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ABSTRACT

The broad success of Hadoop has led to a fast-evolving and di-
verse ecosystem of application engines that are building upon the
YARN resource management layer. The open-source implemen-
tation of MapReduce is being slowly replaced by a collection of
engines dedicated to specific verticals. This has led to growing
fragmentation and repeated efforts—with each new vertical engine
re-implementing fundamental features (e.g. fault-tolerance, secu-
rity, stragglers mitigation, etc.) from scratch.

In this paper, we introduce Apache Tez, an open-source frame-
work designed to build data-flow driven processing runtimes. Tez
provides a scaffolding and library components that can be used to
quickly build scalable and efficient data-flow centric engines. Cen-
tral to our design is fostering component re-use, without hindering
customizability of the performance-critical data plane. This is in
fact the key differentiator with respect to the previous generation
of systems (e.g. Dryad, MapReduce) and even emerging ones (e.g.
Spark), that provided an d mandated a fixed data plane implemen-
tation. Furthermore, Tez provides native support to build runtime
optimizations, such as dynamic partition pruning for Hive.

Tez is deployed at Yahoo!, Microsoft Azure, LinkedIn and nu-
merous Hortonworks customer sites, and a growing number of en-
gines are being integrated with it. This confirms our intuition that
most of the popular vertical engines can leverage a core set of
building blocks. We complement qualitative accounts of real-world
adoption with quantitative experimental evidence that Tez-based
implementations of Hive, Pig, Spark, and Cascading on YARN
outperform their original YARN implementation on popular bench-
marks (TPC-DS, TPC-H) and production workloads.

1. INTRODUCTION

Large scale data analytics, once an exotic technology leveraged
exclusively by large web-companies, is nowadays available and
indispensable for most modern organizations. This broader user
base has fostered an explosion of interest in this area, and led to a
flourishing BigData industry. In this paper, we use the lens of the
Hadoop ecosystem to describe industry-wide trends, as this pro-
vides the ideal context for introducing our system: Apache Tez.
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We postpone to Section 8 a broader comparison with the related
projects like Dryad, Nephele, Hyracks[24, 14, 15] etc., which un-
deniably served as an inspiration and sometimes the blueprint for
the design of Tez.

Hadoop, which was initially designed as a single-purpose sys-
tem (to run MapReduce jobs to build a web index), has evolved
into a catch-all data analytics platform. The first phase of this jour-
ney consisted of several efforts proposing higher level abstractions
atop MapReduce[21], examples of which are Hive [30], Pig [28],
and Cascading [4]. This sped-up the adoption of Hadoop, but led
to inefficiencies and poor performance [29]. These limitations and
the pressure towards more flexibility and efficiency led to the refac-
toring of Hadoop into a general purpose, OS-like resource man-
agement layer, namely YARN [32], and an application framework
layer allowing for arbitrary execution engines. This enabled differ-
ent applications to share a cluster, and made MapReduce just an-
other application in the Hadoop ecosystem. Important examples of
applications that break-free of the MapReduce model (and runtime)
are Spark [38], Impala [25] and Flink [5]. This has accelerated in-
novation, but also led to a less efficient ecosystem, where common
functionalities were being replicated across frameworks. For exam-
ple, MapReduce and Spark independently developed mechanisms
to implement delay scheduling[36].

In this paper, we introduce Tez, a project that embraces the ar-
chitectural shift to YARN, and pushes it further, by proposing a
reusable, flexible and extensible scaffolding that can support ar-
bitrary data-flow oriented frameworks, while avoiding replicated
functionalities. Tez APIs allow frameworks to clearly model the
logical and physical semantics of their data flow graphs, with min-
imal code. It is important to clarify that Tez is a library to build
data-flow based runtimes/engines and not an engine by itself—for
example, the Hive runtime engine for Hadoop has been rewritten in
version 0.13 to use Tez libraries.

Tez makes the following key contributions:

1. Allows users to model computation as a DAG (Directed-
Acyclic-Graph) — akin to Dryad/Nephele/Hyracks. The nov-
elty lies in a finer grained decomposition of the classical no-
tions of vertex and edge, that delivers greater control and cus-
tomization of the data plane.

. Exposes APIs to dynamically evolve the (finer grained) DAG
definition. This enables sophisticated runtime query opti-
mizations, such as pruning data partitions, based on online
information.

. Provides a scalable and efficient implementation of state-of-
the-art features, e.g., YARN-compatible security, data-locality
awareness, resource-reuse, fault-tolerance and speculation.



4. Provides the opportunity for framework writers and researchers
to innovate quickly and create real-world impact by provid-
ing experimentation support via pluggable APIs, and an open-
source community to learn about the project and contribute
back to it.

What sets Tez aside from many alternative proposals of ‘unifica-
tion frameworks’ is: 1) proven flexibility and dynamic adaptation,
2) attention to operational concerns (production readiness), and 3) a
community-driven effort to embed Tez in multiple existing domain-
specific engines.

This is proven by the Tez support of MapReduce, Hive, Pig,
Spark, Flink, Cascading, and Scalding, and its adoption in produc-
tion data-processing clusters at Yahoo, Microsoft Azure, LinkedIn
as well as several other organizations using the Hortonworks Data
Platform. Beyond discussing the broad practical adoption of Tez,
we demonstrate its competence to support Hive, Pig, and Spark,
by running standard benchmarks such as TPC-H and TPC-DS, and
production workloads from Yahoo!.

The rest of this paper is organized as follows: Section 2 pro-
vides some more historical context, and rationale for the design of
Tez, while Section 3 introduces the architecture of Tez. Section 4
discusses the implementation of Tez, and highlights pragmatic con-
siderations on efficiency and production-readiness. Section 5 and
6 are devoted to prove its practical relevance, by presenting real-
world applications, and a broad experimental evaluation. We con-
clude by discussing future and related work in Sections 7 and 8,
and conclude in Section 9

2. BACKGROUND AND RATIONALE

To understand the motivation and rationale behind Tez, we must
first start by providing some background on terminology, and a his-
torical context of distributed computation in Hadoop. The reader
not interested in this historical and motivational perspective is in-
vited to continue to Section 3, where we dive into the technical
aspects of the Tez architecture.

Terminology. We have used graph terminology so far, appealing
to the reader’s intuitions. We now introduce our terminology more
precisely:

DAG: Directed Acyclic Graph representing the structure of a
data processing workflow. Data flows in the direction of the edges.

Vertex: Represents a logical step of processing. A processing
step transforms data by applying application-supplied code to filter,
or modify the data.

Logical DAG: A logical DAG is comprised of a set of vertices,
where each vertex represents a specific step of the computation.

Task: Represents a unit of work in a vertex. In distributed pro-
cessing, the logical work represented by a single vertex is physi-
cally executed as a set of tasks running on potentially multiple ma-
chines of the cluster. Each task is an instantiation of the vertex, that
processes a subset (or partition) of the input data for that vertex.

Physical DAG: A physical DAG comprises of the set of tasks
that are produced by expanding the vertices of a logical DAG into
their constituent tasks.

Edge: Represents movement of data between producers and con-
sumers. An edge between vertices of a logical DAG represents the
logical data dependency between them. An edge between tasks in
the physical DAG represents data transfers between the tasks.

This applies to problems in which different steps can be parti-
tioned into smaller pieces that can be processed in parallel. Typ-
ically, the partitioning aligns with distributed shards of data and
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Figure 1: Evolution of Hadoop

tries to co-locate processing with its data, thus reducing the cost of
computation [21].

Hadoop 1 and Hadoop 2 (YARN). Hadoop started off as a
single monolithic software stack where MapReduce was the only
execution engine [32]. All manners of data processing had to trans-
late their logic into a single MapReduce job or a series of MapRe-
duce jobs. MapReduce was also responsible for cluster resource
management and resource allocation. Hadoop 2 is the current gen-
eration of Hadoop which separates these responsibilities by creat-
ing a general purpose resource management layer named YARN
[32]. This de-couples applications from the core Hadoop platform
and allows multiple application types to execute in a Hadoop clus-
ter in addition to MapReduce. There are many domain-specific ap-
plications like Apache Hive for SQL-like data processing, Apache
Pig for ETL scripting or Cascading for writing data processing
applications in Java, which were earlier restricted to relying on
MapReduce to execute their custom logic. These applications can
now have a more customized implementation of their logic by run-
ning natively on YARN.

While specialization can deliver performance advantages, there
is a substantial opportunity to create a common set of building
blocks that can be used by these applications for their customized
implementation on YARN. We try to seize that opportunity with
Tez, as discussed next. An analysis of popular Hadoop ecosystem
applications like Apache Hive, Pig, Spark etc. suggests that there
are shared features that all of them need. These include negotiating
resources from YARN to run application’s tasks, handling security
within the clusters, recovering from hardware failures, publishing
metrics and statistics etc. A lot of this is highly specialized, hard to
develop infrastructure that everyone has to replicate when building
from scratch. A common implementation makes it easier to write
applications because it removes that burden from the application
writers and lets them focus on the unique logic of their application.

Henceforth, unless otherwise specified, when we mention Hadoop
we imply the Hadoop 2 compute stack with YARN as the underly-
ing resource allocation layer; and by Hadoop ecosystem we imply
the compute ecosystem consisting of open source and commercial
projects running on YARN such as Apache Hive, Pig etc.

An effort to provide these common features requires the creation
of a framework to express and model these workloads optimally.
Then this model can be applied and executed on the YARN appli-
cation framework via a shared substrate library. This rationalizes
the following requirements for such a shared library, which we have
high-lighted by comparisons with MapReduce — a general purpose
engine that has been forced to act as shared substrate until now.

Expressiveness. MapReduce has a simple modeling API for de-
scribing the computation by requiring all application algorithms to
be translated into map and reduce functions. As observed by oth-
ers before in [24, 14, 15], this is too constraining, and a DAG-
oriented model can more naturally capture a broader set of com-
putations. Thus we define Tez’s central model around DAGs of
execution as well. Moreover, MapReduce also provides built-in se-



mantics to the logic running in map/reduce steps and imposed a
sorted & partitioned movement of data between map and reduce
steps [21]. These built-in semantics, ideal in some core use cases,
could be pure overhead in many other scenarios and even unde-
sirable in some. The observation here is the need for an API to
describe the structure of arbitrary DAGs without adding unrelated
semantics to that DAG structure.

Data-plane Customizability. Once the structure of distributed
computation has been defined, there can be a variety of alternative
implementations of the actual logic that executes in that structure.
These could be algorithmic, e.g. different ways of partitioning the
data or these could be related to using different hardware, e.g. using
remote memory access (RDMA) where available. In the context of
MapReduce, the built-in semantics of the engine makes such cus-
tomizations difficult because they intrude in the implementation of
the engine itself. Secondly, the monolithic structure of the tasks
executing the MapReduce job on the cluster makes plugging in al-
ternative implementations difficult. This motivates that data trans-
formations and data movements that define the data plane need to
be completely customizable. There is a need to be able to model
different aspects of task execution in a manner that allows individ-
ual aspects of the execution, e.g. reading input, processing data
etc. to be customized easily. Interviewing several members of the
Hadoop community we confirmed that evolving existing engines
(e.g., changing the shuffle behavior in MapReduce) is far from triv-
ial.

While other frameworks such as [24, 15, 38], already support
a more general notion of DAGs, they share the same limitation of
MapReduce, built-in semantics and implementations of the data-
plane. With Tez we provide a lower level abstraction, that enables
such semantics and specialized implementations to be added on top
of a basic shared scaffolding.

Late-binding Runtime Optimizations. Applications need to
make late-binding decisions on their data processing logic for per-
formance [13]. The algorithm, e.g. join strategies and scan mech-
anisms, could change based on dynamically observing data being
read. Partition cardinality and work division could change as the
application gets a better understanding of its data and environment.
Hadoop clusters can be very dynamic in their usage and load char-
acteristics. Users and jobs enter and exit the cluster continuously
and have varying resource utilization. This makes it important for
an application to determine its execution characteristics based on
the current state of the cluster. We designed Tez to make this late-
binding and on-line decision-making easier to implement, by en-
abling updates to key abstractions at runtime.

This concludes our overview of historical context and rationale
for building Tez. We now turn to describing the high level architec-
ture of Tez, and provide some insight into the key building blocks.

3. ARCHITECTURE

Apache Tez is designed and implemented with a focus on the
issues discussed above, in summary: 1) expressiveness of the un-
derlying model, 2) customizability of the data plane, and 3) facil-
itate runtime optimizations. Instead of building a general purpose
execution engine, we realize the need for Tez to provide a unifying
framework for creating purpose-built engines that customize data
processing for their specific needs. Tez solves the common, yet
hard problem of orchestrating and running a distributed data pro-
cessing application on Hadoop and enables the application to focus
on providing specific semantics and optimizations. There is a clear
separation of concerns between the application layer and the Tez li-

1359

brary layer. Apache Tez provides cluster resource negotiation, fault
tolerance, resource elasticity, security, built-in performance opti-
mizations and a shared library of ready to use components. The
application provides custom application logic, custom data plane
and specialized optimizations.

This leads to three key benefits: 1) amortized development costs
(Hive and Pig completely rewrote their engines using the Tez li-
braries in about 6 months), 2) improved performance (we show in
Section 6 up to 10x performance improvement while using Tez),
and 3) enabling future pipelines that leverage multiple engines, to
be run more efficiently because of a shared substrate.

Tez is composed of a set of core APIs that define the data pro-
cessing and an orchestration framework to launch that on the clus-
ter. Applications are expected to implement these APIs to provide
the execution context to the orchestration framework. Its useful to
think of Tez as a library to create a scaffolding representing the
structure of the data flow, into which the application injects its cus-
tom logic (say operators) and data transfer code (say reading from
remote machine disks). This design is both tactical and strategic.
Long-term, this makes Tez remain application agnostic while in the
short term, allows existing applications like Hive or Pig to leverage
Tez without significant changes in their core operator pipelines. We
will begin with describing the DAG API and Runtime API. These
are the primary application facing interfaces used to describe the
DAG structure of the application and the code to be executed at run-
time. Next we explain support for applying runtime optimizations
to the DAG via an event based control plane using VertexManagers
and DataSourcelnitializers. Finally, in Section 4 we describe the
YARN based orchestration framework to execute the all of this on
a Hadoop cluster. In particular, we will focus on the performance
and production-readiness aspects of the implementation.

3.1 DAG API

The Tez DAG API is exposed to runtime engine builders as an
expressive way to capture the structure of their computation in a
concise way. The class of data processing application we focus
on, are naturally represented as DAGs, where data proceeds from
data sources towards data sinks, while being transformed in inter-
mediate vertices. Tez focuses on acyclic graphs, and by assuming
deterministic computation on the vertex and data routing on the
edges, we enable re-execution based fault tolerance, akin to [24]
and is further explained in Section 4.3. Modeling computations as
a DAG is not new but hitherto most systems have typically designed
DAG APIs in the context of supporting a higher level engine. Tez
is designed to model this data flow graph as the main focus. Using
well-known concepts of vertices and edges the DAG API enables a
clear and concise description of the structure of the computation.

Vertex. A vertex in the DAG API represents transformation of
data and is one of the steps in processing the data. This is where
the core application logic gets applied to the data. Hence a vertex
must be configured with a user-provided processor class that de-
fines the logic to be executed in each task. One ‘vertex’ in the DAG
is often executed in parallel across a (possibly massive) number of
parallel tasks. The definition of a vertex controls such parallelism.
Parallelism is usually determined by the need to process data that
is distributed across machines or by the need to divide a large op-
eration into smaller pieces. The task parallelism of a vertex may be
defined statically during DAG definition but is typically determined
dynamically at runtime.

Edge. An edge in the graph represents the logical and physical
aspects of data movement between producer and consumer vertices.
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Figure 2: Expansion of the logical vertex DAG to a physical task DAG based on vertex parallelism and edge definition

e Connection Pattern: The logical aspect of an edge is the con-
nection pattern between producer and consumer vertex tasks
and their scheduling dependency. This enables the orchestra-
tion framework to route data from the output of the producer
task to the correct input of the consumer task. This routing
table must be specified by implementing a pluggable Edge-
ManagerPlugin API. Figure 3 shows 3 common connection
patterns (one-to-one, broadcast, scatter-gather), that can be
used to express most DAG connections and come built-in
with the project. For cases where custom routing is needed,
applications are allowed to define their own routing by pro-
viding their own implementation (we give a concrete exam-
ple in Section 5.2).

Transport Mechanism: The physical aspect of an edge is the
storage or transport mechanism employed to move the data.
This could be local-disk, or local/remote main-memory, etc.
The actual data transfer operation of the edge is performed
by a compatible pair of input and output classes that are
specified for the edge. Compatibility is based on using the
same data format and physical transport mechanisms. E.g.
both operate on key-value pairs and operate on disks, or both
operate on byte streams and use main memory. Tez comes
with built-in inputs and outputs for common use cases as de-
scribed in Section 4.1

Vertex parallelism and the edge properties can be used by Tez to
expand the logical DAG to the real physical task execution DAG
during execution as shown in Figure 2

Data Sources and Sinks. The DAG can be defined by creating
vertices and connecting them via edges using the DAG API. Typ-
ically, the data flow will read initial input from some data sources
and write final output to some data sinks. Data sources may be
associated with a DataSourcelnitializer that can be invoked at run-
time to determine the optimal reading pattern for the initial input.
E.g. in MapReduce parlance, this corresponds to ‘split’ calculation
[27] where a split is a shard of distributed data that is read by a map
task. The initial split calculation for map tasks can be performed
using an initializer that considers the data distribution, data locality
and available compute capacity to determine the number of splits
and the optimal size of each split. Similarly, data sinks may be as-
sociated with a DataSinkCommitter that is invoked at runtime to
commit the final output. The definition of commit may vary with
the output type but is guaranteed to be done once, and typically
involves making the output visible to external observers after suc-
cessful completion.

1360

One-to-one

Broadcast

Scatter-gather

Figure 3: Edge properties: define movement of data between
producers and consumers

1: DAG dag = DAG.create("WordCount");

2: Vertex tokenizerVertex = Vertex.create("Tokenizer", TokenProcessor.class)
.addDataSource("Input", HdfsInitializer.class);

3: Vertex summationVertex = Vertex.create("Summation", SumProcessor.class)
.addDataSink("Output", HdfsCommitter.class);

4: EdgeProperty edgeProperty = EdgeProperty.create(scatter_gather,
KeyValueShuffleWriter.class, KeyValueShuffleReader.class);

5: dag.addVertex(tokenizerVertex).addVertex(summationVertex)
.addEdge(Edge.create(tokenizerVertex, summationVertex, edgeProperty);

Figure 4: Essence of the Tez API shown via pseudo-code for the
canonical WordCount example

This manner of DAG assembly allows for pluggable and re-usable
components. A common shared library of inputs and outputs can be
re-used by different applications, thus only needing to supply the
processor logic in a vertex. Conversely, the same DAG structure
may be executed more optimally in a different hardware environ-
ment by replacing the inputs/outputs on the edges. Tez comes with
an input/output library for data services built into Hadoop - HDFS
and the YARN Shuffle Service. This enables Hadoop eco-system
applications like Hive and Pig to quickly leverage Tez by imple-
menting only their custom processors. Figure 4 shows a condensed
view of describing a logical DAG using the API.

3.2 Runtime API

The DAG API defines the scaffolding structure of the data pro-
cessing. The Runtime API is used to inject the actual application
code that fills the scaffolding. Concretely, the Runtime API defines
the interfaces to be implemented to create processor, input and out-
put classes that are specified in the DAG above.



Inputs, Processor, Outputs. A vertex is a logical representa-
tion of a transformation step in the DAG. The actual transforma-
tions are applied by running tasks, for that vertex, on machines in
the cluster. Tez defines each task as a composition of a set of inputs,
a processor and a set of outputs (IPO). The processor is defined
by the vertex for that task. The inputs are defined by the output
classes of the incoming edges to that vertex. The outputs by the
input classes of the outgoing edges from that vertex. This enables
the processor to have a logical view of the processing, thus retain-
ing the simplified programming model popularized in MapReduce.
The inputs and outputs hide details like the data transport, partition-
ing of data and/or aggregation of distributed shards. The Runtime
API is a thin wrapper to instantiate and interact with inputs, pro-
cessors and outputs. After the IPO objects have been created, they
are configured.

IPO Configuration. The framework configures IPOs via an
opaque binary payload specified during DAG creation. This man-
ner of binary payload configuration is a common theme to config-
ure any application specific entity in Tez. This allows applications
to instantiate their code using any mechanism of their choice. Not
only can this be used for simple configuration but also for code
injection (as exemplified in Section 5.4). After configuration, the
processor is presented with all its inputs and outputs and asked to
run. Thereafter, it’s up to the processor, inputs and outputs to co-
operate with each other to complete the task. The framework inter-
acts with them via a context object to send and receive events about
completion, update progress, report errors etc.

Data Plane Agnostic. Tez specifies no data format and in fact,
is not part of the data plane during DAG execution. The actual
data transfer is performed by the inputs and outputs with Tez only
routing connection information between producers and consumers.
When a producer task output generates data then it can send meta-
data about it, say its access URL and size, via Tez, to the consumer
task input. Tez routes this metadata using the connection pattern
encoded in the edge connecting the producer and consumer. Thus
Tez adds minimal overhead on the data plane. This also makes Tez
data format agnostic. The inputs, processor and outputs can choose
their own data formats (e.g. bytes, records or key-value pairs etc.)
as suited for the application, exemplified in Section 5.5

This novel IPO based approach to task composition allows for
separation of concerns and makes the system pluggable. The same
DAG structure can be instantiated with environment dependent 1Os.
E.g. different cloud environments can plug in 1Os that are opti-
mized for their storage subsystems. We will see in the next sections,
how the IPOs can be dynamically configured during execution for
even further runtime customizations.

3.3 Event Based Control Plane

The open architecture of the Tez orchestration framework re-
quires a de-coupled control plane that allows a variety of entities
to communicate control information with each other. In order to
achieve this Tez has an event based control plane that is also ex-
posed to the application. Software components generate events
that get routed to receivers. By design, this is an asynchronous,
non-blocking, push-based method of communication. Events are
used for all communications, be it framework to framework, appli-
cation to framework and vice versa, or application to application.
As shown in Figure 5, a DataEvent is generated by the output of
a producer task and contains output metadata (say a URL) for the
consumer task to read the data. This event is received by the frame-
work and routed to the input of the consumer task by utilizing the
connection information specified by the edge. If a task input has
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Figure 5: Events used to route metadata between application
1Os and error notifications from applications to the framework

an error while reading its data then it can send an ErrorEvent to
the framework. Based on such error events, Tez could re-execute
the producer task to re-generate the data. Other events could be
used to send statistics, progress etc. Event based communication
also provides the flexibility to add more entities and communica-
tion channels without changing the interaction model or APIs. Tez
only routes the events. Each event has an opaque binary payload
that is interpreted by the sender and receiver to exchange control
metadata. Events flow to and from tasks to the orchestrator on ev-
ery task heartbeat. Event transfer latency depends on the heartbeat
latency and processing latency at the orchestrator. These latencies
increase in proportion to the size of the job as they depend on the
number of concurrent connections and event load supported by the
orchestrator. If control plane events lie on the data plane critical
path then they would negatively affect application latency but if
they are used only for data plane setup then Tez would not intro-
duce any additional latency on the data plane for low latency appli-
cations.

3.4 Vertex Manager: dynamically adapting the
execution

As motivated earlier, data processing clusters have variability in
compute capacity or data distribution (where data is stored on phys-
ical nodes) that applications may consider to plan their work. Data
dependent actions like sample based range partitioning or optimiza-
tions like partition pruning need the ability to change the DAG on
the fly. It is not possible to encode all such current and future graph
re-configurations statically, nor can this be done by Tez itself (as
it requires too much domain knowledge). Thus Tez needs to allow
the application to make such decisions at runtime and coordinate
with Tez to dynamically adapt the DAG and its execution. This is
enabled via the VertexManager abstraction, similar to [24].

Runtime Graph Re-configuration. When constructing the
DAG, each vertex can be associated with a VertexManager. The
VertexManager is responsible for vertex re-configuration during
DAG execution. The orchestration framework contains various state
machines that control the life-cycle of vertices, tasks etc. and the
vertex state machine is designed to interact with the VertexManager
during state transitions. The VertexManager is provided a context
object that notifies it about state changes like task completions etc.
Using the context object, the VertexManager can make changes to
its own vertex’s state. Among other things, the VertexManager can



EEa Data Size Statistics
X N T
ertex Manage Map Vertex

8
| Invoke API Change
Edge Routing
Vertex State

Machine

Reduce Vertex

Tez Application Master Cancel Task

Figure 6: DAG reconfiguration by VertexManager to apply
partition cardinality estimated at runtime

control the vertex parallelism, the configuration payloads of the in-
puts, processors and outputs, the edge properties and scheduling of
tasks. As with other entities there is a VertexManager API that can
be implemented by applications to customize the vertex execution.
Using the same API, Tez comes with some built-in VertexMan-
agers. If a VertexManager is not specified in the DAG, then Tez
will pick one of these built-in implementations based on the vertex
characteristics.

Automatic Partition Cardinality Estimation. As an ex-
ample of a runtime optimization, we present a solution to a well-
known problem in MapReduce about determining the correct num-
ber of tasks in the reduce phase. This number typically depends on
the size of the data being shuffled from the mappers to the reducers
and is accurately available only at runtime. Shuffle is the term used
to describe the cross-network read and aggregation of partitioned
input done prior to invoking the reduce operation. In Tez, the Shuf-
fleVertexManager can be used to control the vertices that are read-
ing shuffled data. The tasks producing the data to be shuffled, send
data statistics to the ShuffleVertexManager using VertexManager
events. As visualized in Figure 6, the ShuffleVertexManager gath-
ers these statistics to calculate the total data size and estimate the
correct number of reducers to read that data using a per-reducer de-
sired data size heuristic. Since the number of reducers essentially
represents the partition cardinality, this solution can be generalized
to estimating the optimal number of partitions at runtime (e.g. par-
titions participating in a distributed join operation).

Scheduling Optimizations. VertexManagers also control the
scheduling of tasks in their vertex. Typically, tasks should be started
after their input data is ready. However, if the tasks can proceed
meaningfully with partial input then they could be started out of
order and use any free compute capacity. The shuffle operation
mentioned above is an example of a case where partial inputs can
be read by tasks pro-actively. This is an expensive data transfer
across the network and starting early can help hide its latency by
overlapping it with the completion of tasks that will produce the
remaining input. Out of order scheduling can result in scheduling
deadlocks in a resource constrained cluster where an out of order
task ends up blocking one of its input tasks because it has occu-
pied resources in the cluster. Tez has built-in deadlock detection
and preemption to take care of such situations. It will use the DAG
dependency to detect tasks running out of order and preempt them
to resolve the deadlock.
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3.5 Data Source Initializer

In Tez we have modeled data sources as first class entities in our
design. The first step in a DAG usually involves reading initial in-
put from data sources like distributed file systems, and typically is
the largest in terms of resource consumption. Hence, a good or bad
decision at this step can significantly improve or degrade perfor-
mance. A data source in a DAG can be associated with a Data-
Sourcelnitializer that is invoked by the framework before running
tasks for the vertex reading that data source. The initializer has the
opportunity to use accurate information available at runtime to de-
termine how to optimally read the input. Like the VertexManager,
the initializer can also send and receive events from other entities.
It also has access to cluster information via its framework context
object. Based on these and other sources of information, the ini-
tializer can configure the task inputs or notify the vertex manager
about vertex re-configurations (E.g. the optimal parallelism needed
to process the input).

As an example, we will present a Hive dynamic partition prun-
ing use case. It often happens that a data source will be read and
subsequently joined on some key. If the join key space is known
then we could only read a subset of the data that is relevant to the
join. Sometimes this metadata is only available at runtime after in-
specting the data in a different sub-graph of the DAG. Hive uses
Inputlnitializer events to send this metadata from tasks in the other
vertices to the initializer of the data source. The initializer uses that
metadata to decide the relevant subset of data to read. This can lead
to large performance gains depending on the join selectivity.

The above discussion has been a broad overview of the architec-
ture and features in Tez. More details about the semantics around
the API’s and user defined entities is available in the API documen-
tation on the project website [2]

4. IMPLEMENTATION AND PRACTICAL

CONSIDERATIONS

We now turn to describing how the architecture of the previous
section is instantiated in YARN, and discuss in more details ef-
ficiency and production-readiness aspects of Tez. From an engi-
neering perspective this is where much of our effort was devoted,
and what makes Tez a useful building block for data-processing
engines.

4.1 Implementation in YARN

The Apache Tez project consists of 3 main parts:

e API library: This provides the DAG and Runtime APIs and
other client side libraries to build applications

e Orchestration framework: This has been implemented as a
YARN Application Master [32] (hereafter referred to as AM)
to execute the DAG in a Hadoop cluster via YARN

e Runtime library: This provides implementations of various
inputs and outputs that can be used out of the box.

Typical Tez Application Lifecycle. A Tez based application
is written using the API library by constructing the DAG represent-
ing the application logic. Typically, higher level applications like
Apache Pig construct DAGs on the fly by encoding their native lan-
guage constructs into Tez DAGs. Since Tez is designed to operate
in Hadoop clusters we have provided implementations of inputs and
outputs to standard storage services present in all Hadoop clusters
- HDFS [16] for reliable data storage and YARN Shuffle Service



[32] for temporary data storage. Applications that use only these
services, need to implement just their processors to get up and run-
ning. Typically applications create a generic processor host that
can be configured to execute DAG dependent operators. Tez in-
puts and outputs are based on the key-value data format for ease of
use within the key-value dominated Hadoop ecosystem of projects
like Apache Hive, Pig etc., and can be extended to other data for-
mats. The DAG is then submitted to a YARN cluster using the Tez
client library. YARN launches the Tez Application Master (AM - a
per-application controller) to orchestrate the DAG execution. The
DAG executed by the AM is typically a logical DAG that describes
the data flow graph. The AM expands this graph to incorporate
task parallelism per vertex. It does this using the input initializers
and vertex managers specified in the DAG. The AM then requests
YARN for resources to run the tasks from different vertices. YARN
responds in the form of containers. A container is a unit of resource
allocation on a cluster node. The AM launches tasks on these con-
tainers and routes control events. Tasks are typically executed in
their dependency order and the DAG completes when all its tasks
complete. The AM logs tracing and metadata information for mon-
itoring and debugging.

By leveraging existing libraries and services from YARN and
MapReduce, we have been able to quickly build on top of several
man-years of production ready code for security and high volume
network data shuffling; and integrate with the proven resource shar-
ing and multi-tenancy model in YARN. Thus, applications built us-
ing Tez will benefit from all these without expending further effort.

4.2 Execution Efficiency

The YARN implementation of the orchestration framework is
built with execution efficiency and performance in mind and in-
corporates well known ideas learned over the years in various dis-
tributed data processing systems.

Locality Aware Scheduling. Scheduling processing close to
the data location is important for large-scale data-processing [21,
32]. Tez tries to run tasks close to their input data location. Loca-
tion may be specified statically during DAG creation but is typically
determined at runtime. The tasks that read from initial input data
sources typically get locality information from their data sources
while intermediate task locality is inferred from their source tasks
and edge connections. E.g. tasks with scatter-gather inputs have no
specific locality but may prefer to run close to the larger input data
shards. 1-1 edges specify strict locality relationships between their
source and destination tasks. Since getting perfect locality may not
be guaranteed in a busy cluster, the framework automatically re-
laxes locality from node to rack and so on with delay scheduling
[36] used to add a wait period before each relaxation.

Speculation. Large clusters can have heterogeneous hardware
and varying loads and hardware-aging. This can lead to environ-
ment induced task slowdowns. Such slow tasks are termed strag-
glers and launching a clone of such tasks is typically used to mit-
igate their effects on latency [21]. Tez monitors task progress and
tries to detect straggler tasks that may be running much slower than
other tasks in the same vertex. Upon detecting such a task, a specu-
lative attempt may be launched that runs in parallel with the original
task and races it to completion. If the speculative attempt finishes
first then it is successful in improving the completion time.

Container Reuse. Recall that the Tez AM runs tasks in con-
tainers allocated to it by YARN. When a task completes, the AM
has an option to return the container to YARN and ask for another
container with different capabilities or locality. However, each con-
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Figure 7: Execution trace of 2 DAGs executed in the same Tez
Session. Containers are re-used by tasks within a DAG and
across DAGs. Cross DAG re-use happens only in session mode.

tainer allocation cycle has overheads associated with resource ne-
gotiation from YARN as well as launching the container process.
This overhead can be minimized by re-using the container to run
other pending tasks that match the resource allocation and locality
of that container. When there are no such matching tasks, the Tez
AM releases the idle containers back to YARN in return for new re-
sources with different capabilities. In the Java world, this reuse has
the additional benefit of giving the JVM optimizer a longer time to
observe and optimize the hot code paths leading to further perfor-
mance benefits [1].

Session. A session takes the concept of container reuse one step
further. A Tez AM can be run in session mode in which it can
run a sequence of DAGs submitted to it by the client. This allows
tasks from multiple DAGs to reuse containers and leads to further
efficiencies and performance gains. In addition, a session can be
pre-warmed by requesting the AM to launch containers before the
first DAG is ready to execute. These pre-warmed containers can
execute some pre-determined code to allow JVM optimizations to
kick in. This extends the benefits of container reuse to the first
DAG that gets submitted to the session. E.g. Apache Hive and
Pig use the session mode to run multiple drill-down queries in the
same session for performance benefits. Tez sessions also enable
iterative processing to be performed efficiently. Each iteration can
be represented as a new DAG and submitted to a shared session for
efficient execution using pre-warmed session resources. Figure 7
shows the trace of a Tez session with containers shared across tasks
of multiple DAGs.

Shared Object Registry. Tez extends the benefits of container
reuse to the application by providing an in-memory cache of objects
that can be populated by a task and then re-used by subsequent
tasks. The lifecycle of objects in the cache can be limited to a
vertex, a DAG or the session and is managed by the framework.
It can be used to avoid re-computing results when possible. E.g.
Apache Hive populates the hash table for the smaller side of a map
join in Hive parlance (broadcast join). Once a hash table has been
constructed by a join task, other join tasks don’t need to re-compute
it and improve their performance.

4.3 Production Readiness

While performance and efficiency are important for a framework
such as Tez, we cannot ignore the standard abilities that are pre-
requisites for a production ready and dependable framework for
large scale data processing. A plethora of entities use technologies
like Apache Hive, Pig and other commercial software like Cascad-
ing to run mission critical operations. If they are to confidently



build using Apache Tez, then items like fault tolerance, security
and multi-tenancy become necessary requirements. Fortunately,
Tez has been able to build on top of proven and tested platforms like
Hadoop YARN and MapReduce and draws from their strengths for
achieving some of these abilities. The YARN integration exempli-
fies the specialized code implemented in Tez that can be leveraged
by higher-level engines using Tez.

Multi-Tenancy. Data processing clusters are becoming increas-
ingly large and sharing their capital expenditure among multiple
applications and users is essential from a capex point of view [32].
Applications must be written with such sharing and cooperative
behavior in mind. The discrete task based processing model in
Tez lends itself nicely to such cooperative behavior. Short lived
ephemeral tasks allow resources to be periodically released by Tez
applications so that they can be allocated to other users and ap-
plications as deemed appropriate by the cluster resource allocation
policy. This also enables higher resource utilization by transferring
resources from applications that don’t need them to applications
that do.

This is where engines that effectively deploy services daemons
suffer from a drawback. Typically, the service daemons have to
pre-allocate a large share of resources that cannot be shared with
other applications. For better utilization, these daemons try to run
multiple ‘tasks’ concurrently but that is not useful when there isn’t
enough load on the system, besides introducing the possibility of
interference between concurrent tasks. With Tez, since each task
runs in its own container process, the resource allocations are much
finer grained. This improves utilization (by reducing allocated re-
sources that are idle) and also provides process-based resource iso-
lation (for CPU/memory etc.). This also provides resource elastic-
ity to Tez applications in that they can scale up to utilize as much
resources as the cluster can spare to speed up job execution time
while gracefully degrading performance but still completing the
job when resources are scarce. To be clear, this discussion about
daemon based designs is in the specific context of ephemeral data
processing jobs. There are many contexts like data storage, web
services, PAAS applications etc. where a long running shared ser-
vice provided by a daemon based engine is suitable.

Security. Security is real concern with the variety and volume of
data stored in modern data processing clusters. Hadoop has built-
in Kerberos and token based authentication and access control [32]
and Tez natively integrates with the Hadoop security framework
to provide the application with secure access. In addition to that,
the inputs and outputs provided with Tez support encryption for
data read across the network. Security is a real concern with the
variety of data stored and concurrent access from multiple users.
Being outside the data plane reduces the contribution of Tez in the
threat surface of the application. The only interaction between Tez
and the app is control metadata routed via events by Tez. This
metadata is presented to Tez as an opaque binary payload and thus
can be protected by the app by encryption or other techniques as
deemed necessary. In the control plane, secure Hadoop provides
Kerberos and token based authentication for applications to access
storage or compute resources and Tez integrates with the secure
API’s exposed by Hadoop. Tez has some built-in input and output
libraries for HDFS and local storage. In a secure Hadoop cluster,
these libraries use HDFS token based authentication to access the
data. In a secure cluster local data is written in the OS security
content of the user and read via secure SSL channel provided by
the YARN Shuffle Service.

Another aspect of security is isolation between tasks running on
the same machine but belonging to different users. YARN provides
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this security isolation between containers by running the contain-
ers in the security context of the application user. Due to its fine-
grained, ephemeral task model, Tez can leverage this container se-
curity by running tasks for single user in the containers of an appli-
cation, thus guaranteeing user level isolation. This is much harder
to achieve when using application engines that deploy service dae-
mons. The daemons need to run tasks from different users in the
same daemon process, making security isolation difficult or im-
possible. To work-around this, multiple instances of the service
daemons need to be launched (one per user) and that may reduce
resource utilization, as described above. We believe that the fine-
grained, ephemeral task model of Tez makes it more suitable for
secure and multi-tenant YARN clusters.

Fault Tolerance. Failures are a norm in clusters of commodity
hardware. Failures can be on the compute nodes or the network.
Tez provides robust fault tolerance against failures using task re-
execution as a means of recovering from errors. When a task fails
due to machine errors, it is re-executed on a different machine.
Task re-execution based fault tolerance depends on deterministic
and side-effect free task execution. Being side-effect free allows
a task to be executed multiple times. Being deterministic, guaran-
tees that if identical code is executed on identical input data then it
will produce identical output data for each execution. These enable
the system to safely re-execute tasks to recover from failures and
data loss. Since the outputs are identical, the already completed
consumer tasks of that output do not need to be re-executed. This
limits the amount of re-execution and reduces the cost of failures.

Since Tez is not on the data plane, it exposes an InputReadError
event that task inputs can use to notify Tez about loss of interme-
diate data. Using the DAG dependency information Tez can deter-
mine which task outputs produced the missing data and re-execute
that task to regenerate the data. It may happen that the re-executed
task also reports an input error. This would cause Tez to go up one
more step in the DAG dependency and so on, until it has found
stable intermediate data. The edge API allows for the specification
of intermediate data resiliency such that Tez can be informed that
a given edge data has been reliably stored, thus creating an barrier
to cascading failures. Tez built-in input/output libraries leverage
heuristics inherited from MapReduce for mitigating and recovering
from network errors and cascading failures when shuffling large
volumes of data. E.g. temporary network errors are retried with
back-off before reporting an error event. Partially fetched data is
cached and the consumer task stays alive until the remaining miss-
ing data is regenerated. The Tez AM periodically checkpoints its
state. If the node, that is running the Tez AM, has a failure then
YARN will restart the AM on another node and the AM can re-
cover its state from the checkpoint data.

Tez tightly integrates with YARN to handle planned and un-
planned cluster outages. It listens to notifications about machine
loss or decommissioning and pro-actively re-executes the tasks that
were completed on such machines. This decreases the chance that
consumers of those task outputs will fail. Tez also understands ac-
tions taken by YARN such as preempting containers for capacity re-
balancing or terminating badly behaving containers and responds to
those actions appropriately.

Limitations. The current implementation of Tez is Java based
and thus we are limited to JVM based applications right now. The
Tez based MapReduce implementation has successfully executed
non-JVM user code using MapReduce’s approach of forking off
non-Java code. However, a more native Tez support would need
non-Java APIs for writing IPOs and executors to support them.



Work is in progress to have a portable text based representation of
the DAG API to enable non-Java compilers that target Tez. Tez can
only be used in a YARN based Hadoop cluster because the current
scheduling implementation has been written for YARN. Our recent
work to enable developer debugging capability has abstracted out
the dependence on a cluster. Extensions of that work could en-
able Tez to utilize other systems for execution. The current fault
tolerance model depends on the assumption that intermediate task
outputs are localized to the machine on which the task ran. Thus
intermediate data loss causes re-execution of the task on a differ-
ent machine. This may not be true of all IOs. e.g. if data is being
streamed directly over the network. Also, such network streaming
may result in collapse of the connected streaming sub-graph, which
would need extensions of the fault tolerance model to handle such
correlated failures.

S. APPLICATIONS & ADOPTION

In this section we will outline projects that have been updated
or prototyped to use the Tez framework to run on YARN. These
projects represent a significant variety of application types and help
show the applicability of the Tez APIs for modeling and building
high-performance data processing applications.

5.1 Apache MapReduce

MapReduce is a simple yet powerful means of scalable data pro-
cessing that can be credited with ushering in the era of inexpensive
hyper-scale data processing. At its core, it is a simple 2 vertex con-
nected graph. In Tez, it can be represented with a map vertex and
a reduce vertex that are connected using a scatter-gather edge. Tez
has a built-in MapProcessor and a ReduceProcessor that run in the
respective Map and Reduce vertices and provide the MapReduce
interface functionality. Thus MapReduce can be easily written as
a Tez based application and, in fact, the Tez project comes with
a built-in implementation of MapReduce. Any MapReduce based
application can be executed without change using the Tez version
of MapReduce by simply changing a MapReduce configuration on
a YARN cluster.

5.2 Apache Hive

Apache Hive is one of the most popular SQL-based declarative
query engines in the Hadoop ecosystem. It used to translate queries
written in HiveQL (a SQL-like dialect) to MapReduce jobs and run
them on a Hadoop cluster. Like other SQL engines, Hive trans-
lates the queries into optimized query trees. Often these transla-
tions to MapReduce were inefficient due to the restricted expres-
siveness of MapReduce. These trees translate directly to DAGs
specified using the Tez DAG API. Thus they can be represented
efficiently in Tez. In addition, Hive uses custom edges (written to
the Tez API) to perform sophisticated joins that were hitherto very
difficult to do. E.g. In a join variant called Dynamically Parti-
tioned Hash Join; Hive uses a custom vertex manager to determine
which subsets of data shards to join with each other and creates a
custom edge that routes the appropriate shards to their consumer
tasks. While these query planning improvements provide algorith-
mic performance gains, Hive benefits from the execution efficien-
cies (Section 4.2) to get significant performance benefits out of the
box. This integration has been implemented by the Apache Hive
community with Hive 0.13 being the first release of Hive to have
Tez integration[7]. Further Tez-based optimizations (like dynamic
partition pruning) have been released in Hive 0.14 with more work
planned in future releases.
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5.3 Apache Pig

Apache Pig provides a procedural scripting language (named
PigLatin) that is designed to write complex batch processing ETL
pipelines. The procedural nature of PigLatin allows the creation of
complex DAGs with vertices having multiple outputs. In MapRe-
duce, applications could write only 1 output and thus were forced
to use creative workarounds like tagging the data or writing side-
effect outputs. Being able to model multiple outputs explicitly via
the Tez APIs allows the planning and execution code in Pig to be
clean and maintainable. Pig supports joins with data-skew detec-
tion and this was earlier done by running different MapReduce jobs
to read and sample the data, then create histograms based on the
samples on the client machine and finally run another job that uses
the histogram to read and partition the data. This complex work-
flow of jobs can now be represented as a sub-graph of any Pig DAG
when using Tez. The samples are collected in a histogram vertex
that calculates the histogram. The histogram is sent via an event to
a custom vertex manager that re-configures the partition vertex to
perform the optimal partitioning. Pig developers from Yahoo, Net-
flix, LinkedIn, Twitter and Hortonworks came together to imple-
ment this integration. Pig 0.14 is the first release of Pig to support
Tez based execution in addition to MapReduce[8].

5.4 Apache Spark

Apache Spark [38] is a new compute engine that provides an ele-
gant language integrated Scala API for distributed data processing.
It specializes in machine learning but the API lends itself to mixed
workloads and pipeline processing. Data distribution metadata is
captured at the language layer in a concept called Resilient Dis-
tributed Dataset (RDD) [37] and this metadata is used during com-
pilation to construct a DAG of tasks that perform the distributed
computation. Spark comes with its own processing engine service
to execute these tasks. We were able to encode the post-compilation
Spark DAG into a Tez DAG and run it successfully in a YARN
cluster that was not running the Spark engine service. User defined
Spark code is serialized into a Tez processor payload and injected
into a generic Spark processor that deserializes and executes the
user code. This allows unmodified Spark programs to run on YARN
using Spark’s own runtime operators. Apache Hive and Pig were
already designed to translate to MapReduce and the translation to
Tez is an evolutionary step. Modeling a net new engine like Spark
on YARN using Tez presents a strong proof of the generality and
modeling power of the Tez framework. Tez sessions also enable
Spark machine learning iterations to run efficiently by submitting
the per-iteration DAGs to a shared Tez session. This work is an
experimental prototype and not part of the Spark project[22].

5.5 Apache Flink

Apache Flink [5] is a new project in the Apache community with
roots in the Stratosphere research project of the TU Berlin data
management community. It is a parallel processing engine that pro-
vides programming APIs in Java and Scala, a cost-based optimizer
for these APIs, as well as its own execution engine. Flink is another
example of a new platform that could be integrated with YARN us-
ing the Tez framework instead of running it as a standalone service.
The post-optimization DAG is translated to a Tez DAG for this in-
tegration. While Apache Hive and Pig work on key-value data for-
mats and could use the built-in Tez inputs and outputs, Flink keeps
intermediate data in a custom binary format. This format can be
used to perform operations like group by etc. without much deseri-
alization overhead. The pluggable and composable Tez task model
allowed Flink to incorporate its runtime operators and binary for-
mat inside Tez tasks, thus allowing unmodified programs to run on



YARN using Flink’s native runtime model. This work is currently
in progress in the Apache Flink developer community[6].

5.6 Commercial Adoption

The customizability and performance focused design of Tez has
resulted in rapid uptake from commercial software projects. Con-
current Inc. supports an open source language integrated API in
Java, called Cascading, for distributed data processing. Cascading
has been updated to run on YARN using the Tez framework with
promising performance results. Scalding is a Scala dialect over
Cascading that automatically gets the benefits of Tez via Cascad-
ing. Cascading 3.0 is currently available as a developer preview
and integrates with Tez [3]. Datameer provides a visual analytics
platform that uses Tez to run optimized analytics queries on YARN.
It also uses Tez sessions to maintain a query service pool for fast
response times in a secure, multi-tenant environment. Datameer
5.0 is the first release that uses Tez [33]. Release 8 of Syncsort’s
Hadoop product, DMX-h, shipped with an intelligent execution
layer to enable transparent targeting of execution frameworks other
than Mapreduce. Following this, they are in the process of inte-
grating with Tez as one of their supported execution frameworks
[11].

5.7 Deployments

Apache Tez has been deployed across multiple organizations and
on a variety of cluster configurations. Most prominently, Yahoo!
has deployed Tez on multiple clusters ranging from 100s to 1000s
of nodes to run Hive and Pig with Tez [35]. LinkedIn has completed
migration of all their Hadoop clusters to YARN and is running Hive
and Pig with Tez. Microsoft Azure has deployed Hive with Tez as
part of its cloud Hadoop offering [10]. Hortonworks has provided
Tez as a part of its Hadoop distribution since April 2014 and is
seeing rapid adoption of Tez by its install base. At the time of
publication, nearly 100 Hortonworks customers have explored the
capabilities of Tez.

The growing adoption of Tez we described in this section pro-
vides a qualitative metric of the project success. In the next sec-
tion, we turn to the experiment results obtained as a result of these
applications being integrated with Tez.

6. EXPERIMENTAL RESULTS

We devote this section to present several experiments, showcas-
ing how Tez-based implementations of Hive, Pig and Spark on
YARN outperform their original implementation on YARN. The
experiments are derived from both standard benchmarks, and pro-
duction workloads.

6.1 Hive 0.14 Performance Tests

Hive utilizes various features available in Tez, such as broad-
cast edges, runtime re-configuration and custom vertex managers,
to achieve a better overall execution of the user’s processing goals.
In conjunction with Hive 0.14’s Cost Based Optimizer, Tez enables
the execution of bushy join plans which can take advantage of in-
termediate broadcast joins. The pluggable task model of Tez allows
Hive to use custom vectorized operators throughout the processing.
Custom edges are used to perform efficient Hive sort-merge-bucket
joins. In Figure 8 we show the impact of these optimizations on a
TPC-DS derived Hive workload, run at 30 terabytes scale on a 20
node cluster with 16 cores, 256Gb RAM and 6 x 4Tb drives per
node. The Tez-based implementation substantially outperforms the
traditional MapReduce based one.
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Figure 8: Hive: TPC-DS derived workload (30TB scale)

6.2 Yahoo Hive Scale Tests

In Figure 9 we show a comparative scale test of Hive on Tez,
with a TPC-H derived Hive workload [35], at 10 terabytes scale on
a 350 node research cluster with 16 cores, 24Gb RAM and 6 x 2Tb
drives per node. This was presented at Hadoop Summit 2014, San
Jose. This shows that Tez based implementation outperforms the
MapReduce based implementation at large cluster scale.
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Figure 9: Hive: TPC-H derived workload at Yahoo (10TB
scale)

6.3 Yahoo Pig Production Tests

At Yahoo!, Pig on Tez was tested on large production ETL pig
jobs that run in the order of minutes to hours. To test different
aspects of scale and features of the implementation, the pig scripts
run had varying characteristics like terabytes of input, 100K+ tasks,
complex DAGs with 20 to 50 vertices and doing a combination of
various operations like group by, union, distinct, join, order by,
etc. The tests were run on different production clusters where data
resided and already running regular jobs with average utilization
of 60-70%. The cluster had 4,200 servers, 46 PB HDFS storage
and 90TB aggregate memory. Most data nodes were with 12/24G
RAM, 2 x Xeon 2.40GHz, 6 x 2TB SATA on Hadoop 2.5, RHEL
6.5, JDK 1.7 There were performance improvements of 1.5 to 2x
compared to MapReduce keeping all the configuration (memory,
shuffle configuration, etc.) same as MapReduce. Figure 10 shows
the results of these tests.
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Figure 10: Pig workloads at Yahoo

6.4 Pig KMeans Iteration Tests

As noted in Section 4.2, Tez session and container-reuse features
work in favor of fast iterative workloads, which require consecutive
DAGs to execute over the same data-set. In Figure 11 we show
performance improvements for a K-means iterative PIG script [20],
run for 10, 50 and 100 iterations against a 10,000 row input dataset
on a single node. This was presented at the Hadoop Summit 2014,
San Jose.
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Figure 11: Pig iteration workload (k-means)

6.5 Spark Multi-Tenancy on YARN Tests

As explained in Section 4.3, Tez’s ephemeral task based model is
better for multi-tenancy and resource-sharing. This is demonstrated
in Figure 12 by comparing service-based vs Tez-based implemen-
tations of Spark on YARN. The Tez based implementation releases
idle resources that get assigned to other jobs that need them, thus
speeding them up, as shown in Figure 13, while the service-based
implementation holds on to resources for the life of the service. For
the experiment, we have a 5-user concurrency test [22] of partition-
ing a TPC-H lineitem data-set along the L SHIPDATE column, on
a 20 node cluster. The tests were run across data sets which cor-
respond to 100 GB, 200 GB, 500 Gb and 1 TB warehouse scale
factors. The cluster used to run this workload was identical to the
Hive 0.14 benchmarks, having 16 cores, 256Gb of RAM and 6 x
4Tb disks per node.
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7. OPEN SOURCE AND FUTURE WORK

Apache Tez has been developed as an open source project under
the Apache Software Foundation. It’s a community driven project
with contributors from Microsoft, Yahoo, Hortonworks, LinkedIn
among others as well as individual enthusiasts. The source code
for the project is available at http://git.apache.org/tez.git and the
project website is at [2]

The open architecture of Tez and its fundamentally customizable
design lends it to becoming a platform for experimentation and in-
novation. We believe that the current use cases built on Tez are only
the initial steps of a longer journey. There is considerable interest in
a variety of areas to improve and leverage Tez. Progressive query
optimization which allows a complex and large query to be exe-
cuted partially and optimized incrementally as the query proceeds.
Apache Hive [30] and Apache Calcite [17] are working together
on materialized views for speeding up common sub-queries. We
want to provide deep integration with in-memory storage capabili-
ties being added to HDFS [12] so that Tez applications can benefit
from in-memory computing. Tez currently supports Java applica-
tions and extending it to support other languages would widen the
scope of applications built using Tez. Another area of interest is
tooling for debugging failure and performance performance bot-
tlenecks. Increasingly, geographical distribution and legal/privacy
requirements are making cross data-center job execution important
[34]. Improving the Tez orchestration and API to model such jobs



may help in executing them efficiently. The above are only a few of
the many possibilities in which Tez may be evolved or used by aca-
demic and commercial communities. Many runtime optimizations
are also in the works. E.g. automatically choosing optimal data
transport mechanisms like in-memory data for machine co-located
tasks or using a reliable store for outputs of extremely long tasks
so that their outputs are safeguarded against loss. An tactical idea
is to create tooling that enables a full MapReduce workflow to be
stitched into a single Tez DAG. This would enable legacy MapRe-
duce workflows to easily use the MapReduce im

8. RELATED WORK

Apache Tez has been fortunate to learn from the development
and experiences of similar systems such as Dryad, Hyracks and
Nephele [24, 15, 14]. All of them share the concept of model-
ing data processing as DAGs with vertices representing application
logic and edges or channels representing data transfer. Tez makes
this more fine-grained by adding the concepts of inputs, proces-
sor and outputs to formally define the tasks executing the DAGs,
leading to clear separation of concerns and allowing pluggable task
composition. All of them participate to varied extents in the data
plane and define some form of data format, which allows applica-
tions to define custom formats that derive from the base definition.
All of them define on-disk, over-network and in-memory commu-
nication channels. Tez, on the other hand, does not define any data
format and is not part of the data plane at all. On a similar note,
Hyracks defines an operator model for execution that allows it to
understand the data flow better for scheduling. Tez treats proces-
sors as black boxes so that the application logic can be completely
decoupled from the framework. Nephele is optimized for cloud en-
vironments where it can elastically increase or decrease resources
and choose appropriate virtual machines. Tez also enables resource
elasticity by acquiring and releasing resources in YARN. Dryad
and Tez share the concept of vertex managers for dynamic graph
re-configurations. Tez takes this concept a step further by formal-
izing an API that allows the managers to be written without know-
ing the internals of the framework and also defining an event based
communication mechanism that enables application code in tasks
to communicate with application code in vertex managers in order
to actuate the re-configurations. In addition, Tez adds the concept
of input initializers to formally model primary data sources and ap-
ply runtime optimizations while reading them. Dryad schedules
tasks when all the inputs of the tasks are ready to be consumed,
to prevent scheduling deadlocks. Tez allows out of order execu-
tion for performance reasons and has built-in preemption to resolve
scheduling deadlocks. Overall, Tez differs from these systems in
its modeling capabilities and the design goal of being a library to
build engines rather than being an engine by itself. MapReduce
is, of course, the incumbent engine in the Hadoop ecosystem. Tez
subsumes the MapReduce APIs such that it is possible to write a
fully functional MapReduce application using Tez.

Dremel [26] is a processing framework for interactive analysis of
large data sets based on multi-level execution trees that is optimized
for aggregation queries and has motivated systems like Presto [9]
and Apache Drill [23]. These, and other SQL query engines like
Impala [25] or Apache Tajo [18], differ from Tez by being engines
optimized for specific processing domains whereas Tez is a library
to build data processing applications. Spark [38] is a new general
purpose data processing engine. It exposes a Resilient Distributed
Dataset (RDD) [37] based computation model that eventually gets
executed on an in-memory storage and compute engine. Tez, again
differs being a library and not a general purpose engine. Tez does
not provide any storage service but applications can use existing in-
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memory stores, e.g. HDFS memory storage [12], to get the advan-
tage of in-memory computing. The Spark notion of using RDDs as
a means of implicitly capturing lineage dependency between steps
of processing can be related to capturing that same dependency ex-
plicitly via defining the DAG using Tez APIs.

An important category of systems to compare against are other
frameworks to build YARN-applications. The two most relevant in
this space are Apache REEF [19] and Apache Twill [31]. These
systems focus on a much broader class of applications (including
services), than Tez, and thus provide a lower-level API. Tez focuses
on supporting data-flow driven applications, and thus consciously
chooses to provide a structured DAG-based control-flow.

9. CONCLUSIONS

Today, Hadoop is a booming ecosystem for large-scale data pro-
cessing, blessed with an ever growing set of application frame-
works, providing diverse abstractions to process data. We recog-
nize that this is invaluable, yet we highlight substantial concerns of
fragmentation and repeated work, as each application framework
solves similar fundamental problems over and over again.

To address this issue we present Apache Tez, an open-source
framework designed to build data-flow driven processing engines.
Tez provides a scaffolding and libraries to facilitate the design and
implementation of DAG-centric data processing applications, and
focuses on re-use, while balancing customizability of the perfor-
mance critical data plane. Tez makes a conscious effort to en-
able dynamic optimizations, such as partition pruning. Besides
these key architectural choices, what sets Tez apart from other at-
tempts of unifying frameworks is a sizeable open-source commu-
nity, that is pushing Tez towards becoming the framework of choice
for building DAG-orientied data processing engines. As of today,
the most popular projects (Hive, Pig and Cascading) have inte-
grated with Tez. We demonstrated experimentally that the Tez-
based incarnations of these systems deliver substantial performance
benefits beyond the qualitative argument of leveraging common
functionalities.

We argue that the standardization we are promoting can foster
even faster innovation, and enable integration plays that would be
otherwise cumbersome (e.g., pipelines made up of multiple appli-
cation frameworks). Tez’s customizability and open-source com-
munity makes it an ideal playground for research, as novel ideas
can be tested, integrated, and gain real-world impact with minimal
overhead.
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