given set system interse
ts with anyother set in at most 1 element. We show that the Set Covering problemwith interse
tion 1 
annot be approximated within a o(log n) fa
tor inrandom polynomial time unless NP � ZTIME(nO(log log n)). We alsoobserve that the main 
hallenge in derandomizing this redu
tion lies in�nding a hitting set for large volume 
ombinatorial re
tangles satisfy-ing 
ertain interse
tion properties. These properties are not satis�ed by
urrent methods of hitting set 
onstru
tion.An example of a Set Covering problem with the interse
tion 1 property isthe problem of 
overing a given set of points in two or higher dimensionsusing straight lines; any two straight lines interse
t in at most one point.The best approximation algorithm 
urrently known for this problem hasan approximation fa
tor of �(log n), and beating this bound seems hard.We observe that this problem is Max-SNP-Hard.1 Introdu
tionThe general Set Covering problem requires 
overing a given base set B of sizen using the fewest number of sets from a given 
olle
tion of subsets of B. Thisis a 
lassi
al NP-Complete problem and its instan
es arise in numerous diversesettings. Thus approximation algorithms whi
h run in polynomial time are ofinterest.Johnson[12℄ showed that the greedy algorithm for Set Cover gives an O(logn)approximation fa
tor. Mu
h later, following advan
es in Probabilisti
ally Che
k-able Proofs [4℄, Lund and Yannakakis [15℄ and Bellare et al. [7℄ showed thatthere exists a positive 
onstant 
 su
h that the Set Covering problem 
an-not be approximated in polynomial time within a 
 logn fa
tor unless NP �DTIME(nO(log log n)). Feige [10℄ improved the approximation threshold to (1�o(1)) logn, under the same assumption. Raz and Safra[19℄ and Arora and Su-dan[5℄ then obtained improved Probabilisti
ally Che
kable Proof Systems withsub-
onstant error probability; their work implied that the Set Covering problem
annot be approximated within a 
 logn approximation fa
tor (for some 
onstant
) unless NP = P .



Note that all the above hardness results are for general instan
es of the SetCovering problem and do not hold for instan
es when the interse
tion of any pairof sets in the given 
olle
tion is guaranteed to be at most 1. Our motivation for
onsidering this restri
tion to interse
tion 1 arose from the following geometri
instan
e of the Set Covering problem.Given a 
olle
tion of points and lines in a plane, 
onsider the problem of
overing the points with as few lines as possible. Megiddo and Tamir[16℄ showedthat this problem is NP-Hard. Hassin and Megiddo[11℄ showed NP-Hardnesseven when the lines are axis-parallel but in 3D. The best approximation fa
torknown for this problem is �(logn). Improving this fa
tor seems to be hard, andthis motivated our study of inapproximability for Set Covering with interse
tion1. Note that any two lines interse
t in at most 1 point.The problem of 
overing points with lines was in turn motivated by the prob-lem of 
overing a re
tilinear polygon with holes using re
tangles [13℄. This prob-lem has appli
ations in printing integrated 
ir
uits and image 
ompression[9℄.This problem is known to be Max-SNP-Hard even when the re
tangles are 
on-strained to be axis-parallel. For this 
ase, an O(plogn)-fa
tor approximationalgorithm was obtained re
ently by Anil Kumar and Ramesh[2℄. However, thisalgorithm does not extend to the 
ase when the re
tangles need not be axis-parallel. Getting a o(logn)-fa
tor approximation algorithm for this 
ase seemsto require solving the problem of 
overing points with arbitrary lines, though weare not sure of the exa
t nature of this relationship.Our Result. We show that there exists a 
onstant 
 > 0 su
h that ap-proximating the Set Covering problem with interse
tion 1 to within a fa
tor of
 logn in random polynomial time is possible only ifNP � ZTIME(nO(log log n))(where ZTIME(t) denotes the 
lass of languages that have a probabilisti
 algo-rithm running in expe
ted time t with zero error). We also give a sub-exponentialderandomization whi
h shows that approximating the Set Covering problem withinterse
tion 1 to within a fa
tor of 
 lognlog log n in deterministi
 polynomial time ispossible only if NP � DTIME(2n1��), for any 
onstant � < 1=2.The starting point for our result above is the Lund-Yannakakis hardnessproof[15℄ for the general Set Covering problem. This proof uses an auxiliary setsystem with 
ertain properties. We show that this auxiliary set system ne
essarilyleads to large interse
tion. We then repla
e this auxiliary set system by another
arefully 
hosen set system with additional properties and modify the redu
tionappropriately to ensure that interse
tion sizes stay small. The key features ofthe new set system are partitions of the base set into several sets of smaller size(instead of just 2 sets as in the 
ase of the Lund-Yannakakis system or a 
onstantnumber of sets as in Feige's system; small sets will lead to small interse
tion)and several su
h partitions (so that sets whi
h \a

ess" the same partition inthe Lund-Yannakakis system and therefore have large interse
tion now \a

ess"distin
t partitions).We then show how the new set system above 
an be 
onstru
ted in random-ized polynomial time and also how this randomized algorithm 
an be derandom-ized using 
onditional probabilities and appropriate estimators in O(2n1��) time,



where � is a positive 
onstant, spe
i�ed in Se
tion 5. This leads to the two 
ondi-tions above, namely, NP � DTIME(2n1��) (but for a hardness of O( lognlog logn ))and NP � ZTIME(nO(log logn)). A deterministi
 polynomial time 
onstru
tionof our new set system will lead to the quasi-NP-Hardness of approximating theSet Covering problem with interse
tion 1 to within a fa
tor of 
 logn, for some
onstant 
 > 0.While the Lund-Yannakakis set system 
an be 
onstru
ted in deterministi
polynomial time using �-biased limited independen
e sample spa
es, this doesnot seem to be true of our set system. One of the main bottlene
ks in 
onstru
t-ing our set system in deterministi
 polynomial time is the task of obtaining apolynomial size hitting set for Combinatorial Re
tangles, with the hitting set sat-isfying additional properties. One of these properties (the most important one)is the following: if a hitting set point has the elements i; j among its 
oordinates,then no other hitting set point 
an have both i; j among its 
oordinates. Theonly known 
onstru
tion of a polynomial size hitting set for 
ombinatorial re
t-angles is by Linial, Luby, Saks, and Zu
kerman [14℄ and is based on enumeratingwalks in a 
onstant degree expander graph. In the full version of this paper, weshow that the hitting set obtained by [14℄ does not satisfy the above propertyfor reasons that seem intrinsi
 to the use of 
onstant degree expander graphs.In the full version, we also note that if the proof systems for NP obtainedby Raz and Safra[19℄ or Arora and Sudan[5℄ have an additional property thenthe 
ondition NP � ZTIME(nO(log logn)) 
an be improved to NP = ZPP .Similarly, the statement that approximating the Set Covering problem with in-terse
tion 1 to within a fa
tor of 
 lognlog log n in deterministi
 polynomial time ispossible only if NP � DTIME(2n1��) 
an be strengthened to approximationfa
tor 
 logn instead of 
 lognlog logn . The property needed of the proof systems isthat the degree, i.e., the total number of random 
hoi
es of the veri�er for whi
ha parti
ular question is asked of a parti
ular prover, be O(nÆ), for some smallenough 
onstant value Æ. The degree in
uen
es the number of partitions in ourauxiliary proof system and therefore needs to be small. It is not 
lear whetherexisting proof systems have this property [20℄.The above proof of hardness for Set Covering with interse
tion 1 does notapply to the problem of 
overing points with lines, the original problem whi
hmotivated this paper; however, it does indi
ate that algorithms based on set
ardinalities and small pairwise interse
tion alone are unlikely to give a o(logn)approximation fa
tor for this problem.Further, our result shows that 
onstant VC-dimension alone does not helpin getting a o(logn) approximation for the Set Covering problem. This is to be
ontrasted with the result of Br�onnimann and Goodri
h[8℄ whi
h shows thatif the VC-dimension is a 
onstant and an O( 1� ) sized (weighted) �-net 
an be
onstru
ted in polynomial time, then a 
onstant fa
tor approximation 
an beobtained.The paper is organized as follows. Se
tion 2 will give an overview of theLund-Yannakakis redu
tion. Se
tion 3 shows why the Lund-Yannakakis proofdoes not show hardness of Set Covering when the interse
tion is 
onstrained to



be 1. Se
tion 4 des
ribes the redu
tion to Set Covering with interse
tion 1. Thisse
tion des
ribes a new set system we need to obtain in order to perform theredu
tion and shows hardness of approximation of its set 
over, unless NP �ZTIME(nO(log logn)). Se
tion 5 will sket
h the randomized 
onstru
tion of thisset system. Se
tion 6 sket
hes the sub-exponential time derandomization, whi
hleads to a slightly di�erent hardness result, unless NP � DTIME(2n1��), � <1=2. Se
tion 7 enumerates several interesting open problems whi
h arise fromthis paper.2 Preliminaries: The Lund-Yannakakis Redu
tionIn this se
tion, we sket
h the version of the Lund-Yannakakis redu
tion des
ribedby Arora and Lund [3℄. The redu
tion starts with a 2-Prover 1-Round proofsystem for Max-3SAT(5) whi
h has inverse polylogarithmi
 error probability,uses O(logn log logn) randomness, and has O(log logn) answer size. Here n isthe size of the Max-3SAT(5) formula F . Arora and Lund[3℄ abstra
t this proofsystem into the following Label Cover problem.The Label Cover Problem. A bipartite graph G having n0 + n0 verti
es andedge set E is given, where n0 = nO(log log n). All verti
es have the same degreedeg, whi
h is polylogarithmi
 in n. For ea
h edge e 2 E, a partial fun
tionfe : [d℄ ! [d0℄ is also given, where d � d0, and d; d0 are polylogarithmi
 in n.The aim is to assign to ea
h vertex on the left, a label in the range 1 : : : d, andto ea
h vertex on the right, a label in the range 1 : : : d0, so as to maximize thenumber of edges e = (u; v) satisfying fe(label(u)) = label(v). Edge e = (u; v) issaid to be satis�ed by a labelling if the labelling satis�es fe(label(u)) = label(v).The 2-Prover 1-Round proof system mentioned above ensures that either allthe edges in G are satis�ed by some labelling or that no labelling satis�es morethan a 1log3 n fra
tion of the edges, depending upon whether or not the Max-3SAT(5) formula F is satis�able. Next, in time polynomial in the size of G,an instan
e SC of the Set Covering problem is obtained from this Label Coverproblem LC with the following properties: if there exists a labelling satisfyingall edges in G then there is a set 
over of size 2n0, and if no labelling satis�esmore than a 1log3 n fra
tion of the edges then the smallest set 
over has size
(2n0 logn0). The base set in SC will have size polynomial in n0. It follows thatthe Set Covering problem 
annot be approximated to a logarithmi
 fa
tor of thebase set size unless NP � DTIME(nO(log logn)).Improving this 
ondition to NP = P requires using a stronger multi-proverproof system [19, 5℄ whi
h has a 
onstant number of provers (more than 2),O(logn) randomness,O(log logn) answer sizes, and inverse polylogarithmi
 errorprobability. The redu
tion from su
h a proof system to the Set Covering problemis similar to the redu
tion from the Label Cover to the Set Covering problemmentioned above, with a modi�
ation needed to handle more than 2 provers(this modi�
ation is des
ribed in [7℄).



In this abstra
t, we will only des
ribe the redu
tion from Label Cover tothe Set Covering problem and show how we 
an modify this redu
tion to holdfor the 
ase of interse
tion 1. This will show that Set Covering problem withinterse
tion 1 
annot be approximated to a logarithmi
 fa
tor unless NP �ZTIME(nO(log logn)). The multi-prover proof system of the previous paragraphwith an additional 
ondition 
an strengthen the latter 
ondition to NP = ZPP ;this is des
ribed in the full version.We now brie
y sket
h the redu
tion from an instan
e LC of Label Cover toan instan
e SC of the Set Covering problem.2.1 Label Cover to Set CoverThe following auxiliary set system given by a base set N = f1 : : : n0g and itspartitions is needed.The Auxiliary System of Partitions. Consider d0 distin
t partitions of Ninto two sets ea
h, with the partitions satisfying the following property: if atmost logn02 sets in all are 
hosen from the various partitions with no two sets
oming from the same partition, then the union of these sets does not 
overN . Partitions with the above properties 
an be 
onstru
ted deterministi
ally inpolynomial time [1, 17℄. Let P 1i ; P 2i respe
tively denote the �rst and se
ond setsin the ith partition. We des
ribe the 
onstru
tion of SC next.Using P ji s to 
onstru
t SC. The base set B for SC is de�ned to bef(e; i)je 2 E; 1 � i � n0g. The 
olle
tion C of subsets of B 
ontains a setC(v; a), for ea
h vertex v and ea
h possible label a with whi
h v 
an be labelled.If v is a vertex on the left, then for ea
h a, 1 � a � d, C(v; a) is de�ned asf(e; i)je in
ident on v ^ i 2 P 1fe(a)g. And if v is a vertex on the right, then forea
h a, 1 � a � d0, C(v; a) is de�ned as f(e; i)je in
ident on v ^ i 2 P 2a g.That SC satis�es the required 
onditions 
an be seen from the following fa
ts.1. If there exists a vertex labelling whi
h satis�es all the edges, then B 
an be
overed by just the sets C(v; a) where a is the label given to v. Thus the sizeof the optimum 
over is 2n0 in this 
ase.2. If the total number of sets in the optimum set 
over is at most some suitable
onstant times n0 logn0, then at least a 
onstant fra
tion of the edges e =(u; v) have the property that the number of sets of the form C(u; �) plus thenumber of sets of the form C(v; �) in the optimum set 
over is at most logn02 .Then, for ea
h su
h edge e, there must exist a label a su
h that C(u; a) andC(v; fe(a)) are both in this optimum 
over. It 
an be easily seen that 
hoosinga label uniformly at random from these sets for ea
h vertex implies that thereexists a labelling of the verti
es whi
h satis�es an 
( 1log2 n0 ) � 1log3 n fra
tionof the edges.3 SC has Large Interse
tionThere are two reasons why sets in the 
olle
tion C in SC have large interse
tions.



Parts in the Partitions are Large. The �rst and obvious reason is thatthe sets in ea
h partition in the auxiliary system of partitions are large and
ould have size n02 ; therefore, two sets in distin
t partitions 
ould have 
(n0)interse
tion. This 
ould lead to sets C(v; a) and C(v; b) having 
(n0) 
ommonelements of the form (e; i), for some e in
ident on v.Clearly, the solution to this problem is to work with an auxiliary systemof partitions where ea
h partition is a partition into not just 2 large sets, butinto several small sets. The problem remains if we form only a 
onstant numberof parts, as in [10℄. We 
hoose to partition into (n0)1�� sets, where � is somenon-zero 
onstant to be �xed later. This ensures that ea
h set in ea
h partitionhas size �((n0)� polylog(n)) and that any two su
h sets have O(1) interse
tion.However, smaller set size leads to other problems whi
h we shall des
ribe shortly.Fun
tions fe() are not 1-1. Suppose we work with smaller set sizes asabove. Then 
onsider the sets C(v; a) and C(v; b), where v is a vertex on the leftand a; b are labels with the following property: for some edge e in
ident on v,fe(a) = fe(b). Then ea
h element (e; �) whi
h appears in C(v; a) will also appearin C(v; b), leading to an interse
tion size of up to 
((n0)� �deg), where deg is thedegree of v in G. This is a more serious problem. Our solution to this problem isto ensure that sets C(v; a) and C(v; b) are 
onstru
ted using distin
t partitionsin the auxiliary system of partitions.Next, we des
ribe how to modify the auxiliary system of partitions and the
onstru
tion of SC in a

ordan
e with the above.4 LC to SC with Interse
tion 1Our new auxiliary system of partitions P will have d0 � (deg + 1) � d partitions,where deg is the degree of any vertex in G. Ea
h partition has m = (n0)1��parts, for some � > 0 to be determined. These partitions are organized into d0groups, ea
h 
ontaining (deg+1) � d partitions. Ea
h group is further organizedinto deg + 1 subgroups, ea
h 
ontaining d partitions. The �rst m=2 sets in ea
hpartition 
omprise its left half and the last m=2 its right half.Let Pg;s;p denote the pth partition in the sth subgroup of the gth group andlet Pg;s;p;k denote the kth set (i.e., part) in this partition. Let Bk denote the set[g;s;pPg;s;p;k if 1 � k � m=2, and the set [g;sPg;s;1;k , if m=2 < k � m. We alsorefer to Bk as the kth 
olumn of P .We need the following properties to be satis�ed by the system of partitionsP .1. The right sides of all partitions within a subgroup are identi
al, i.e., Pg;s;p;k =Pg;s;1;k, for every k > m=2.2. P (g; s; p; k) \ P (g0; s0; p0; k) = � unless either g = g0; s = s0; p = p0, or,k > m=2 and g = g0; s = s0. In other words, no element appears twi
ewithin a 
olumn, modulo the fa
t that the right sides of partitions within asubgroup are identi
al.3. jBk \Bk0 j � 1 for all k; k0, 1 � k; k0 � m, k 6= k0.



4. Suppose N is 
overed using at most �m logn0 sets in all, disallowing sets onthe right sides of those partitions whi
h are not the �rst in their respe
tivesubgroups. Then there must be a partition in some subgroup s su
h that thenumber of sets 
hosen from the left side of this partition plus the number ofsets 
hosen from right side of the �rst partition in s together sum to at least34m.� and � are 
onstants whi
h will be �xed later. Let Ap;k = [g;sPg;s;p;k,for ea
h p; k, 1 � p � d; 1 � k � m=2. Let Dg;k = [sPg;s;1;k, for ea
h g; k,1 � g � d0, m=2 + 1 � k � m. Property 2 above implies that:5. jAp;k \ Ap0;kj = 0 for all p 6= p0, where 1 � p; p0 � d and k � m=2.6. jDg;k \Dg0;kj = 0 for all g 6= g0, where 1 � g; g0 � d0 and k > m=2.We will des
ribe how to obtain a system of partitions P satisfying theseproperties in Se
tion 5 and Se
tion 6. First, we show how a set system SC withinterse
tion 1 
an be 
onstru
ted using P .4.1 Using P to 
onstru
t SCThe base set B for SC is de�ned to be f(e; i)je 2 E; 1 � i � n0g as before. Thisset has size (n0)2 � deg = O((n0)2 polylog(n)).The 
olle
tion C of subsets of B 
ontains m=2 sets C1(v; a) : : : Cm=2(v; a),for ea
h vertex v on the left (in graph G) and ea
h possible label a with whi
h v
an be labelled. In addition, it 
ontains m=2 sets Cm=2+1(v; a) : : : Cm(v; a), forea
h vertex v on the right in G and ea
h possible label a with whi
h v 
an belabelled. These sets are de�ned as follows.Let Ev denote the set of edges in
ident on v in G. We edge-
olour G usingdeg + 1 
olours. Let 
ol(e) be the 
olour given to edge e in this edge 
olouring.For a vertex v on the left side, and any number k between 1 and m=2, Ck(v; a) =[e2Evf(e; i)ji 2 Pfe(a);
ol(e);a;kg. For a vertex v on the right side, and any numberk between m=2 + 1 and m, Ck(v; a) = [e2Evf(e; i)ji 2 Pa;
ol(e);1;kg.We now give the following lemmas whi
h state that the set system SC hasinterse
tion 1 and that it has a set 
over of small size if and only if there existsa way to label the verti
es of G satisfying several edges simultaneously. Thehardness of approximation of the set 
over of SC is given in Corollary 1, whoseproof will appear in the full version.Lemma 1. The interse
tion of any two distin
t sets Ck(v; a) and Ck0 (w; b) isat most 1.Proof. Note that for jCk(v; a)\Ck0 (w; b)j to ex
eed 1, either v; w must be iden-ti
al or there must be an edge between v and w. The reason for this is that ea
helement in Ck(v; a) has the form (e; �) where e is an edge in
ident at v whileea
h element in Ck0 (w; b) has the form (e0; �), where e0 is an edge in
ident at w.We 
onsider ea
h 
ase in turn.Case 1. Suppose v = w. Then either k 6= k0 or k = k0; a 6= b.



First, 
onsider Ck(v; a) and Ck0 (v; b) where k 6= k0 and v is a vertex in the leftside. If a = b, observe that Ck(v; a) \ Ck0 (v; a) = �. So assume that a 6= b. Theelements in the former set are of the form (e; i) where i 2 Pfe(a);
ol(e);a;k and theelements of the latter set are of the form (e; j) where j 2 Pfe(b);
ol(e);b;k0 . Notethat [e2EvPfe(a);
ol(e);a;k � Bk and [e2EvPfe(b);
ol(e);b;k0 � Bk0 . By Property 3of P , the interse
tion Bk; Bk0 is at most 1. However, this alone does not implythat Ck(v; a) and Ck0(v; b) have interse
tion at most 1, be
ause there 
ouldbe several tuples in both sets, all having identi
al se
ond entries. This 
ouldhappen if there are edges e1; e2 in
ident on v su
h that fe1(a) = fe2(a); fe1(b) =fe2(b) and there had been no 
olouring on edges. Property 2 and the fa
t that
ol(e1) 6= 
ol(e2) for any two edges e1; e2 in
ident on v rule out this possibility,thus implying that jCk(v; a)\Ck0(v; b)j � 1. The proof for the 
ase where v is avertex on the right is identi
al.Se
ond, 
onsider Ck(v; a) and Ck(v; b), where v is a vertex on the left anda 6= b. Elements in the former set are of the form (e; i) where e is an edgein
ident on v and i 2 Pfe(a);
ol(e);a;k. Similarly, elements in the latter set are ofthe form (e; j) where j 2 Pfe(b);
ol(e);b;k. Note that [e2EvPfe(a);
ol(e);a;k � Aa;kand [e2EvPfe(b);
ol(e);b;k � Ab;k. The 
laim follows from Property 5 in this 
ase.Third, 
onsider Ck(v; a) and Ck(v; b), where v is a vertex on the right, a 6= b,and k > m=2. Elements in the former set are of the form (e; i) where e is anedge in
ident on v and i 2 Pa;
ol(e);1;k. Similarly, elements in the latter set areof the form (e; j) where j 2 Pb;
ol(e);1;k. Note that [e2EvPa;
ol(e);1;k � Da;k and[e2EvPb;
ol(e);1;k � Db;k. The 
laim follows from Property 6 in this 
ase.Case 2. Finally 
onsider sets Ck(v; a) and Ck0(w; b) where e = (v; w) is anedge, v is on the left side, and w on the right. Then Ck(v; a) 
ontains elementsof the form (e0; i) where i 2 Pfe0 (a);
ol(e0);a;k. Ck0 (w; b) 
ontains elements of theform (e0; j) where j 2 Pb;
ol(e0);1;k0 . The only possible elements in Ck(v; a) \Ck0 (w; b) are tuples with the �rst entry equal to e. Sin
e Pfe(a);
ol(e);a;k � Bkand Pb;
ol(e);1;k0 � Bk0 and k � m=2; k0 > m=2, the 
laim follows from Properties2 and 3 in this 
ase.Lemma 2. If there exists a way of labelling verti
es of G satisfying all its edgesthen there exists a 
olle
tion of n0m sets in C whi
h 
overs B.Proof. Let label(v) denote the label given to vertex v by the above labelling. Con-sider the 
olle
tion C 0 � C 
omprising sets C1(v; label(v)) : : : ; Cm2 (v; label(v))for ea
h vertex v on the left and sets Cm2 +1(w; label(w)) : : : ; Cm(w; label(w)) forea
h vertex w on the right. We show that these sets 
over B. Sin
e there arem=2 sets in C 0 per vertex, jC 0j = 2n0 � m2 = n0m.Consider any edge e = (v; w). It suÆ
es to show that for every i, 1 � i � n0,the tuple (e; i) in B is 
ontained in either one of C1(v; label(v)) : : : ; Cm2 (v; label(v))or in one of Cm2 +1(w; label(w)) : : : ; Cm(w; label(w)). The key property we use isthat fe(label(v)) = label(w).Consider the partitions Pfe(label(v));
ol(e);label(v) and Plabel(w));
ol(e);1. Sin
efe(label(v)) = label(w), the two partitions belong to the same group and sub-group. Sin
e all partitions in a subgroup have the same right hand side, the



element i must be present either in one of the sets Plabel(w);
ol(e);label(v);k , wherek � m=2, or in one of the sets Plabel(w);
ol(e);1;k , where k > m=2. We 
onsiderea
h 
ase in turn.First, suppose i 2 Plabel(w);
ol(e);label(v);k , for some k � m=2. Then, fromthe de�nition of Ck(v; label(v)), (e; i) 2 Ck(v; label(v)). Se
ond, suppose i 2Plabel(w);
ol(e);1;k, for some k > m=2. Then, from the de�nition of Ck(w; label(w)),(e; i) 2 Ck(w; label(w)). The lemma follows.Lemma 3. If the smallest 
olle
tion C 0 of sets in C 
overing the base set B hassize at most �2n0m logn0 then there exists a labelling of G whi
h satis�es at leasta 132�2 log2 n0 fra
tion of the edges. Re
all that � was de�ned in Property 4 of P.Proof. Given C 0, we need to demonstrate a labelling of G with the above prop-erty. For ea
h vertex v, de�ne L(v) to be the 
olle
tion of labels a su
h thatCk(v; a) 2 C 0 for some k. We think of L(v) as the set of \suggested labels" for vgiven by C 0 and this will be a multiset in general. The labelling we obtain willultimately 
hoose a label for v from this set. It remains to show that there isa way of assigning ea
h vertex v a label from L(v) so as to satisfy suÆ
ientlymany edges.We need some de�nitions. For an edge e = (v; w), de�ne #(e) = jL(v)j +jL(w)j. Sin
e the sum of the sizes of all L(v)s put together is at most �2n0m logn0and sin
e all verti
es in G have identi
al degrees, the average value of #(e) isat most �2m logn0. Thus half the edges e have #(e) � �m logn0. We 
all theseedges good.We show how to determine a subset L0(v) of L(v) for ea
h vertex v so thatthe following properties are satis�ed. If v has a good edge in
ident on it thenL0(v) has size at most 4� logn0. Further, for ea
h good edge e = (v; w), thereexists a label in L0(v) and one in L0(w) whi
h together satisfy e. Clearly, randomindependent 
hoi
es of labels from L0(v) will satisfy a good edge with probability116�2 log2 n0 , implying a labelling whi
h will satis�es at least a 132�2 log2 n0 fra
tionof the edges (sin
e the total number of edges is at most twi
e the number ofgood edges), as required.For ea
h label a 2 L(v), in
lude it in L0(v) if and only if the number of setsof the form C�(v; a) in C 0 is at least m=4. Clearly, jL0(v)j � �m logn0m=4 = 4� logn0,for verti
es v on whi
h good edges are in
ident. It remains to show that forea
h good edge e = (v; w), there exists a label in L0(v) and one in L0(w) whi
htogether satisfy e.Consider a good edge e = (v; w). Using Property 4 of P , it follows that thereexists a label a 2 L(v) and a label b 2 L(w) su
h that the fe(a) = b and thenumber of sets of the form C�(v; a) or C�(w; b) in C 0 is at least 3m=4. The latterimplies that the number of sets of the form C�(v; a) in C 0 must be at least m=4,and likewise for C�(w; b). Thus a 2 L0(v) and b 2 L0(w). Sin
e fe(a) = b, the
laim follows.Corollary 1. Set Cover with interse
tion 1 
annot be approximated within afa
tor of � logn02 in random polynomial time, for some 
onstant �, 0 < � � 16 ,unless NP � ZTIME(nO(log log n)). Further, if the auxiliary system of partitions



P 
an be 
onstru
ted in deterministi
 polynomial (in n0) time, then approximat-ing to within a � log n02 fa
tor is possible only if NP = DTIME(nO(log log n)).5 Randomized Constru
tion of the Auxiliary System PThe obvious randomized 
onstru
tion is the following. Ignore the division intogroups and just view P as a 
olle
tion of subgroups. For ea
h partition whi
h isthe �rst in its subgroup, throw ea
h element i independently and uniformly atrandom into one of the m sets in that partition. For ea
h partition P whi
h isnot the �rst in its subgroup, throw ea
h element i whi
h is not present in anyof the sets on the right side of the �rst partition Q in this subgroup, into oneof the �rst m=2 sets in P . Property 1 is thus satis�ed dire
tly. We need to showthat Properties 2,3,4 are together satis�ed with non-zero probability.It 
an be shown quite easily that Property 4 holds with probability at least1 � ( 1e )n01�23� , provided � > 22�. Slightly weak versions of Properties 2 and 3(interse
tion bounds of 2 instead of 1) also follow immediately. This 
an be im-proved in the 
ase of interse
tion 1 using the Lovasz Lo
al Lemma, but this doesnot give a 
onstant su

ess probability and also leads to problems in derandom-ization. The details of these 
al
ulations appear in the full version.To obtain a high probability of su

ess, we need to 
hange the randomized
onstru
tion above to respe
t the following additional restri
tion (we 
all thisProperty 7): ea
h set Pg;s;p;k has size at most d0�(deg+1)�dn0m , for all g; s; p; k,1 � g � d0; 1 � s � deg + 1; 1 � p � d; 1 � k � m.The new randomized 
onstru
tion pro
eeds as in the previous random ex-periment, �xing partitions in the same order as before, ex
ept that any 
hoi
e ofthrowing an element i 2 N whi
h violates Properties 2,3,7 is pre
luded. Prop-erty 7 enables us to show that not too many 
hoi
es are pre
luded for ea
helement, and therefore, this experiment stays 
lose in behaviour to the previousone (provided 22� < � < 1=2), ex
ept that Properties 2,3,7 are all automati
allysatis�ed. The details appear in the full version.6 Derandomization in O(2n1��) TimeThe main hurdle in derandomizing the above randomized 
onstru
tion in poly-nomial time is Property 4. There 
ould be up to O(2m�polylog(n)) = O(2(n0)1��0 )ways of 
hoosing �m logn0 sets from the various partitions in P for a 
onstant�0 slightly smaller than �, and we need that ea
h of these 
hoi
es fails to 
overN for Property 4 to be satis�ed.For the Lund-Yannakakis system of partitions des
ribed in Se
tion 2.1, ea
hpartition was into 2 sets and the 
orresponding property 
ould be obtained deter-ministi
ally using small-bias logn-wise independent sample spa
e 
onstru
tions.This is no longer true in our 
ase. Feige's [10℄ system of partitions, where ea
hpartition is into several but still a 
onstant number of parts, 
an be obtaineddeterministi
ally using anti-universal sets [17℄. However, it is not 
lear how to



apply either Feige's modi�ed proof system or his system of partitions to getinterse
tion 1.We show in the full version that enfor
ing Property 4 in polynomial time 
or-responds to 
onstru
ting hitting 
ombinatorial re
tangles with 
ertain restri
tedkinds of sets, though we do not know any eÆ
ient 
onstru
tions for them. Inthis paper, we take the slower approa
h of using Conditional Probabilities andenfor
ing Property 4 by 
he
king ea
h of the above 
hoi
es expli
itly. However,note that the number of 
hoi
es is superexponential in n (even though it is sub-exponential in n0). To obtain a derandomization whi
h is sub-exponential in n,we make the following 
hange in P : the base set is taken to be of size n insteadof n0. We use an appropriate pessimisti
 estimator and 
onditional probabilitiesto 
onstru
t P with parameter n instead of n0 (details will be given in the fullversion). This will give a gap of �(logn) (instead of �(logn0)) in the set 
overinstan
e SC). But sin
e the base set size in SC is now O((n0 � n) polylog(n)),we get a hardness of only �(logn) = �( logn0log logn0 ) (note that the approximationfa
tor must be with respe
t to the base set size) unless NP � DTIME(2n1��),for any 
onstant � su
h that 22� < � < 1=2.7 Open ProblemsA signi�
ant 
ontribution of this paper is that it leads to several open problems.1. Is there a polynomial time algorithm for 
onstru
ting the partition systemin Se
tion 4? In the full version, we show its relation to the question of 
onstru
-tion of hitting sets for 
ombinatorial re
tangles with 
ertain 
onstraints. Cana hitting set for large volume 
ombinatorial re
tangles, with the property thatany two hitting set points agree in at most one 
oordinate, be 
onstru
ted inpolynomial time? Alternatively, 
an a di�erent proof system be obtained, as in[10℄, whi
h will require a set system with weaker hitting properties?2. Are there instan
es of the problem of 
overing points by lines, with anintegrality gap of �(logn)? In the full version, we show that the an integralitygap of 2 and we des
ribe a promising 
onstru
tion, whi
h might have a largergap.3. Are there su
h expli
it 
onstru
tions for the the Set Covering problemwith interse
tion 1? Randomized 
onstru
tions are easy for this but we do notknow how to do an expli
it 
onstru
tion.4. Is there a polynomial time algorithm for the problem of 
overing pointswith lines whi
h has an o(logn) approximation fa
tor, or 
an super-
onstanthardness (or even a hardness of fa
tor 2) be proved? In the �nal version, weobserve that the NP-Hardness proof of Megiddo and Tamir[16℄ 
an be easilyextended to a Max-SNP-Hardness proof.Referen
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