
DOI 10.1007/s10664-015-9368-6

Development nature matters: An empirical study
of code clones in JavaScript applications

Wai Ting Cheung ·Sukyoung Ryu ·Sunghun Kim

© Springer Science+Business Media New York 2015

Abstract Code cloning is one of the active research areas in the software engineering
community. Specifically, researchers have conducted numerous empirical studies on code
cloning and reported that 7 % to 23 % of the code in a typical software system has been
cloned. However, there was less awareness of code clones in dynamically-typed languages
and most studies are limited to statically-typed languages such as Java, C, and C++. In addi-
tion, most previous studies did not consider different application domains such as standalone
projects or web applications. As a result, very little is known about clones in dynamically-
typed languages, such as JavaScript, in different application domains. In this paper, we
report a large-scale clone detection experiment in a dynamically-typed programming lan-
guage, JavaScript, for different application domains: web pages and standalone projects.
Our experimental results showed that unlike JavaScript standalone projects, JavaScript web
applications have 95 % of inter-file clones and 91–97 % of widely scattered clones. We
observed that web application developers created clones intentionally and such clones may
not be as risky as claimed in previous studies. Understanding the risks of cloning in web
applications requires further studies, as cloning may be due to either good or bad intentions.
Also, we identified unique development practices such as including browser-dependent or
device-specific code in code clones of JavaScript web applications. This indicates that
features of programming languages and technologies affect how developers duplicate code.

Communicated by: Andrea De Lucia

W. T. Cheung · S. Ryu (�)
Department of Computer Science, KAIST, Daejeon, South Korea
e-mail: sryu.cs@kaist.ac.kr

W. T. Cheung
e-mail: kencwt@kaist.ac.kr

S. Kim
Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China
e-mail: hunkim@cse.ust.hk

Empir Software Eng (2016) 21:517–564

Published online: 24 March 2015

mailto:sryu.cs@kaist.ac.kr
mailto:kencwt@kaist.ac.kr
mailto:hunkim@cse.ust.hk


Keywords JavaScript · Code clones · Web applications · Clone properties · Software
metrics · Cloning patterns

1 Introduction

Code clones are pervasive. Previous research reported that 7 % to 23 % of the code in a typ-
ical software system has been cloned (Bakerm 1995; Roy and Cordy 2008). Code cloning
has become an active research area. Roy et al. (2014) studied 353 scholarly articles pub-
lished between 1994 and 2013 and categorized them into detection, analysis, management,
and tool evaluation. Among various clone-related research areas, empirical studies of code
clones have investigated different properties of clones (Cai and Kim 2011; Kim et al. 2005;
Roy and Cordy 2008).

In the literature, most clone-related research involved experiments on subjects of
statically-typed languages such as Java, C, and C++. Indeed, the nature of statically-typed
and dynamically-typed languages influences how developers duplicate code. Figure 1 shows
an example of a code clone in Java, a statically-typed language, from the application JHot-
Draw to support function overloading. Function overloading enables declarations of similar
methods with different parameter types. JHotDraw contains 12 such fragments in the sys-
tem. In this example, developers cloned the function and changed only the parameter types.
Such usage makes the code more understandable than abstracting it by a template (Kapser
and Godfrey 2008). However, dynamically-typed languages such as JavaScript do not pro-
vide any overloading mechanisms. Function declarations and expressions do not specify
parameter types and hence they are less likely to be subject to function-level clones. Despite
the different nature of statically- and dynamically-typed languages, only a few studies
compared the code clones between them (Jang et al. 2012; Roy and Cordy 2010a).

In addition, code clone studies on dynamically-typed languages have limitations: they
do not consider clones in different application domains, such as standalone projects or web
applications, and most clone-related studies of web applications are in HTML, ASP, and
PHP. Studies on code clones in JavaScript are limited. Given that JavaScript has extremely
dynamic features such as code generation at runtime, it has no module system, and its
main uses are scripts embedded in HTML, comparing JavaScript code clones in standalone
projects and web applications helps to understand how different features of technologies
affect code cloning.

Also, studies of code clones on web applications mainly concentrate on quantitative dif-
ferences (Di Lucca et al. 2002; Lanubile and Mallardo 2003; Rajapakse and Jarzabek 2005).
Only a limited amount of research has included qualitative analysis on the differences.

JavaxDOMOutput.java:284–288 NanoXMLDOMOutput.java:296–300

Fig. 1 Java code clone from JHotDraw to overload functions

518 Empir Software Eng (2016) 21:517–564



Analyzing code clones qualitatively helps to better understand the motivations for code
cloning.

While researchers have found that different motivations for cloning may positively or
negatively impact the code quality, only a few have attempted to measure whether certain
clone properties are associated with any software metrics (Kozlov et al. 2010; Monden et al.
2002). Clone properties are characteristics of code clones that are often measured in terms of
clone metrics. Several studies in the literature have examined the relationship between clone
properties and software metrics to investigate costs and benefits of clone removal (Koschke
2007; Monden et al. 2002; Roy and Cordy 2007). However, these studies focused on only
a single language and did not identify whether the relationship would be very different in
other languages or application domains.

In this paper, we study clones in three different types of subjects: JavaScript web appli-
cations, JavaScript, and Java standalone projects. Throughout the paper, we denote them as
JSweb, JSproj, and Java, respectively. Table 1 shows the languages, definitions, and
study targets of the three subject types. JavaScript web applications are web applications
that involve embedded JavaScript in development. JavaScript and Java standalone projects
are systems that are developed as individual applications or as libraries of other applications
using JavaScript and Java as the main language of development, respectively. We exclude
external JavaScript source files in our study because it is not easy to automatically distin-
guish which of those files are from developers themselves, external libraries, or a mixture
of both.

We chose JavaScript because it has become one of the most widely-used dynamically-
typed languages, and it shows an increasing trend of usages: researchers reported that 98
out of the 100 most popular websites use JavaScript (Guarnieri et al. 2011), and the use of
dynamic features is evident in websites (Ratanaworabhan et al. 2010; Richards et al. 2010,
2011). Given the different nature of statically- and dynamically-typed languages as well as
the extremely dynamic features of JavaScript, we would like to know if the findings in the

Table 1 Definitions and study targets of the three subject types

Type Language Definition Study Target

JSweb JavaScript Web applications that involve em- Embedded JavaScript in

bedded JavaScript in development the script tags of HTML

files, excluding external

JavaScript source files

JSproj JavaScript Systems that are developed as indi- Files with extension .js

vidual applications or as libraries of

other applications using JavaScript

as the main language of development

Java Java Systems that are developed as indi- Files with extension .java

vidual applications or as libraries of

other applications using Java as the

main language of development

Empir Software Eng (2016) 21:517–564 519



literature on statically-typed languages still apply to JavaScript and whether the findings on
other scripting languages, such as Python, are similar to JavaScript.

We utilize clone metrics from the literature and compare the clone properties among
JavaScript web applications, JavaScript, and Java standalone projects. We also measure
the correlation between the clone properties and software metrics, and manually inspect
the clones to understand how code clones are different between different languages and
application domains.

In our study, we found that JavaScript web applications showed different clone proper-
ties and cloning practices to those of JavaScript and Java standalone projects. We found that
features of programming languages and technologies affect how developers duplicate code.
We also noticed that developers of JavaScript web applications duplicate code intention-
ally. Existing clone tracking techniques allow developers to manage the clones efficiently,
and hence, they may not be as risky as claimed in previous studies. Understanding the risks
of cloning in JavaScript web applications requires further studies, as cloning may be due
to either good or bad intentions. Our findings suggest that when designing tools to man-
age code clones, developers have to take into account different features of programming
languages and technologies of individual systems.

Overall, this paper makes the following contributions:

• An empirical study of clone properties on JSweb, JSproj, and Java: We found
unique clone properties of JSweb, JSproj, and Java by analyzing clones detected
by JSCD, our custom-built JavaScript clone detector, and Deckard on 10 websites and
20 standalone projects.

• An analysis of correlation between clone properties and software metrics on
JSweb, JSproj, and Java: We observed stronger correlations between clone
properties and software metrics in JSproj and Java than JSweb.

• A qualitative analysis of cloning patterns on JSweb, JSproj, and Java: We
manually inspected the code clones and identified unique development practices in
JSweb.

The remainder of this paper is structured as follows. After discussing related work in
Section 2, we describe our clone detector, JSCD, in Section 3. Section 4 and Section 5
present our study design and findings, respectively. Section 6 discusses the implica-
tions of our findings, lessons learned, and threats to validity. We conclude our study in
Section 7.

2 Related Work

While many researchers actively studied code cloning of statically-typed languages, only
a few researchers have studied the code cloning of dynamically-typed languages. A lan-
guage is statically-typed if the type of variable is known at compile time. A language is
dynamically-typed if the type of variable is interpreted at runtime.

2.1 Empirical Studies of Code Clones

In the literature, researchers have conducted various empirical studies on clones to study
different clone properties.

520 Empir Software Eng (2016) 21:517–564



Hotta et al. (2010) studied modification frequencies of clones and found that the presence
of duplicate code does not always have a negative impact on software evolution.

Thummalapenta et al. (2010) studied the clone evolution of four Java and C software
systems and found that more than 70 % of the clones were consistently changed and less
than 16 % had a late propagation. They also found that the code in clone evolution is more
bug-prone and that cloning is usually used as a templating mechanism. They reported that
developers are aware of clone locations and automatic clone tracing tools can be benefi-
cial to developers. Our study differs from theirs in that their work studied the relationship
between clones and bugs in clone evolution while we study how features of programming
languages and technologies affect the ways developers clone.

Zibran et al. (2011) studied the evolution of near-miss clones in terms of the clone den-
sity and Pearson coefficient, and they forecasted the amount of clones in future releases of
software systems. They found that with the increase in the number of functions, the num-
ber of cloned fragments also increases in all systems. However, they identified a very weak
positive correlation between clone density and the number of functions, and the average
clone density for larger (in terms of LOC) systems was found to be less than that for smaller
systems.

Mondal et al. (2012) studied the stability of clones in terms of types, methods, languages,
and systems. They found that Type-1 and Type-2 clones are unstable, but Type-3 clones are
stable. They also noticed that clones in Java and C systems are not as stable as clones in C#
systems.

All the above studies were on subjects of statically-typed languages such as
Java, C, C++, and C#. To the best of our knowledge, there is only a limited amount of
empirical studies on code clones of dynamically-typed languages or both statically-typed
and dynamically-typed languages.

2.2 Studies of Clones in both Statically-Typed and Dynamically-Typed Languages

Some researchers studied clones in both statically-typed and dynamically-typed languages,
but they did not consider application domains.

Roy and Cordy (2010a) studied clones in both statically-typed and dynamically-typed
languages, namely, C, Java, and Python, in terms of various clone properties: cloning level
(number of methods and lines of code), clone-associated files, cloning density, and cloning
localization. They studied the changes of the clone properties by varying the similarity in
clone detection and observed that these properties change consistently in different languages
when the similarity varies. Our work is similar to theirs in that we share three of the above
clone properties in our experiments with theirs, and we compare our findings with theirs in
detail in Section 5. However, their work lacks qualitative analysis to understand why they
observed such findings.

Jang et al. (2012) detected 15,546 unpatched code clones on statically-typed and
dynamically-typed languages—Java, C, Perl, and Python—and confirmed 145 real bugs in
the latest version of Debian Squeeze packages.

Our work differs from the work mentioned above in that they have little or no qualitative
analysis to gain insight on their findings between statically-typed and dynamically-typed
languages. In this work, we manually investigate the clones to understand how dif-
ferent features of programming languages and technologies lead to different ways of
cloning.

Empir Software Eng (2016) 21:517–564 521



2.3 Language-Independent Approaches for Clone Detection

Researchers have proposed language-independent approaches for clone detection, but the
precision and recall of these approaches vary from language to language. A language-
independent clone detector is a tool that applies the same approach to detect clones in
different languages with no special treatment to individual languages. The correctness and
completeness of clone detection results are usually evaluated in terms of precision and
recall.

Cordy et al. (2004) detected near-miss clones and conducted experiments on two HTML
websites. They identified approximately 77–95 % of clones in multiple locations, and the
clones tended to be medium- to large-sized, typically exceeding 20 lines of code. However,
they did not measure recall and precision in their work.

Ducasse et al. (2004, 2006) detected clones on both statically-typed and dynamically-
typed languages such as Java, C, and Python. They experimented with different normaliza-
tion techniques and found that normalizing function names does not improve recall much
but lowers precision slightly. Also, they found that setting a maximum gap size of one
improves precision by 10 % while impacting recall by no more than 5 %. They defined
the gap as follows: “A gap in a sequence of matching lines occurs when the corresponding
lines fail to match.” They reported an overall recall of 64–78 % and precision of 42–94 %
without normalization and an overall recall of 85–95 % and precision of 11.5–70 % with
normalization.

Bulychev and Minea (2009) detected clones in Python, Java, and Lua and reported that
their approach can detect such clones that existing token-based and AST-based approaches
miss. However, they compared mainly the percentages of detected clones among different
tools and did not study other clone properties. They found that their tool had a recall of
31.7 %–77.3 % as well as 25–40 % higher precision than that of the clone detector CloneDR.

Brixtel et al. (2010) applied clone detection to plagiarism detection and experimented
with students’ assignments in both statically-typed and dynamically-typed languages such
as Java, Haskell, Python, and PHP. They reported that their approach works best for Haskell
but they achieved a precision of only 20 % for Python.

The above work shows that achieving high recall and precision is a challenge for
language-independent clone detectors. In Section 3, we evaluate our clone detector with two
language-independent clone detectors in detecting JavaScript code clones. Our evaluation
results show that our clone detector has an overall recall of 87 % and precision of 96 %,
which represent a 53–58 % improvement in recall and comparable precision to other two
clone detectors. In Section 3, we will discuss the reasons for such a difference in detail.

2.4 Studies of Clones in Web Applications

Boldyreff and Kewish (2001) analyzed existing websites by parsing HTML documents,
storing the HTML data categorized by file types in a database, and extracting duplicated
contents and styles. They analyzed five websites with their mechanism and found that small
sites tend to have fewer clones (11 %) because the maintainers of small sites might remem-
ber higher proportions of the sites than the maintainers of large sites; thus, the former might
recognize clones more often than the latter when they have repeated some code.

Di Lucca et al. (2002) detected duplicated pages based on similarity metrics in HTML
and ASP pages from four web applications. They noticed that using a frequency-based
method for preliminary identification followed by the Levenshtein distance method for

522 Empir Software Eng (2016) 21:517–564



actual detection may be good for detecting clones in HTML pages because the computa-
tion time of the frequency-based method is much lower than the actual detection method,
while it produces less precise results. In addition, they noticed that the Levenshtein distance
method works better at detecting clones in HTML pages than ASP pages. With manual ver-
ification, they observed that, even when two ASP pages include some code in common, the
remaining codes are very different. They reported that the percentages of files having clones
are 9–74 % for HTML and 21–56 % for ASP.

Lanubile and Mallardo (2003) identified cloned functions within JavaScript and
VBScript of web applications and reported that the function clones are between 39 % and
50 % of the total number of script functions in the web applications and between 32 % and
46 % of the total amount of code inside script functions. They also reported that in one
of the subjects, IBIS, the refactoring opportunities for client-side and server-side function
clones are 39 % and 50 %, respectively. However, their approach to detect cloned script
functions reports only potential function clones, and it requires visual inspection of selected
script functions.

Calefato et al. (2004) identified cloned functions within scripts in web applications and
evaluated recall, precision, and refactoring opportunities of their approach. They found that
most of the server-side scripts in VBScript functions in two of the web applications that they
had studied, QuickAuction (57 %) and Web Wiz Forums (80 %), can be refactored. They
also found that more than one-third (36 %) of the script functions in JavaScript in the IBIS
application could be improved by means of refactoring.

Rajapakse and Jarzabek (2005) studied clones in 17 anonymous web applications in
multiple statically-typed and dynamically-typed languages such as Java, JSP, and Python
in terms of total cloned tokens, file similarity, and qualifying file counts. They observed
cloning rates of 17–63 % in both newly developed and already maintained web applications.
However, they did not compare clones in statically-typed and dynamically-typed languages
because they did not provide the properties such as names and lines of code for each web
application. In addition, their underlying clone detector, CCFinder (Kamiya et al. 2002),
does not support all the languages in their subjects. Therefore, they treated all input files
as plain texts and detected only exact clones. They also ignored clones in the same files to
reduce the number of reported clones.

De Lucia et al. (2007) represented web pages as strings of HTML tags and clustered them
by an Artificial Neural Network clustering algorithm. However, their approach produced a
set of results with different trade-offs of precision and recall, and they needed to choose,
among the results, the one with the best F-measure. Our study differs from theirs in that
we do not have to choose the best result among multiple ones since our evaluation showed
that our clone detector has better recall than and comparable precision to existing tools in
detecting JavaScript clones. Also, their study targets code clones of HTML tags while we
target JavaScript embedded in web pages.

Selamat and Wahid (2007) combined frequent subgraph mining and string-based match-
ing techniques to detect clones in web applications containing HTML, ASP, and PHP code.
They noticed that the recall of their approach is low and most of the detected clones are
identical clones.

Ramage et al. (2009) compared the clustering algorithm of web pages by k-means clus-
tering with tags and page text as well as a generative clustering algorithm based on latent
Dirichlet allocation with tags and page text. They found that including tags alone performs
better than including page text alone. They also found that the generative model has 8 %
higher F-measure than that of k-means. Our work differs from theirs in that their work did

Empir Software Eng (2016) 21:517–564 523



not consider any programming languages and just treated the web pages as documents. Also,
they performed clustering on the texts and tags while we focus on identifying code clones
in embedded JavaScript in web pages.

De Lucia et al. (2009) compared three clustering algorithms — a divisive clustering
algorithm, a variant of the k-means partitioning clustering algorithm, and a competitive
clustering algorithm — in identifying similar web pages at a structural level by Levenshtein
edit distance and at a content (semantic) level by Latent Semantic Indexing. They evaluated
the algorithms in two web applications and found that precision and recall are similar at
both the structural and content levels. They also found that, at the content level, using k-
means with the no-single cluster configuration has similar F-measure to that of the trade-off
configuration. Our work differs from theirs in that they identify similar web pages in HTML
while we detect JavaScript clones in web pages. Also, they identified similar web pages
at both the structural and content levels while we detect only structural clones. It is well
known that semantic clones are, in general, hard to be detected (Bellon et al. 2007; Kim
et al. 2011; Koschke et al. 2012) and that only a few tools can detect them. In the worst case,
single-link-based agglomerative hierarchical clustering algorithms achieved a precision of
only 21.8 % in their results. Also, while their work relies on human experts in evaluating the
precision and recall of the clustering algorithms, human experts may be biased in judging
clones. However, the mutation technique we applied allows us to objectively evaluate the
precision and recall of clone detectors.

Blanco et al. (2011) clustered web pages by their URLs and reported that they can
cluster a website with 700,000 pages in 26 seconds. Using URLs as a means of cluster-
ing is too coarse-grained that it cannot distinguish slight differences between web pages.
However, clone detection can identify similar web applications in a fine-grained manner.
Specifically, this work focuses on detecting code clones of embedded JavaScript in web
pages.

Islam et al. (2011) detected code clones in server pages of ASP.NET web applications and
found that they have cloning rates of 10-23 %. They also found that applications developed
in the classic ASP.NET framework and the ASP.NET MVC framework have significant
quantitative differences in cloning. Our work differs from theirs in that they detected clones
in server-side ASP.net web applications while we detect JavaScript clones in client-side web
pages. Also, they analyzed the clones only quantitatively but did not further investigate why
they observed such differences in their findings.

Jones (2011) conducted a large-scale clone detection study on 6,190 PHP applications
and noticed that almost 90 % of projects contain code clones.

Martin and Cordy (2011) detected contextualized clones to identify similar web ser-
vices in Web Service Description Language (WSDL). They defined contextualized clones
as clones of modified or expanded code fragments that include information referenced else-
where. However, they reported only the number of clones detected and did not conduct any
further analysis.

Kou and Lou (2012) used hierarchical clustering to identify similar web pages on a col-
lection of clickstream data and reported that the average coherence and utility scores in a
5-point scale are 4.46 and 4.90, respectively. However, their work did not target any par-
ticular programming languages, and hence, their clustering of web pages is coarse-grained.
Such coarse-grained clustering would not be able to identify slight differences between web
pages as clone detection does.

Muhammad et al. (2013) studied exact and near-miss PHP clones in two industrial
dynamic web applications. They noticed that the PHP code in both web applications has a

524 Empir Software Eng (2016) 21:517–564



significant number of code clones and the system developed by the traditional page-based
approach has more scattered clones than the system developed by a modular implementation
following the MVC pattern.

Negara et al. (2013) clustered Ajax-enabled web applications with a DOM tree similarity
metric and found that their proposed distance metric is more accurate than other traditional
distance metrics in classifying the features of the applications. Our work differs from theirs
in that they removed the script and style tags in web applications and clustered the
remaining HTML tags while we focus on detecting code clones of JavaScript in the script
tags.

Li et al. (2014) proposed a variation of the algorithm in Deckard (Jiang et al. 2007a)
to detect code clones in Java applications and PHP web applications. Their approach is
based on randomized kd-trees with dimensionality reduction to cluster characteristic vec-
tors. They found that their approach could largely reduce the dimension of characteristic
vectors and computation time in JDK. They also found that PHP web applications have
cloning rates of 5-82 %. Our work is similar to theirs in that the underlying clone detec-
tion methodologies are similar because the algorithm of our clone detector is based on
that of Deckard. Although the focus of this study is not on clone detection algorithms, it
would be desirable to implement their algorithm to compare it with our clone detector since
their clone detector is not publicly available. Also, both studies found that web applica-
tions have higher percentages of code clones than traditional applications. Our work differs
from theirs in that their focus is on clone detection methodology; therefore, they reported
only the lines and percentages of cloned code without further study. This study focuses on
the motivation of cloning and, hence, conducts further investigations on how developers
clone.

The above studies have the following limitations. Despite the prevalence of JavaScript
in web applications, only a limited amount of research has examined JavaScript. In addi-
tion, such research has mainly focused on languages in web applications, but has seldom
compared the properties of statically-typed and dynamically-typed languages, as well as
different application domains. Our study differs from theirs in that we study the clone prop-
erties of JavaScript in web applications and also compare them with those in JavaScript and
Java standalone projects.

2.5 Applications of Clone Detection in Scripting Languages and Web Applications

Researchers have applied clone detection for scripting languages and web applications to
other areas such as identifying cloning patterns and achieving clone-free web applications.

Kienle et al. (2003) discussed the usefulness of generated clones for the web domain
using a website that they developed for illustration.

De Lucia et al. (2005) identified and analyzed cloning patterns in web applications
using clone analysis and clustering of static and dynamic web pages. They experi-
mented with a conference website and visualized its navigation schema. They observed
that large clones mainly came from pages related to the conference registration, hotel
reservation, paper submission, and visualization of keynote speakers and conference
sessions.

Rajapakse and Jarzabek (2007) conducted a case study to explore how far the PHP server
page technique can be pushed to achieve clone-free web applications. Their study showed
that the page generation time of clone unification using server pages becomes three times
slower when the cloning level decreases.

Empir Software Eng (2016) 21:517–564 525



The above studies show various applications of detecting clones in web applications
and identifying special features in web applications. In the last part of our study, we iden-
tify common cloning patterns among JSweb, JSproj, and Java, and also qualitatively
analyze the development practices specific in web applications.

2.6 Relationship Between Clone Properties and Software Metrics

Understanding the relationship between clone properties and software metrics helps to
investigate costs and benefits of clone removal (Koschke 2007). While some researchers
have studied the impacts of code clones to code quality (Bettenburg et al. 2012; Krinke
2007; Lozano et al. 2008), only a limited amount of research has examined whether certain
clone properties are closely related to any software metrics.

Monden et al. (2002) studied the relationship between code clones and the software
reliability and maintainability of a 20-year-old software. They found that on average mod-
ules having code clones are more reliable than modules having no clones. They also found
that clone-included modules are less maintainable than modules containing no clones, and
modules having more code clones are less maintainable than modules having fewer code
clone.

Kozlov et al. (2010) studied the relationship between code clone metrics and internal
quality attributes on 117 releases of eight eMule software project forks. They identified
a number of important relationships between the metrics; e.g., the number of statements
correlates positively with inter-file clones and number of files having at least one code clone.

Hegedűs et al. (2011) studied the correlation between software metrics, but they
did not find any strong correlation between clone coverage and other software
metrics.

While the above research studies the relationship between code clones and software met-
rics, they focus on a single programming language. To the best of our knowledge, there is
no prior work examining the differences of relationship in different languages and applica-
tion domains. In this study, we found that the correlation in JSproj is more similar to that
in Java than in JSweb.

2.7 Summary of Literature Review

Our literature review shows that previous code clone studies have the following limitations:
(1) since most of the studies were conducted on statically-typed languages such as Java
and C/C++, there is a lack of studies on dynamically-typed languages or comparison of
both kinds; (2) previous studies did not study code clones of the same language in different
application domains, such as web applications and standalone projects, given that they are
of different development natures; (3) the precision and recall of language-independent clone
detectors vary from language to language; (4) while the languages HTML, ASP, and PHP
have mostly been studied in web applications, studies on JavaScript are limited despite
its prevalence; and (5) many studies have focused on comparing quantitative differences,
and only a limited number of them have qualitatively analyzed the factors that may affect
cloning.

This study addresses the above limitations by (1) studying code clones in both statically-
typed and dynamically-typed languages, i.e., Java and JavaScript, (2) comparing the
differences of code clones between JavaScript web applications and standalone projects,
(3) developing and evaluating a clone detector targeted for JavaScript with high precision

526 Empir Software Eng (2016) 21:517–564



and recall, and (4) both quantitatively and qualitatively analyzing the factors that may affect
the ways developers duplicate code.

3 JSCD: JavaScript Clone Detector

Many clone detection approaches have been proposed in the literature. Among different
programming languages, Java and C/C ++ are the languages that most clone detectors
support (Roy et al. 2009). The number of clone detectors that can detect JavaScript code
clones is limited. While several clone detectors are available for JavaScript (Baxter et al.
1998; Harris 2013; PMD 2013; SAFE Corporation 2012; Schleimer et al. 2003), most of
them are either commercial software or have a low recall in detecting clones (Burd and
Bailey 2002; Krinke 2007, 2008; Roy et al. 2009).

Among tools that can detect duplication of JavaScript code, MOSS (Schleimer et al.
2003), Simian (Harris 2013), and PMD (PMD 2013) are widely studied in the literature
(Burd and Bailey 2002; Hill and Rideout 2004; Hotta et al. 2010; Krinke 2007, 2008, 2011;
Li and Ernst 2012; Roy et al. 2009; Wang et al. 2013). MOSS is a general plagiarism detec-
tion tool for multiple languages that supports JavaScript. Previous studies have revealed that
the recall of MOSS on Java is only 10 % (Burd and Bailey 2002). Also, researchers sug-
gested that MOSS is very coarse-grained and is not suitable for clone detection (Jiang et al.
2007a). In addition, an extensive comparison of clone detection tools on 17 Java and C sys-
tems revealed that both Simian and PMD (Roy et al. 2009) are good at detecting identical
clones but not renamed and gapped clones. The literature has shown that the above tools
have low recall in detecting clones in Java and C. However, it is not known that whether their
findings also apply to JavaScript because previous evaluations of these tools were conducted
on other languages, but not JavaScript. The limited number of existing clone detectors for
JavaScript and the types of clones that they can detect suggest the need for a clone detec-
tor for JavaScript with better recall and precision. The lack of clone detector evaluation on
JavaScript also suggests the need to check whether the findings in the literature also apply
to JavaScript.

In this study, we developed JSCD, a clone detector for JavaScript inspired by Deckard, a
state-of-the-art C/Java/PHP clone detector (Jiang et al. 2007a). As with Deckard, JSCD first
parses JavaScript source files into Abstract Syntax Trees (ASTs). It then approximates the
structural information of ASTs as characteristic vectors, which are a set of fixed-dimension
integer vectors representing the occurrences of the nodes in the ASTs. It uses Locality
Sensitive Hashing (LSH) (Datar et al. 2004) to cluster similar vectors by their Euclidean
distances into clone groups. LSH is a technique that hashes two similar vectors to the same
hash value with high probability and hashes two distant vectors to the same hash value with
low probability.

Our clone detector is integrated into SAFE (Lee et al. 2012; PLRG@KAIST 2012), an
open-source scalable analysis framework for ECMAScript. SAFE provides a formal spec-
ification and implementation of a general framework for analyzing JavaScript programs.
We used SAFE for parsing JavaScript programs and designed the characteristic vectors
specifically for JavaScript, utilizing the AST nodes generated by SAFE. SAFE is an anal-
ysis framework specially designed for JavaScript, and it supports parsing both JavaScript
files and embedded JavaScript code in web applications. The parser of SAFE complies
with the 5th edition of the ECMAScript specification, the standardized specification that
most JavaScript programs use nowadays, while most parsers for JavaScript comply with
only the 3rd edition (Lee et al. 2012). Therefore, our clone detector can capture the AST

Empir Software Eng (2016) 21:517–564 527



nodes of JavaScript code in parsing more accurately than other language-independent clone
detectors.

While most clone detectors detect identical clones well, tree-based clone detection
techniques can detect renamed and gapped clones better than text-based (Simian) and token-
based (PMD) techniques. In the comparison of clone detection techniques, Roy et al. (2009)
discussed the drawbacks of text-based and token-based techniques in detecting renamed and
gapped clones. Text-based techniques are not good at detecting renamed clones because,
without normalization or transformation, they cannot identify the differences between iden-
tifiers and literals. Token-based techniques in detecting renamed clones are likely to have
many false positives due to spurious clones such as sequences of assignments and very large
initializer lists for arrays (Koschke et al. 2006). Tree-based techniques can detect renamed
clones well because they usually ignore identifiers and literals in comparison. Both text-
based and token-based techniques are not suitable in detecting gapped clones unless they
apply threshold-based comparison or combine smaller identical and renamed clones in a
post-processing phase. However, the use of characteristic vectors in clone detection can
detect gapped clones well because the vectors approximate the structural information of
ASTs in the Euclidean space. To enable other researchers to replicate our study, we made
our clone detector publicly available.1

Since both JSCD and Deckard detect clones by measuring the similarity of characteristic
vectors, we can use the same configuration for both tools. Thus, we use the same settings for
similarity (the editing distance of two ASTs, which is smaller than a certain threshold),
minT (the minimum number of tokens required for clones), and stride (the size of the
sliding window).

In the rest of this section, we first discuss the challenges of evaluating clone detectors and
briefly introduce an automatic evaluation technique applied. We then describe the subjects
studied and the experimental setup. Lastly we present our results of evaluating JSCD with
other two clone detectors by automatic and manual evaluations.

3.1 Evaluation

The evaluation of clone detectors has long been a challenge to the code clone community.
There are several obstacles to overcome such as the absence of a reliable reference set
(Rysselberghe and Demeyer 2004), and the fact that the union of all the results by the tools
does not guarantee the detection of all the clones (Bellon et al. 2007; Burd and Bailey 2002;
Falke et al. 2008). Also, oracling a system requires a great deal of human effort (Bellon
et al. 2007).

Given the limitations of existing clone detection techniques, we would like to reli-
ably evaluate the recall and precision of our clone detector while minimizing the amount
of human effort involved. We applied the technique from Roy and Cordy (2009), which
is widely used in other studies (Roy and Cordy 2010b; Saha et al. 2011; Stephan et
al. 2013, 2014; Zibran and Roy 2012), to evaluate JSCD and other tools. Their approach
mainly comprises two phases: generation and evaluation. The generation phase creates
benchmarks by mutating code fragments to artificially create and inject known code clones.
The evaluation phase uses these benchmarks to measure the recall and precision of clone
detection tools. Since the locations of the injected code clones are known, their approach
enables us to evaluate recall without manual intervention. Also, their approach is aware of

1http://safe.kaist.ac.kr

528 Empir Software Eng (2016) 21:517–564

http://safe.kaist.ac.kr


the types (Type-1, -2, -3) of injected clones, and such information allows us to evaluate pre-
cision automatically by pairwise validation of clone pairs. For instance, they suggested that
Type-1 clones can be verified by pretty-printing while Type-2 and -3 clones can be verified
by normalization and a dissimilarity threshold, respectively.

We evaluate JSCD with two clone detectors, PMD (2013), and Simian (Harris 2013),
which are capable of detecting code clones in JavaScript. PMD is a token-based clone detec-
tor that detects Type-1 and -2 clones while Simian is a text-based clone detector that detects
only Type-1 clones.

3.2 Generation Phase

We create benchmarks for evaluation utilizing the technique of Roy and Cordy (2009). The
generation phase first selects any desired number of code fragments from the subject code
base automatically and randomly for clone mutation. Then, it applies mutant operators to
mutate the selected code fragments. For each of the mutated code fragments, it creates
a mutated code base by injecting the fragment into a random location in a random file
of the original code base. It records the locations of the injected clones in a database. A
mutated code base consists of the original code base and the injected randomly mutated
code fragment from the original code base.

We evaluated all three clone detectors on five JavaScript standalone projects: Boot-
strap, Web Font Loader, script.aculo.us, Foundation, and jQuery. Table 2 presents an
overview of the subjects used for mutation. It contains the subject name, version num-
ber, lines of non-comment JavaScript code, number of files, and number of mutated code
bases.

For each code base, we randomly select 50 functions and apply each of the 13 mutators
in Table 3 from Svajlenko et al. (2013) to each code fragment 20 times, yielding at most
13,000 code bases for each JavaScript project. Note that the total amount of code bases may
not reach 13,000 in some subjects since they may not have 50 functions or some mutation
operators such as mRL N for number literals and mRL S for string literals may not be
applicable to them. The last column of Table 2 indicates the number of mutated code bases
for each subject.

Table 2 Mutated subjects overview

Subject Version LOC Files Code Bases

Bootstrapa 3.0.0 1185 12 11948

Web Font Loaderb 1.5.4 1267 21 11544

script.aculo.usc 1.9.0 2228 9 6091

Foundationd 4.3.1 3900 17 7178

jQuerye 2.0.3 4827 27 7737

ahttps://github.com/twbs/bootstrap/tree/v3.0.0
bhttps://github.com/typekit/webfontloader/tree/v1.5.4
chttps://github.com/madrobby/scriptaculous/tree/v1.9.0
dhttps://github.com/zurb/foundation/tree/v4.3.1
ehttps://github.com/jquery/jquery/tree/2.0.3

Empir Software Eng (2016) 21:517–564 529

https://github.com/twbs/bootstrap/tree/v3.0.0
https://github.com/typekit/webfontloader/tree/v1.5.4
https://github.com/madrobby/scriptaculous/tree/v1.9.0
https://github.com/zurb/foundation/tree/v4.3.1
https://github.com/jquery/jquery/tree/2.0.3


Table 3 Mutation operators

Name Mutation Description Clone Type

mCW A Change in whitespace (addition) 1

mCW R Change in whitespace (removal) 1

mCF A Change in formatting (addition of newlines) 1

mCF R Change in formatting (removal of newlines) 1

mSRI Systematic renaming of an identifier 2

mARI Arbitrary renaming of a single identifier 2

mRL N Change in value of a single numeric literal 2

mRL S Change in value of a single string literal 2

mSIL Small insertion within a line 3

mSDL Small deletion within a line 3

mILs Insertion of a line 3

mDLs Deletion of a line 3

mMLs Modification of a whole line 3

3.3 Evaluation Phase

The evaluation phase runs each of the clone detectors with its tunable parameter set to
target the clone types on each of the mutated code bases. It measures the unit precision
and recall by comparing the clone reports with the injected clone pairs from the database
created by the generation phase. After computing the unit recall and precision for each
tool with each mutant code base, it computes the summary of the precision and recall of
each tool for individual mutation operators, each clone type, and the overall precision and
recall.

Table 4 presents the results of evaluating all three clone detectors on the subject Boot-
strap. For Type-1 clones overall, both Simian and PMD achieve more than 60 % recall while
JSCD achieves an even better recall of 97 %. All the three tools achieve 100 % precision in
detecting Type-1 clones. This shows that JSCD can detect more Type-1 clones than Simian
and PMD.

Our manual inspection reveals that the design of the tools limits their ability in detecting
non-pretty-print code as well as code with ill-formatted styles such as indentation, whites-
pace, or positioning of braces. We found that Simian does not detect any clones in the case of
removal of newlines. Our investigation reveals that Simian needs to configure the minimum
number of lines in clone detection. This limits its flexibility to detect clones of different
sizes. We also notice that PMD has a relatively low recall in detecting Type-1 clones with
changes in new lines, which are only 56 % in mCF A and 34 % in mCF R. Our manual
analysis reveals that the clone reports of PMD assume that the clone instances in the same
clone group have the same number of lines of code. The design of their tool limited their
ability to detect code clones with changes in newlines.

For Type-2 clones overall, Simian achieves less than 40 % recall while PMD achieves
only 20 %. However, JSCD achieves a better recall (97 %) than those of the other two tools.
For precision, both Simian and JSCD achieve 100 % and PMD achieves 97 %, showing that
all three tools have high precision in detecting Type-2 clones.

530 Empir Software Eng (2016) 21:517–564



Table 4 Recall and precision of evaluating clone detectors on Bootstrap

Type Mutator Simian PMD JSCD

Recall Precision Recall Precision Recall Precision

1

mCW A 78 100 69 100 97 100

mCW R 94 100 91 100 97 100

mCF A 94 100 56 100 97 100

mCF R 0 − 34 100 97 100

Type-1 overall 66 100 62 100 97 100

2

mSRI 7 100 18 97 96 100

mARI 19 100 38 96 97 100

mRL S 68 100 6 100 95 100

Type-2 overall 36 100 20 97 97 100

3

mSIL 2 100 3 100 97 97

mSDL 3 97 3 89 92 95

mILs 3 91 3 36 59 94

mDLs 2 89 2 86 51 89

mMLs 21 87 21 89 65 95

Type-3 overall 6 89 6 84 72 94

Total overall 34 96 29 98 87 96

Our manual investigation shows that PMD is able to detect Type-2 clones. However, the
clones detected by PMD are only some parts (in terms of start and end line numbers) of
the injected clones. According to the definition of detected by Roy and Cordy (2009), the
detected clones should contain the injected clones, and hence, PMD misses the injected
clones.

For Type-3 clones overall, both Simian and PMD achieve only 6 % recall while JSCD

achieves more than 70 %, which show that JSCD detects many more Type-3 clones than
Simian and PMD. For precision, JSCD detects Type-3 clones with 94 % precision, followed
by 89 % in Simian, and 84 % in PMD, which represent 5–10 % lower in accuracy compared
to JSCD. Both Simian and PMD are not designed for detecting Type-3 clones, and hence
they can barely detect them.

Table 5 Scraperjs overview

Subject Version LOC Files Type-1 Type-2 Type-3

Scraperjs 0.3.0 573 8 1 6 20

Empir Software Eng (2016) 21:517–564 531



Our evaluation results show that JSCD overall achieves 53–58 % higher recall and
comparable precision in detecting JavaScript code clones than both Simian and PMD.

3.4 Clone Oracle

To reduce the bias of clone detector evaluation results toward the use of mutation, we
verified whether the tools can detect real clones in a subject. We selected a small-scale
JavaScript subject, Scraperjs,2 among the most popular repositories from the trending
repositories of GitHub.3 We manually identified all Type-1, -2, and -3 clones in Scrap-
erjs and computed the recall and precision of the tools. Such manual evaluation is
feasible due to the small size of the subject. Table 5 shows the properties of Scrap-
erjs. It includes version number, lines of code, number of files, and number of Type-1,
-2, and -3 clones. Note that evaluation of such a small subject alone is not repre-
sentative of the performance of individual clone detectors. This evaluation serves as a
supplementary verification for the usefulness of the mutation technique in evaluating
the tools.

To identify clones in the subject, we first manually collected all non-empty blocks of
code from the source files. We used blocks as the clone granularity because they have pre-
defined syntactic boundaries. A non-empty block consists of at least one code statement
enclosed in brackets “{ }”. A code statement is a line of code that ends with a semicolon
“;”. For each pair of blocks with more than three lines, we manually identified whether it
belongs to Type-1, 2, or 3 clones, or is not a clone at all. We call the manually identified
clones reference clones and the clones reported by the tools detected clones. To enable other
researchers to replicate our results, we made the information of our manually identified
clones publicly available.4

We evaluated the recall and precision of the clone detectors in a similar way to that of
the mutation experiment. For each tool, we computed the unit recall and precision of each
reference clone pair, the total recall and precision of each clone type, and the total recall
and precision of the tool. We considered a reference clone pair as detected by a tool and
computed the recall and precision in a similar way to that of Roy and Cordy (2009). A
reference clone pair is detected by a tool if the detected clone pair subsumes the reference
clone pair by containment. Unit recall for a reference clone pair is 1 if the tool detects it;
otherwise, it is 0. Unit precision is the number of detected clone instances that are clones
with the reference clone pair divided by the total number of clone instances in the detected
clone group.

Table 6 presents the evaluation results of the clone detectors. It shows the recall and
precision of each clone type, as well as the total recall and precision. All tools could detect
Type-1 clones. For Type-2 clones, even Simian and PMD achieved 100 % precision, both
of them had only 33 % recall. JSCD could detect all Type-2 clones and was 67 % higher
recall than Simian and PMD. For Type-3 clones, Simian and PMD achieved 25 % and 40 %
recall, respectively, and both of them achieved 100 % precision. However, JSCD achieved
80 % recall and 85 % precision, which was 40–60 % higher recall than that of Simian and

2https://github.com/ruipgil/scraperjs/tree/v0.3.0
3https://github.com/trending?l=javascript&since=monthly
4http://plrg.kaist.ac.kr/research/material

532 Empir Software Eng (2016) 21:517–564

https://github.com/ruipgil/scraperjs/tree/v0.3.0
https://github.com/trending?l=javascript&since=monthly
http://plrg.kaist.ac.kr/research/material


Table 6 Recall and precision of evaluating clone detectors on Scraperjs

Type Simian PMD JSCD

Recall Precision Recall Precision Recall Precision

1 100 100 100 100 100 100

2 33 100 33 100 100 100

3 25 100 40 100 80 85

Overall 30 100 41 100 85 90

PMD. Overall, the evaluation results on the actual clones of a subject are consistent with
those of mutation evaluation. Therefore, we utilized JSCD to detect JavaScript code clones
in our empirical study.

4 Empirical Study Design

We design our experiments to address the following research questions:

• RQ1 (Clone properties): Are there any differences in clone properties among
JSweb, JSproj, and Java? We compared the clones from each category of subjects
using various code clone properties.

• RQ2 (Software metrics): Are there any software metrics closely related to the
clone properties among JSweb, JSproj, and Java? We computed the correla-
tion between each pair of software metrics and clone properties and identified closely
related pairs.

• RQ3 (Cloning patterns): What kinds of code are being cloned in JSweb, JSproj,
and Java? We manually inspected the clones from each category of subjects and
identified the patterns of clones.

4.1 Subjects

In this study, we analyzed JavaScript code embedded in web pages from 10 websites, 10
JavaScript standalone projects, and 10 Java projects. Table 7 shows the properties of the
subjects, which include their names, types, versions, lines of code, number of files, and
application types. Lines of code for JSweb represent the lines of non-comment JavaScript
code extracted from the script tags of the web pages; it does not include external
JavaScript files. Each web page is a single HTML file collected from the websites, and
hence, the number of files in JSweb represents the number of HTML files collected. The
lines of code and number of files for JSproj and Java represent the lines of non-comment
JavaScript and Java code and files, respectively. We selected subjects of different application
types to reduce the bias of our experimental results towards certain kinds of applications.

For JSweb, we collected the web pages from 10 English websites among the top
15 Alexa sites (Alexa Internet 2013). We obtained the web pages by manually brows-
ing the websites on our client browser Safari and saved the pages delivered to
the browser. Due to the large scale of the websites, we were not able to collect all

Empir Software Eng (2016) 21:517–564 533



the pages from each site. Therefore, we collected only the homepages of the services
accessible from the homepage of each website and the pages under these service home-
pages. An example of web pages collected from wikipedia.org includes the home-
pages of Wikitionary, Wikinews, Wikiquote and the pages under these service
homepages.

We manually verified all the collected pages for each website to find and eliminate any
potential groups of cloned web pages. We identified a set of web pages as cloned pages when
they were visually similar: the pages have the same layout but vary only in contents such
as texts, images, and videos. Table 7 shows the number of web pages from each site used
in our study after eliminating potential groups of cloned pages. To enable the replication of

Table 7 Subjects overview

Subject Type Version LOC Files Application Type

twitter.com JSweb 2014.05.15 282 25 Social networking

wikipedia.org JSweb 2014.05.15 575 27 Encyclopedias

youtube.com JSweb 2014.05.15 748 21 Video sharing

facebook.com JSweb 2014.05.15 874 34 Social networking

amazon.com JSweb 2014.05.15 1971 42 Shopping

wordpress.com JSweb 2014.05.15 3286 23 Weblogs

ebay.com JSweb 2014.05.15 3702 72 Shopping

linkedin.com JSweb 2014.05.15 4056 51 Social networking

google.com JSweb 2014.05.15 4290 47 Search engines

yahoo.com JSweb 2014.05.15 21308 68 Web portals

D3.jsa JSproj 3.3.3 553 257 Visualization library

Bootstrap JSproj 3.0.0 1185 12 Front-end framework

Foundation JSproj 4.3.1 3900 17 Front-end framework

jQuery JSproj 2.0.3 4827 27 Feature-rich library

Ionicb JSproj 0.9.13 5171 60 Mobile app framework

three.jsc JSproj r61 19656 156 3D library

AngularJSd JSproj 1.1.5 37328 372 MVW framework

SproutCoree JSproj 1.9.2 113343 925 Web app framework

Bracketsf JSproj 34 180208 987 Code editor

Closure Libraryg JSproj c8e0b2dcd892 215920 925 Web app library

ArgoUMLh Java 0.34 6196 37 UML modeling tool

EIRCi Java 1.0.3 8269 65 IRC client

Javadocj Java 331 9579 101 Document generator

dnsjavak Java 2.1.5 15873 130 DNS protocol

Antj Java 2002.02.15 16106 178 Build tool

cpptasksl Java 1.0b5 16903 183 Task compiler

JHotDrawm Java 7.0.6 32430 309 GUI framework

Plandoran Java 1.13.0 89384 719 Project management tool

534 Empir Software Eng (2016) 21:517–564



Table 7 (continued)

Subject Type Version LOC Files Application Type

JDT Corej Java 2002.02.15 98169 741 IDE infrastructure

JDK Swingj Java 1.4 102836 538 GUI framework

ahttps://github.com/mbostock/d3/tree/v3.3.3
bhttps://github.com/driftyco/ionic/tree/v0.9.13-alpha
chttps://github.com/mrdoob/three.js/tree/r61
dhttps://github.com/angular/angular.js/tree/v1.1.5
ehttps://github.com/sproutcore/sproutcore/tree/REL-1.9.2
fhttps://github.com/adobe/brackets/tree/sprint-34
ghttps://code.google.com/p/closure-library/source/browse/?r=c8e0b2dcd892
hhttp://argouml-downloads.tigris.org/argouml-0.34/
ihttp://sourceforge.net/projects/eirc/files/EIRC/1.0.3/
jhttp://www.bauhaus-stuttgart.de/clones/
khttp://www.dnsjava.org/download/
lhttp://sourceforge.net/projects/ant-contrib/files/ant-contrib/cpptasks-1.0-beta5/
mhttp://sourceforge.net/projects/jhotdraw/files/JHotDraw/JHotDraw%207.0.x/
nhttp://sourceforge.net/projects/plandora/files/version/plandora-v.1.13.0/

our research, we archived our collected web pages and made them publicly available.5

For JSproj, we selected eight trending open-source projects ranked by GitHub from
their repository (GitHub Inc 2013)—D3.js, Bootstrap, Foundation, jQuery, Ionic, three.js,
AngularJS, and Brackets—and two commonly used projects in the literature—Closure
Library and SproutCore.

For Java, we chose 10 projects—ArgoUML, EIRC, Javadoc, dnsjava, Ant, cpptasks,
JHotDraw, Plandora, JDT Core, and JDK Swing—studied by Mondal et al. (2012), Roy and
Cordy (2010a), Bellon et al. (2007), and Aversano et al. (2007). We selected subjects of
different application types including an IRC client and a build tool.

4.2 Clone Detectors and Code Clone Metrics

We used Deckard (Jiang et al. 2007a) and JSCD (Section 3) to detect clones with a com-
bination of configurations of similarity = 0.85, 0.9, 0.95 and minT = 15,
30, 50, yielding nine combinations in total. Since stride is a Deckard-specific configu-
ration, unlike similarity and minT, which are commonly used in other clone detectors,
we used stride = 0.

To compare code clones in different languages and different application domains, we
used the code clone metrics summarized in Table 8. They are commonly used in the lit-
erature (Livieri et al. 2007; Rieger et al. 2004; Roy and Cordy 2008; Tairas and Gray
2006).

To measure the clone properties, we implemented a tool to automatically compute the
distributions of clones for each metric. In each stage of the development of the tool, we

5http://plrg.kaist.ac.kr/research/material

Empir Software Eng (2016) 21:517–564 535

https://github.com/mbostock/d3/tree/v3.3.3
https://github.com/driftyco/ionic/tree/v0.9.13-alpha
https://github.com/mrdoob/three.js/tree/r61
https://github.com/angular/angular.js/tree/v1.1.5
https://github.com/sproutcore/sproutcore/tree/REL-1.9.2
https://github.com/adobe/brackets/tree/sprint-34
https://code.google.com/p/closure-library/source/browse/?r=c8e0b2dcd892
http://argouml-downloads.tigris.org/argouml-0.34/
http://sourceforge.net/projects/eirc/files/EIRC/1.0.3/
http://www.bauhaus-stuttgart.de/clones/
http://www.dnsjava.org/download/
http://sourceforge.net/projects/ant-contrib/files/ant-contrib/cpptasks-1.0-beta5/
http://sourceforge.net/projects/jhotdraw/files/JHotDraw/JHotDraw%207.0.x/
http://sourceforge.net/projects/plandora/files/version/plandora-v.1.13.0/
http://plrg.kaist.ac.kr/research/material


Table 8 Code clone metrics

Metric Definition

Cloning locality Relative locations of a clone pair

(Kapser and Godfrey 2003)

Average and maximum lines Average and maximum lines of cloned code in a system

of cloned code

(Kapser and Godfrey 2003)

Clone coverage Ratio of cloned code to the total lines of code

(Kim et al. 2005)

Files associated with clones Proportion of files that have at least one method that forms

(Roy and Cordy 2010a) a clone pair with another method in the same file or in a

different file

Function-level clones Clones of entire functions

(Calefato et al. 2004)

verified the distribution computation in the tool by manually inspecting random samples of
the clones for each metric.

5 Results

This section presents our findings in the code clone metrics, the correlation between clone
properties and software metrics, and the cloning patterns. By looking at different clone
metrics, we identified features of programming languages and technologies in the subjects
that may affect cloning and its maintenance. We measured which pairs of clone properties
and software metrics have a strong correlation, and we manually inspected the clones to
identify cloning patterns.

5.1 RQ1: Clone Metrics

In this section, we investigate the main differences in code clone metrics in JSweb,
JSproj, and Java. We measured the clone metrics for different combinations of similar-
ity and minimum number of tokens in clone detection and plotted them as graphs. The plots
show the median values of the metrics from the 10 subjects in each of JSweb, JSproj,
and Java.

In statistical analysis, the mean is very sensitive to outliers because each value is involved
in the computation of the mean. The mean is representative only when the data is normally
distributed. However, the median is not very sensitive to changes in the data and it still
maintains the central position in a skewed distribution. Since we cannot assume that the
distribution of data is symmetric in our experiments, plotting graphs with the medians gives
a better representation of the summary of data than doing so with the means.

536 Empir Software Eng (2016) 21:517–564



Table 9 Comparison of findings between this work and that of Roy and Cordy (2010a)

Metric This work Roy and Cordy (2010a)

JSweb JSproj Java Python Java

Inter-file clones 95 % 40 − 80 % 60 − 90 % 70 − 90 % 70 − 80 %

Files associated with clones 91 − 97 % 33 − 87 % 36 − 83 % 25 − 60 % 45 − 75 %

Function-level clones 5 − 7 % 3 − 6 % 22 − 48 % 5 − 29 % 9 − 30 %

For inter-file clones and files associated with clones, the percentages between JSproj and Python, and also
between Java in both works are similar. For function-level clones, only Java shares similar percentages.

Our literature review showed that our experiments in this section are closest to that of
Roy and Cordy (2010a). Despite the fact that our experimental configurations are slightly
different from theirs, we present a summary of results in Table 9 for comparison. In the
following sections, we compare our findings with theirs in detail.

5.1.1 Cloning Locality

We measure the cloning locality (Kapser and Godfrey 2003) by the percentages of intra-
file and inter-file clones across the file systems. Kapser and Godfrey (2003) suggested that
clones across different files might lead to larger code sizes and more labor for error fixing.
Developers may clone codes in different files because they are unaware of the existing
clones in the system, and thus, such clones would be better refactored as a set of library
functions.

Figure 2 shows the distributions of inter-file clones for different combinations of sim-
ilarity and minimum number of tokens. When the similarity increases, the percentages of
inter-file clones in JSweb remain at approximately 95 % while those in JSproj and Java
decrease by 20–40 %. The percentages of inter-file clones in JSproj reduce from approx-
imately 81–75 % to 40–60 %, and in Java, the percentages decrease from approximately
90 % to 60 %. However, different minimum number of tokens of the same similarity do not
make much difference in the percentages of inter-file clones for any of the three groups.

Roy and Cordy (2010a) found that the percentages of inter-file clones in Java are approx-
imately 70–80 %. Our finding, 60–90 %, has a slightly larger range than theirs. This can
be explained by the differences between the choices of subjects and different clone detec-
tion configurations. We also compare our findings in JSweb and JSproj with Python
systems since both JavaScript and Python are scripting languages. They found that Python
systems have approximately 70–90 % of inter-file clones. While we found 40–80 % of inter-
file clones in JSproj, percentages of inter-file clones for JSweb remain at approximately
95 % for different similarities and minimum number of tokens. This indicates that, even
though JavaScript and Python are both scripting languages, they do not show similar clone
localization, especially compared with JSweb.

Web applications differ from standalone projects in that the former fetches the source
code from the server during execution while the latter requires a local copy of the source
code before execution. We manually investigated clones in different files in JSweb and
found that such a property affects the way developers duplicate code. Figure 3 shows an
example of inter-file clones from wordpress.com. We found this duplicated code frag-
ment in 16 out of 23 pages collected from wordpress.com. It detects if a user is browsing
the site with a mobile device, creates a corresponding query string, and sets the source of

Empir Software Eng (2016) 21:517–564 537



30%

40%

50%

60%

70%

80%

90%

100%

0.85 0.9 0.95

Similarity

Fig. 2 Percentages of inter-file clones. JSweb remains at approximately 95 % for different configurations
while JSproj and Java decrease with increasing similarity. The large percentages of inter-file clones in
JSweb are intended for faster web page loading

Fig. 3 Inter-file clones example from wordpress.com. It changes the image source if a user is browsing
the site with a mobile browser

538 Empir Software Eng (2016) 21:517–564



the image for that query string. Even though the same piece of code is used in many pages,
inlined JavaScript may produce pages faster than caching external JavaScript if the script is
small and the page view per session is small because external JavaScript cannot benefit from
browser caching in such circumstances.6,7 Roy and Cordy (2007) suggested that introduc-
ing clones by code inlining is a way to address the high cost of function calls in real-time
programs, in case the compiler does not offer such functionality automatically. Our inves-
tigation revealed a similar motivation in that web application developers introduced clones
by inlining JavaScript for faster performance.

To understand the prevalence of code inlining in web applications, we manually
inspected a maximum of 10 top large (in terms of LOC) inter-file clones in each JSweb
subject. We compared the number of exact clones and near-miss clones, clones that dif-
fer from each other in small details only (Cordy et al. 2004). We found that 87 % of
the inter-file clones are exact clones while 13 % of them are near-miss clones. Given the
large proportion of exact clones, developers could have stored them externally to reduce
the code size, but they decided not to do so. Our findings agreed with the suggestion that
code inlining is sometimes necessary for faster performance in web applications. Hence,
we observed a large proportion of exact clones. For the remaining 13% of near-miss clones,
we observed that those clones differ from others only in some attributes such as having a
unique identifier.

Our manual inspection reveals the trade-off between inlining JavaScript and using exter-
nal JavaScript. Although refactoring code clones as a set of library functions helps reduce
maintenance efforts (Kapser and Godfrey 2003), the performance requirement of websites
leads to a different design choice. Therefore, we observed a large portion of clones across
different files.

5.1.2 Sizes of Code Clones

The sizes of code clone are usually measured in terms of lines of cloned code to understand
the scale of code fragments being cloned in a system (Kapser and Godfrey 2003). In our
experiment, the overall sizes of clones are similar for all three groups; they do not depend
much on the application domains or programming languages.

Figure 4 shows the average lines of cloned code for different combinations of similarity
and minimum number of tokens. For all three categories of subjects, the average number
of lines changes slightly when the similarity varies and increases when the minimum num-
ber of tokens increases. Overall, the differences are minor when either the similarity or
minimum number of tokens changes.

The average size of clones for most configurations falls between 5 to 10 lines, and
all three different project groups, JSweb, JSproj, and Java, have similar values. This
result is consistent with the findings in the literature. For instance, Kapser and Godfrey
(2003) studied clones of the Linux system and observed that the average size of clones is
approximately 12 to 14 lines.

We also measured the maximum number of lines of cloned code, and we found that the
number does not change with similarity or the minimum number of tokens.

6https://developers.google.com/speed/pagespeed/module/filter-js-inline
7https://developer.yahoo.com/performance/rules.html#external

Empir Software Eng (2016) 21:517–564 539

https://developers.google.com/speed/pagespeed/module/filter-js-inline
https://developer.yahoo.com/performance/rules.html#external


0

5

10

15

0.85 0.9 0.95
Similarity

JSweb, minT=15
JSweb, minT=30
JSweb, minT=50

JSproj, minT=15
JSproj, minT=30
JSproj, minT=50

Java, minT=15
Java, minT=30
Java, minT=50

Fig. 4 Average lines of cloned code. They only vary slightly in different configurations for all three subject
groups

5.1.3 Clone Coverage

Clone coverage is the ratio of the lines of cloned code to the total lines of code (Kim et al.
2005). It represents the ratio of the system affected by code duplication and, thus, estimates
the probability that a change to an arbitrary program statement will require multiple similar
changes (Juergens et al. 2009a).

We measured the clone coverage of different systems as shown in Fig. 5. The clone
coverage of most web pages remains high at approximately 38–43 % when the similarity
increases, while clone coverages in both JSproj and Java decrease from approximately
15–35 % to 5–18 %. The coverages for all three groups differ only by approximately 5–10 %
for different minimum numbers of tokens of the same similarity.

The above findings suggest that the clones in JSweb are more similar to each
other than the clones in JSproj and Java. We detect clones with at least a cer-
tain similarity, but the clone coverages of JSweb vary only slightly when the simi-
larity increases. The different development nature of websites and standalone projects
can explain such an observation. Because websites usually consist of pages with
the same or similar layout and functionality but different contents, code clones with
slight variations may occur frequently. However, because standalone projects are usu-
ally developed separately or as libraries of other applications, components with the
same or similar functionalities are less likely to occur in standalone projects than in
websites.

540 Empir Software Eng (2016) 21:517–564



The high clone coverage in JSweb suggests that there is a higher probability that
a change in one place may require the same or similar changes in multiple places
(Juergens et al. 2009a). However, the slight differences of clone coverages between sim-
ilarities in JSweb also suggest that code clones in JSweb share larger portions of
identical fragments than in JSproj and Java. Developers can consider relatively fewer
differences between code clones on any reengineering activities such as source code
transformation or simple code restructuring (Balazinska et al. 1999); hence, automat-
ing reengineering activities in multiple places in JSweb requires less effort than in
JSproj and Java.

5.1.4 Files Associated with Clones

We measured the percentages of files associated with clones across different systems, as
shown in Fig. 6. This metric indicates whether clones are from some specific files or
scattered among many files all over the system (Roy and Cordy 2010a).

Figure 6 presents the percentages of files associated with clones for different similari-
ties and minimum numbers of tokens. In JSweb, files associated with clones remain high
at approximately 91–97 % for different similarities. Both JSproj and Java show similar
percentages of files associated with clones of approximately 33–87 %. For different mini-
mum numbers of tokens of the same similarity, there are only slight differences in JSweb
while there are 10–20 % differences in both JSproj and Java. This suggests that the code

0%

10%

20%

30%

40%

50%

0.85 0.9 0.95
Similarity

JSweb, minT=15
JSweb, minT=30
JSweb, minT=50

JSproj, minT=15
JSproj, minT=30
JSproj, minT=50

Java, minT=15
Java, minT=30
Java, minT=50

Fig. 5 Clone coverage. JSweb remains high at approximately 38 − 43 % while JSproj and Java
decrease with increasing similarity. The slight difference between similarities in JSweb suggests less effort
in identifying the differences between clones because they are more similar to each other

Empir Software Eng (2016) 21:517–564 541



30%

40%

50%

60%

70%

80%

90%

100%

0.85 0.9 0.95

Similarity

JSweb, minT=15
JSweb, minT=30
JSweb, minT=50

JSproj, minT=15
JSproj, minT=30
JSproj, minT=50

Java, minT=15
Java, minT=30
Java, minT=50

Fig. 6 Files associated with clones. JSweb remains high at approximately 91–97 % while JSproj and
Java decrease with increasing similarity. The use of small gadgets and code generation in web applications
lead to similar code fragments in multiple files

clones in JSweb are of at least a certain size, and hence, changing the minimum number of
tokens only has a small effect on the files associated with clones.

Roy and Cordy (2010a) found that the percentages of files associated with clones in
Java systems are approximately 45–75 %. Our findings on Java systems are consistent
with theirs, as ours are approximately 36–83 %. They also found that Python systems have
25–60 % of files associated with clones. Although Python and JavaScript are both script-
ing languages, our findings indicate that the percentages of files associated with clones in
JSproj are more similar to Python than to JSweb. This shows that different development
nature of JavaScript can affect the percentages of files associated with clones. We manually
investigated the clones of JSweb and discuss the reasons behind such an observation.

One characteristic of web applications is the use of small gadgets to connect to different
services such as website traffic analysis and social networks. Our manual investigations
revealed that such usage is one of the cloning targets across many files. Figure 7 shows an
example of scattered clones in JSweb from linkedin.com. This is a sequence of code
for web tracking from Google Analytics,8 a service to measure how users interact with the
website. We found the same piece of code in the code clones of other studied websites. This
example shows that developers insert this piece of code into the pages they desire to track,
and hence, many files include it.

8https://developers.google.com/analytics/devguides/collection/gajs/

542 Empir Software Eng (2016) 21:517–564

https://developers.google.com/analytics/devguides/collection/gajs/


Fig. 7 Google Analytics example from linkedin.com. It inserts an external JavaScript file to track user
interactions on that page

Another characteristic of web applications is the use of code generation to enable rapid
development. Code generation allows developers to quickly create web pages with simi-
lar layouts but different contents. We observed in our inspections that code generation is
another target for cloning across many files. Figure 8 shows another example of scattered
clones from yahoo.com. This is a piece of generated code to enable the same functional-
ity for different DOM elements. To the best of our knowledge, there is no formal definition
of generated code in web pages and techniques to detect them automatically. Therefore, we
identify a piece of code as highly likely to be generated when it differs from other cloned
fragments only in string or number literals and the literals contain words not in a dictionary
after decomposition. For example, the code in Fig. 8 differs from other cloned fragments
only in the LDRB part of the literals, "yom-ad-LDRB", "yom-ad-LDRM-iframe", and
"loc=LDRB noad", but LDRB is not a word in a dictionary that may be an abbrevia-
tion of a long phrase. This example indicates that the use of code generation enables the
development of a web page rapidly but also causes scattered clones among different files.

One common characteristic between the above two examples is that they are sequences
of code that have to be used in a certain order to provide the desired functionalities. Kapser
and Godfrey (2008) described such cloning patterns as API/Library Protocols. Such uses
of particular APIs often require developers to intentionally duplicate these sequences so
that they can parameterize the sequences for particular problems. It reduces development

Fig. 8 Generated code example from yahoo.com. It differs from other code only in literals. The literals
include LDRB that is not in a dictionary, which indicates code generation

Empir Software Eng (2016) 21:517–564 543



Table 10 Distributions of files associated with clones

Code sequences Minimized code Function-level clones Attributes manipulation

33 % 29 % 27 % 11 %

time because it allows developers to quickly duplicate and modify the code for their needs
(Kapser and Godfrey 2008). This explains the finding that changing the minimum number
of tokens in JSweb has only few effects on the files associated with clones. Applications
developed with Java libraries also have similar usages. For example, creating a user interface
with Java Swing requires creating a JFrame first before adding other components such
as menus and buttons. Our findings suggest that such usages are more prevalent in JSweb
than JSproj and Java. This shows that the different development natures of program-
ming languages affect the percentages of files associated with clones in a system. Roy and
Cordy (2010a) argued that a system with a smaller number of files associated with clones
is easier to maintain since the clones are localized to certain specific files. However, even
when the clones are scattered among many files all over the system, if they are of certain
known sequences of code such as those found in JSweb, developers can benefit from iden-
tifying reusable candidates from frequently used sequences because developers are aware
of those sequences.

To understand the prevalence of different motivations for scattered cloning in web appli-
cations, we inspected a maximum of 10 top large (in terms of LOC) clones scattered among

0%

10%

20%

30%

40%

50%

0.85 0.9 0.95

Similarity

JSweb, minT=15
JSweb, minT=30
JSweb, minT=50

JSproj, minT=15
JSproj, minT=30
JSproj, minT=50

Java, minT=15
Java, minT=30
Java, minT=50

Fig. 9 Percentages of function-level clones. Java has relatively larger percentages of function-level clones
than JSproj and Java due to the overloading mechanism in Java

544 Empir Software Eng (2016) 21:517–564



more than 3 files in each JSweb subject. Table 10 shows the summary of distributions.
Our inspection revealed that the use of code sequences is the most prevalent in scattered
clones, which accounts for 33 %. This is then followed by minimized code and function-
level clones, which account for 29 % and 27 % respectively. The least prevalent usage is
manipulation of attributes, which accounts for 11 %. Such clones mainly contain codes that
assign values to properties of objects. We found that such clones are common in shopping
web applications such as amazon.com and ebay.com because they usually have many
attributes for each shopping item to manipulate. The findings of our inspection suggest that
developers can benefit from identifying reusable candidates from one-third of the duplicated
code sequences.

5.1.5 Function-Level Clones

Previous literature has studied function-level clones widely. Mayrand et al. (1996) proposed
a list of metrics for detecting function-level clones in software systems, and Lague et al.
(1997) reported that a high number of function-level clones in a software system could
increase the maintenance cost.

Figure 9 shows the percentages of function-level clones for different similarities and
minimum number of tokens. For both JSweb and JSproj, the percentages of function-
level clones remain low at approximately 3–7 % for different similarities and minimum
number of tokens. However, the percentages in Java decrease from approximately 40–
48 % to 22–30 % when the similarity increases. Even so, the percentages in Java are still
higher than those in JSweb and JSproj. Our findings suggest that the cloning of functions
in Java occurs more often than in JSweb and JSproj.

Roy and Cordy (2010a) found that Python and Java systems have similar percentages of
function-level clones of approximately 5–30 %. In Java systems, we observed 20 % more
function-level clones than their findings in all configurations. This can be explained by
the differences between the selection of subjects, clone detection technologies, and clone
detection configurations. While they found that Python has similar percentages of function-
level clones as Java, we found that the percentages of function-level clones in both JSweb
and JSproj are much lower than Java. This suggests that, although both JavaScript and
Python are scripting languages, they may not show similar percentages of function-level
clones.

One difference between statically-typed and dynamically-typed languages is that the for-
mer determines the types of variables at compile time while the latter determines the types
at runtime. Our manual inspections revealed that such difference leads to different cloning
patterns of function-level clones between the two kinds of languages. Figure 10 shows an
example of function-level clones from JHotDraw. We found 12 similar fragments in both
the same file and other files with different parameter types. Kapser and Godfrey (2008)

Fig. 10 Function-level clones example from JHotDraw. A usage of code clone to provide function
overloading

Empir Software Eng (2016) 21:517–564 545



described such a cloning pattern as Parameterized Code, and they explained that develop-
ers modify a solution of a common problem to create a new solution by changing only a
few identifiers or literals in the code to improve comprehensibility. This example indicates
that, since Java is a statically-typed language, duplicating and customizing the same func-
tion makes the code more understandable than abstracting it by a template. In particular, the
overloading mechanism in Java provides a set of similar method declarations with different
parameter types, which are subject to function-level clones. However, because JavaScript
is a dynamically-typed language with no overloading, function declarations and function
expressions do not specify parameter types, and hence, they are less likely to be subject
to function-level clones. Another cause of the high percentages of function-level clones in
Java systems is the use of a large number of accessor and utility methods in Java (Roy and
Cordy 2010b).

To understand the prevalence of different motivations for cloning in the function-level
clones of Java systems, we inspected a maximum of 10 top large (in terms of LOC) function-
level clones in each Java subject. Among the clones we inspected, 28 % of them duplicated
the exact functionality. An example of such a clone is getLibraryPath() in both
gcc/GccLinker.java and gcc/cross/GccLinker.java of the subject cpptasks.
The developers needed the same functionality in different platforms; hence, they performed
such cloning. The remaining 72 % are clones of similar functionality. One such example is
the code in Fig. 10.

The experimental results indicate that function-level clones in Java are more commonly
found than those in JSweb and JSproj. Maintaining multiple similar function declara-
tions in a system increases the total code size, and it requires extra work to keep the multiple
declarations in sync in case of any changes. Therefore, the cost of maintenance would also
be relatively higher (Lague et al. 1997). However, researchers found that function-level
clones are often easily eliminated by refactoring (Calefato et al. 2004).

5.2 RQ2: Software Metrics

In this section, we measure how the clone properties relate to software metrics. We sur-
veyed the software metrics used in the metrics-based clone detectors from the literature
(Abd-El-Hafiz 2012; Antoniol et al. 2001, 2002; Kamei et al. 2011; Kontogiannis 1997;
Kontogiannis et al. 1996; Mayrand et al. 1996; Merlo et al. 2002, 2004; Patenaude et
al. 1999; Shawky and Ali 2010) and found the most commonly used ones. Among the
software metrics developed in the software engineering community, the Chidamber and
Kemerer metrics suite (Chidamber and Kemerer 1994) and MOOD metrics suite (Brito
e Abreu 1995) are commonly used. However, many of these metrics were designed for
static object-oriented languages. They are not always applicable to dynamically-typed lan-
guages, such as JavaScript, because static type features, such as classes, may be missing in
dynamically-typed languages.

We collected 48 software metrics from the 11 studies mentioned above and sorted them
by the frequencies of their appearance in those 11 studies. We identified 7 metrics that are
measurable in both JavaScript and Java and are used in at least 6 studies. They are number
of files, lines of code, number of statements, number of functions, cyclomatic complexity
per function, cyclomatic complexity per file, number of parameters, number of variables,
and number of function calls.

For each pair of clone properties from Section 4 and each software metric, we computed
their Pearson product-moment correlation coefficient. Tables 11, 12, and 13 show the cor-
relation for JSweb, JSproj, and Java, respectively. Among the software metrics, LOC

546 Empir Software Eng (2016) 21:517–564



Table 11 Correlation of clone properties and software metrics in JSweb

clones intra- inter- avg max clone files func-

file file lines lines cov- asso- level

clones clones of of erage ciated clones

code code with

clone clone clones

files 0.41 0.33 0.42 0.51 0.44 0.61 0.93 0.14

LOC 0.51 0.41 0.53 0.64 0.41 1.00 0.56 0.17

statements 0.27 0.03 0.31 −0.11 0.24 0.27 0.03 −0.09

functions 0.27 0.02 0.30 −0.12 0.23 0.25 0.01 −0.09

cpl/func 0.10 0.18 0.09 0.06 0.08 −0.19 −0.27 0.25

cpl/file 0.22 −0.02 0.25 −0.21 0.19 0.15 −0.08 −0.12

parameters 0.50 0.31 0.53 0.01 0.51 0.07 −0.04 0.26

variables 0.71 0.55 0.73 0.23 0.71 0.18 0.09 0.49

func calls 0.76 0.62 0.78 0.30 0.77 0.21 0.13 0.55

9 pairs (13 %) indicate strong correlation

denotes lines of code, cpl/func denotes cyclomatic complexity per function, and cpl/file
denotes cyclomatic complexity per file. We highlight the entries that have p-value smaller
than 0.05, which indicate that they are statistically significant and have a strong correlation
in the pair.

Table 11 shows the correlation between the pairs of clone properties and software
metrics. Among 72 pairs of correlations, 9 of them (13 %) have a strong correlation.
The remaining pairs of clone properties and software metrics do not reveal any strong
correlation.

Table 12 Correlation of clone properties and software metrics in JSproj

clones intra- inter- avg max clone files func-

file file lines lines cov- asso- level

clones clones of of erage ciated clones

code code with

clone clone clones

files 0.92 0.92 0.89 0.16 0.53 0.81 0.97 0.73

LOC 0.92 0.83 0.91 0.08 0.53 0.80 0.94 0.79

statements 0.97 0.90 0.95 0.02 0.61 0.84 0.94 0.82

functions 0.99 0.89 0.98 0.09 0.71 0.90 0.92 0.88

cpl/func 0.00 −0.06 0.01 −0.01 0.09 0.02 −0.09 0.06

cpl/file 0.20 0.05 0.23 −0.24 −0.28 0.17 −0.01 0.27

parameters 0.98 0.78 0.99 0.14 0.78 0.94 0.86 0.94

variables 0.99 0.91 0.97 0.08 0.75 0.91 0.88 0.87

func calls 0.98 0.95 0.94 0.02 0.63 0.84 0.93 0.79

47 pairs (65 %) indicate strong correlation

Empir Software Eng (2016) 21:517–564 547



Table 13 Correlation of clone properties and software metrics in Java

clones intra- inter- avg max clone files func-

file file lines lines cov- asso- level

clones clones of of erage ciated clones

code code with

clone clone clones

files 0.77 0.73 0.77 −0.08 0.45 0.81 0.99 0.68

LOC 0.88 0.81 0.89 −0.18 0.36 0.86 0.97 0.84

statements 0.93 0.86 0.93 −0.26 0.30 0.90 0.96 0.89

functions 0.97 0.90 0.98 −0.34 0.25 0.90 0.84 0.98

cpl/func 0.28 −0.29 0.28 0.02 0.01 0.38 0.39 0.16

cpl/file 0.32 0.46 0.28 −0.06 −0.02 0.47 0.21 0.17

parameters 0.66 0.59 0.67 0.04 0.48 0.68 0.95 0.60

variables 0.89 0.80 0.90 −0.22 0.30 0.85 0.96 0.86

func calls 0.81 0.72 0.83 −0.12 0.38 0.78 0.96 0.78

40 pairs (56 %) indicate strong correlation

Table 12 shows the correlation in JSproj. There are 47 pairs (65 %) having a strong
correlation. It indicates a stronger correlation between the clone properties and software
metrics than in JSweb. Except the average and maximum lines of code in clone properties
and complexity per function and per file in software metrics, other pairs exhibit strong
correlations.

Table 13 presents the correlation in Java. There are 40 pairs (56 %) having a strong cor-
relation. It shows a similar pattern of correlations to JSproj. Similar to JSproj, except
for the average and maximum lines of code in clone properties and complexity per function
and per file in software metrics, other pairs exhibit strong correlations.

Our findings above indicate that JSweb has different cloning patterns compared to
JSproj and Java. While we found that most clone properties in JSproj and Java have
strong correlations with software metrics, only a few clone properties in JSweb strongly
correlate to software metrics.

5.3 RQ3: Cloning Patterns

5.3.1 Common Cloning Patterns

Our quantitative findings indicate that JSweb has different cloning patterns to those of
JSproj and Java. In this section, we qualitatively analyze what kinds of cloning patterns
exist in JSweb, JSproj, and Java. A cloning pattern is a cloning strategy that repeatedly
appears in the code clones.

In classifying cloning patterns, code clones are classified by either their physical struc-
tures (Kapser and Godfrey 2003) or motivations for cloning (Kapser and Godfrey 2008).
We use the cloning patterns by Kapser and Godfrey (2008) in our qualitative analysis by
manually inspecting a maximum of 50 top large clones (in terms of LOC) in each subject
and see whether certain cloning patterns exist in a category of subjects or not.

The purpose of finding cloning patterns is not to measure the usage frequencies between
different groups of subjects, but to verify whether certain cloning patterns were used in any

548 Empir Software Eng (2016) 21:517–564



subjects. Therefore, we measured only the number of subjects having such cloning patterns.
Throughout the inspection, we expected to identify cloned code fragments specific to one
of the subject groups. We inspected a maximum of 50 clones in each subject to have enough
samples to identify not statistical, but motivational differences among the groups.

Figure 11 shows common cloning patterns in JSweb, JSproj, and Java. For each cat-
egory of subjects, we count how many subjects were using certain cloning patterns. Among
11 cloning patterns, General Language or Algorithmic Idioms, Boiler-plating Due to Lan-
guage Inexpressiveness, and Parameterized Code were the most commonly used cloning
patterns, which were used in 7 to 10 subjects. While more than 9 subjects used the pattern
Replicate and Specialize in JSproj and Java, only 2 subjects used it in JSweb. One
possible reason why JSweb seldom customizes code fragments is because web applica-
tions often provide similar functionalities with different contents. Another commonly used
cloning pattern by all three subjects is Verbatim Snippets, which is unavoidable in software
development. For Cross-cutting Concerns and API/Library Protocols, Java shows a slightly
higher usage in the subjects than JSweb and JSproj.

While we were manually investigating the clones, we observed that developers use differ-
ent cloning practices in different types of systems. Some cloning practices found in JSweb

Experimental Variation

Hardware Variation

Platform Variation

Bug Workarounds

API/Library Protocols

Cross−cutting Concerns

Verbatim Snippets

Replicate and Specialize

Parameterized Code

Boiler−plating Due to
Language Inexpressiveness

General Language or
Algorithmic Idioms

0 1 2 3 4 5 6 7 8 9 10
Number of Subjects

JSweb
JSproj
Java

Fig. 11 Cloning patterns. General Language or Algorithmic Idioms, Boiler-plating Due to Language Inex-
pressiveness, and Parameterized Code are the most commonly used cloning patterns in the three subject
groups

Empir Software Eng (2016) 21:517–564 549



Fig. 12 Browser-dependent or device-specific code in google.com. It executes a customized code for
Internet Explorer to ensure consistent behaviors and experiences across different platforms

do not exist in JSproj or Java. We present several case studies of the development prac-
tices found in the code clones of JSweb and discuss their motivations, benefits, drawbacks,
and how the features of web application technologies lead to such code clones.

5.3.2 Case Study 1:google.com

The first development practice we discuss is the use of browser-dependent or device-specific
code in google.com. This is a common practice in web applications to treat certain
browsers or devices specially due to compatibility issues. One reason for code cloning is to
reuse the functionality and logic in similar systems (Roy and Cordy 2007). After duplicating
some code, developers may customize the code to satisfy the needs of different systems.

Figure 12 shows an example of such a practice, which checks the running browser
and executes a customized code for Internet Explorer. Using browser-dependent or device-
specific code allows web applications to deliver consistent behaviors and experiences across
different platforms. However, it increases testing efforts due to the large variety of browsers
and devices.

This case study shows a feature of web application technologies used to implement dif-
ferent compatibility requirements between web applications and standalone projects, which
introduces code clones specific to web applications. One limitation of web applications is
that only a single version of a web application should support different browsers and plat-
forms of various users, and hence, one version should include customized code. On the
contrary, developers of standalone projects often maintain different branches for different
platforms so that they can test individual platforms with less testing effort than would be
needed for web applications.

5.3.3 Case Study 2:yahoo.com

Another development practice we present is the manipulation of DOM or CSS in
yahoo.com. This is a common practice in web applications to directly manipulate DOM or
to change CSS styles of elements without reloading web applications. One reason for code

550 Empir Software Eng (2016) 21:517–564



Fig. 13 DOM or CSS manipulation in yahoo.com. It allows web applications to display new elements
faster without reloading the applications

cloning is to have better performance in real-time programs (Roy and Cordy 2007). How-
ever, we noticed that different ways of manipulating DOM or CSS have different effects on
the performance of web applications.

Figure 13 shows such an example, which iterates each of the nodes in a list and assigns
the source of the node to the node with the attribute realimg. Such a practice allows web
applications to display new elements faster without reloading the applications. However, a
guideline from Google Developers9 suggests that inappropriate manipulation of DOM or
CSS will trigger multiple reflows of browsers, and hence, increase the time to render the new
contents. Reflow is the process for re-calculating the positions and geometries of elements
in HTML documents to re-render some part or all of the documents.

This case study shows that a unique feature of web applications that manipulates DOM
or CSS leads to a specific practice. While standalone projects are usually downloaded
entirely before execution, web pages are incrementally loaded and even reloaded with user
interactions, which make performance enhancement more important. Because inappropri-
ate manipulation of DOM or CSS will trigger multiple browser reflows, web application
developers should manipulate DOM or CSS carefully.

5.3.4 Case Study 3:twitter.com

The last development practice we discuss is the use of minimized code in twitter.com.
This is a common practice in web applications to reduce the amount of data being
transferred to browsers. Another reason for code clones is system development with gener-
ative programming approach (Roy and Cordy 2007). Developers generate minimized code
from original code by removing unnecessary characters including white space characters,
new line characters, comments, and block delimiters. The minimized code preserves the
semantics of the original code, and it forms a clone pair with the original one.

Figure 14 shows an example of such a practice. Using minimized code reduces the time
for browsers to load web applications. However, it increases the effort needed for mainte-
nance since any future change should apply to both the original code and the minimized
code. Although web applications rarely use the original code and the minimized code at the
same time and they generate minimized code automatically, since minimized code forms a
clone pair with its original code, developers should keep both codes in sync. If developers
forget to generate minimized code after changing its original code, it may cause inconsistent

9https://developers.google.com/speed/articles/javascript-dom

Empir Software Eng (2016) 21:517–564 551

https://developers.google.com/speed/articles/javascript-dom


Fig. 14 Minimized code in twitter.com. The elimination of unnecessary characters including whites-
pace characters, newline characters, comments, and block delimiters reduces the time for browsers to load
web applications

behaviors between web applications using the original code and those using the minimized
code.

This case study shows a feature of web application technologies used to implement a
different performance requirement of web applications from standalone projects, which
introduces code clones that exist in only web applications. Because users of web appli-
cations, especially on mobile devices, require high performance, developers often use
minimized code to reduce the time for downloading web applications. On the contrary, stan-
dalone projects are usually larger, sometimes in MB or GB, and their users do not demand
fast downloading.

6 Discussion

This section discusses the findings and implications of our empirical study, lessons learned,
and threats to the validity of our work.

6.1 Findings and Implications

• A feature of web application technologies used to implement the performance
requirement of JSweb leads to 95 % of inter-file clones in JSweb

We observed that JSweb contains 95 % of clones across different files. Our man-
ual inspection of inter-files clones of JSweb revealed that caching external JavaScript
is more beneficial than inlining JavaScript only when the page views per session are
sufficiently numerous. Roy and Cordy (2007) suggested that developers may introduce
clones by code inlining due to the high cost of function calls in real time. Our inspec-
tion showed similar motivation in that web application developers introduced clones
by inlining JavaScript for faster performance. We found that 87 % of the inlined codes
are exact clones. The performance trade-off between inlined JavaScript and caching
external JavaScript leads to such a significant amount of inter-file clones. However, we
did not consider external JavaScript caching in our study. A possible extension of the
experiments would be comparing the proportion of inlined and external JavaScript and
identifying other development requirements of websites that lead to the choice between
inlined and external JavaScript.

• Slight variations of clone coverage in JSweb for different similarities suggest
that automating reengineering activities in multiple places in JSweb requires less
effort than JSproj and Java

552 Empir Software Eng (2016) 21:517–564



While we found that clone coverages of JSproj and Java decrease with
higher similarities, clone coverages of JSweb remain at approximately 38–43 %
and are higher than those of JSproj and Java. Although the literature sug-
gested that higher clone coverage has a higher probability that a change in one
place may require the same or similar changes in multiple places (Juergens et al.
2009a), the slight differences of clone coverages between similarities in JSweb
also suggest that automating reengineering activities in multiple places in JSweb
requires less effort. Because such a finding indicates that code clones in JSweb
share larger portion of identical fragments, developers can consider a relatively
smaller number of differences between code clones in any reengineering activities
(Balazinska et al. 1999).

• The use of sequences of code in a certain order in JSweb suggests reusable
candidates

We observed that JSweb has approximately 91–97 % of files associated with clones,
25–60 % higher than those in JSproj and Java. Our inspection revealed that 33 %
of the inspected clones are sequences of code in a certain order. Such use of particular
sequences to achieve desired functionalities often requires developers to duplicate them
intentionally so that they can parameterize them for particular problems (Kapser and
Godfrey 2008). Even though the literature suggested that scattered clones are harder
to maintain (Roy and Cordy 2010a), if they are of certain known sequences of code,
developers can benefit from identifying reusable candidates because they created the
clones intentionally and are aware of the sequences.

• Java has more function-level clones and hence requires more maintenance efforts
We found that Java has 10–30 % more function-level clones than JSweb and

JSproj. This is mainly because of the overloading mechanism in Java. Statically-
typed languages, such as Java, require the type of variable to be determined at compile
time, and hence, reusing the same functionality for different types leads to code clones.
Maintaining multiple similar function declarations in a system increases the total code
size, and it requires extra work to keep the multiple declarations in sync in case of
any changes. This increases the effort needed to maintain function-level clones in
Java.

• More clone properties in JSproj and Java have strong correlation with software
metrics than in JSweb

We noticed that the 56–65 % of pairs of clone properties and software metrics in
JSproj and Java have a strong correlation while only 13 % of pairs in JSweb have
a strong correlation. This implies that it is harder to estimate the costs and benefits
of clone removal in web applications than in standalone projects because fewer clone
properties have a strong correlation with software metrics in web applications.

• JSweb has unique development practices
In our manual inspection of clones, we found unique development practices of

JSweb due to different development requirements in web applications from standalone
projects. This implies that it may not be easy to adapt existing clone management tech-
niques in standalone projects to web applications because some clones such as those
that involve DOM or CSS manipulation, are specific to web applications, and tool
developers have to consider those practices when they design tools to manage the code
clones in web applications.

• Unlike what the literature suggests, the clones in JSweb may not be that risky to
system management

Empir Software Eng (2016) 21:517–564 553



The literature suggests that systems having a high percentage in certain clone prop-
erties such as inter-file clones and files associated with clones may lead to more labor
for error fixing (Kapser and Godfrey 2003) and increase the difficulty in mainte-
nance (Roy and Cordy 2010a) because developers may not be aware of the existing
clones in the system and manually tracking clones across multiple files requires much
effort. Our manual investigation regarding the clone properties and cloning practices
revealed that this might not be the case for JSweb. The features of JavaScript web
application technologies lead to different ways of cloning from those of standalone
projects. Developers of JSweb were aware of those features and, hence, created the
clones intentionally. Even though the developers or maintainers are not those who
created the clones anymore, a recent study on the industrial development process
showed that a clone change notification system is able to identify both changed code
clones that industrial developers are not aware of and stable clone sets in the sys-
tem (Yamanaka et al. 2013). Therefore, unlike what previous studies suggest, the code
clones found in JSweb may not be that risky to system management. Understand-
ing the risks of cloning to system management in JSweb requires further specific
studies.

6.2 Lessons Learned

This section discusses the lessons learned from the findings of this study

• Language features play an important role in determining the ways developers
duplicate code

Previous work has mostly studied code clones in statically-typed languages. How-
ever, our manual inspections revealed that the differences of language features between
statically-typed and dynamically-typed languages lead to more function-level clones
in Java than JavaScript in implementing the same functionality. This suggests that
when comparing code clones of different languages, we have to take into account of
their individual features, especially when the languages do not have many features in
common.

• Clone properties of the same language in different application domains can be
different

There are previous studies on standalone projects and also studies on web applica-
tions. However, there is a lack of work that examines whether clone properties of the
same language in different application domains are the same. Our findings on several
clone properties, such as inter-file clones and clone coverage, showed that features of
programming languages and technologies affect the ways developers clone and, hence,
the clone properties of a system. In order to understand the motivations for cloning,
talking to developers is the most direct way. However, studying code clones of the same
language in different application domains also provides another means of acquiring
such knowledge.

• Code clones are not always unintentional
Previous studies suggested that the motivations for cloning are twofold (Roy and

Cordy 2007). On one hand, developers duplicate code due to unawareness of existing
code in a system or lack of understanding on the cloned code. However, there are also
circumstances in which developers intentionally introduced clones due to development
strategy and maintenance benefits. Our findings suggest that the latter case is more

554 Empir Software Eng (2016) 21:517–564



prevalent in JSweb than in JSproj and Java. In JSweb, we observed 5–55 % more
inter-file clones than JSproj and Java because web application developers created
clones intentionally as one of the ways to enhance the loading speed of their sites.
In addition, JSweb has 8–64 % more files associated with clones than JSproj and
Java because duplicating and modifying sequences of code enable web application
developers to deploy their applications in a short period of time.

• Code clones may not always be risky
Some studies in the literature suggest that code clones are risky to system manage-

ment and should be eliminated (Fowler and Beck 1999; Jiang et al. 2007b; Juergens
et al. 2009b). However, some researchers found that code clones have positive impacts
on productivity and may not be as bad as others had claimed (Kapser and Godfrey
2008; Kim et al. 2005; Thummalapenta et al. 2010). A recent study on the relationship
between cloning and defect proneness found little evidence to support the conventional
wisdom that clones that span across multiple files or directories are more defect prone
(Rahman et al. 2012). Even though we found that JSweb contains high percentages
of clones across different files, it may not be as risky as some studies have suggested.
Understanding the risks of cloning in JSweb requires further studies, as developers
on one hand may introduce clones with good intentions such as technology limitations
and external business forces, but on the other hand cloning may be due to bad inten-
tions such as programmers’ laziness and programmers’ memories (Kapser and Godfrey
2008).

• Statistics alone do not give enough information about the clone properties of a
system

Previous studies have mostly focused on quantitative differences of code clones
between systems. However, looking at the numbers alone cannot provide sufficient
insights on the factors that lead to such results. We observed that the percentages of
inter-file clones and files associated with clones in JSweb vary only slightly for dif-
ferent clone detection configurations. Without further investigation, it is difficult to
understand how such a phenomenon occurs. Therefore, qualitative analysis is essential
in understanding the motivations for cloning.

6.3 Threats to Validity

We find the following threats to the validity of our experiments:

6.3.1 Internal Validity

• Representativeness of open-source projects and web pages
In our experiments, we used open-source projects and the top web pages from Alexa

for clone detection. Open-source projects may not be adequately representative of all
kinds of projects since closed-source projects may have different clone properties due
to different software development practices in the industry. However, we chose to study
those projects because they were also widely studied in the literature (Aversano et al.
2007; Bellon et al. 2007; Mondal et al. 2012; Richards et al. 2010; Roy and Cordy
2010a). In addition, due to the large-scale and dynamic features of web applications,
the web pages we collected are only part of the websites and the code quality may
differ from site to site. Therefore, they may also not be sufficiently representative of

Empir Software Eng (2016) 21:517–564 555



other websites. However, we chose the web pages from Alexa because they were also
widely used in other JavaScript related studies (Chugh et al. 2009; Finifter et al. 2010;
Martinsen et al. 2011; Nikiforakis et al. 2012; Ocariza et al. 2011).

• Representativeness of embedded JavaScript in web applications
In our experiments, we studied only embedded JavaScript in web applications. How-

ever, we observed that a feature used to implement the performance requirement of web
pages leads to the choice between inlining and caching external JavaScript and, hence,
affects the percentages of intra-file and inter-file clones. A possible extension of the
experiments would be to compare the proportion of inlined and external JavaScript in
web applications.

• Representativeness of the clone detection technique
Due to the lack of reasonable clone detectors for JavaScript, we built our clone

detector JSCD and compared its recall and precision with those of two other clone
detectors. In our experiments, we detected code clones with JSCD and Deckard,
which use only one kind of clone detection technique. However, our results may
not be sufficiently representative of the clones detected by other clone detection
techniques.

• Representativeness of the clone detectors evaluation technique
We evaluated JSCD by the mutation approach of Roy and Cordy (2009). We selected

this technique because it is widely used (Roy and Cordy 2010b; Sahaet al. 2011;
Stephan et al. 2013, 2014; Zibran and Roy 2012) and automatic, which reduces the
amount of human effort in clone verification. However, their technique evaluates only
the randomly injected clones and it may not cover all the clones in a system. Therefore,
it may not be sufficiently representative of other clone detectors evaluation techniques.
To reduce the bias of clone detectors evaluation results toward the use of mutation, we
also evaluated the tools on the actual clones of a subject.

• Representativeness of clone metrics and software metrics
Due to the different nature of statically-typed and dynamically-typed languages, we

selected clone metrics and software metrics that are applicable to both types of lan-
guages. However, they may not be sufficiently representative of other properties of
individual languages.

6.3.2 External Validity

• Code generation in web development
Code generation is a well-known practice to enable rapid web development. In our

study, we observed that code generation is one of the causes for the high percentages
of files associated with clones in JSweb. However, we are not able to automatically
distinguish them from manually duplicated code due to the lack of formal definitions
and detection techniques. Our judgement of whether a code fragment is generated or
not may be biased.

• Potentially influential factors on the results
In our experiments, we looked at code clones of different languages and application

domains. Our manual inspection revealed that there are different factors affecting how
developers created clones. For instance, performance is essential in web applications,
and we observed different practices in the web application clones to improve perfor-
mance such as code inlining and code minimization. Code inlining leads to more clones

556 Empir Software Eng (2016) 21:517–564



across different files because external JavaScript cannot benefit from browser caching
when both the script and the page views per session are few. Code minimization gen-
erates a code that forms a clone pair with the original code of the same semantic by
removing unnecessary characters such as new line characters and comments to reduce
the amount of data being transferred to browsers. We also found the use of browser-
dependent or device-specific code in web application clones as a means of compatibility
improvement. We observed such use because, in web applications, a single version
of application should support different browsers and platforms of various users while
standalone projects often contain different branches for different platforms. In addi-
tion, the use of tools that support code generation (Wikipedia 2015) and the use of
code sequences duplication to improve development time not only occurs in standalone
projects, but also in web applications. Such uses lead to more files associated with
clones in web applications because they enable web application developers to generate
code or quickly duplicate and modify their code in order to deploy their applications
in a short period of time. The use of interactive design patterns in web applications
development may also lead to code duplication. Researchers showed that they can
decompose high-level design patterns into low-level ones (Van Welie and Van der Veer
2003). Even though there can be different implementations for the same pattern, the
implementations share a set of common features (Di Lucca et al. 2005), which explain
the occurrences of code clones in web applications. Some language features only in
statically-typed languages cause more function-level clones to improve comprehensi-
bility. For example, the overloading mechanism in Java provides a set of similar method
declarations with different parameter types, which are subject to function-level clones.
However, other potentially influential factors on results may exist such as develop-
ers’ experiences and application types. Our future work may examine other influential
factors on the properties of code clones.

6.3.3 Statistical Conclusion Validity

In our experiments, we measured the correlations between clone metrics and software met-
rics. A threat to the statistical conclusion validity is concerned with the statistical power.
We have a limited number of subjects in our measurement of correlation and, hence, such
sample sizes increase the probability of making a Type II error (concluding that there is no
effect when there actually is). Another threat is concerned with the reliability of measures
and treatment implementation. Our measures and treatment implementation are considered
reliable, since we detected clones on all subjects with the same approach and measured the
clone metrics and software metrics with the same tool.

7 Conclusion

We developed JSCD, a JavaScript clone detector based on JavaScript characteristic vectors
inspired by Deckard, a state-of-the-art C/Java clone detector. Using JSCD and Deckard, we
detected clones in JSweb, JSproj, and Java. We compared their clone properties, mea-
sured their correlation, and manually inspected the clones to understand the motivations for
cloning. We found several clone properties in JSweb such as 95 % of inter-file clones and
91–97 % of files associated with clones different from those of JSproj and Java. Our
manual investigations revealed that language features play an important role in determining
the ways developers duplicate code. Also, clone properties of the same language in different

Empir Software Eng (2016) 21:517–564 557



application domains can be different. In addition, code clones may not always be uninten-
tional and risky as previous studies have claimed, and qualitative analysis is essential in
understanding the motivations for cloning.

In this study, we did not consider external JavaScript source files because it is not easy
to automatically distinguish whether those files are from web application developers or
libraries. However, we observed that performance requirements of web applications affect
how developers choose between inlined and external JavaScript source files. Therefore, our
future work will study other factors of web applications that may affect the locations of
JavaScript source files. Also, we studied clones only within web applications but not across
web applications. We plan to study clones across web applications because it is beneficial
in identifying license violations between applications.

Acknowledgments This work is supported in part by Korea Ministry of Education, Science and Tech-
nology(MEST) / National Research Foundation of Korea(NRF) (Grants NRF-2014R1A2A2A01003235 and
NRF-2008-0062609), Samsung Electronics, and Google.

References

Abd-El-Hafiz SK (2012) A metrics-based data mining approach for software clone detection. In: Proceedings
of the 36th annual computer software and applications conference. IEEE, pp 35–41

Alexa Internet Inc (2013) Alexa top sites. http://www.alexa.com/topsites
Antoniol G, Casazza G, Di Penta M, Merlo E (2001) Modeling clones evolution through time series. In:

Proceedings of international conference on software maintenance. IEEE, pp 273–280
Antoniol G, Villano U, Merlo E, Di Penta M (2002) Analyzing cloning evolution in the Linux kernel. Inf

Softw Technol 44(13):755–765
Aversano L, Cerulo L, Di Penta M (2007) How clones are maintained: an empirical study. In: Proceedings

of the 11th European conference on software maintenance and reengineering. IEEE, pp 81–90
Bakerm BS (1995) On finding duplication and near-duplication in large software systems. In: Proceedings

of the 2nd working conference on reverse engineering. IEEE, pp 86–95
Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (1999) Measuring clone based reengineering

opportunities. In: Proceedings of the 6th international software metrics symposium. IEEE, pp 292–303
Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract syntax trees. In:

Proceedings of international conference on software maintenance. IEEE, pp 368–377
Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and evaluation of clone detection

tools. IEEE Trans Softw Eng 33(9):577–591
Bettenburg N, Shang W, Ibrahim WM, Adams B, Zou Y, Hassan AE (2012) An empirical study on

inconsistent changes to code clones at the release level. Sci Comput Program 77(6):760–776
Blanco L, Dalvi N, Machanavajjhala A (2011) Highly efficient algorithms for structural clustering of

large websites. In: Proceedings of the 20th international conference on World wide web. ACM,
pp 437–446

Boldyreff C, Kewish R (2001) Reverse engineering to achieve maintainable WWW sites. In: Proceedings of
the 8th working conference on reverse engineering. IEEE, pp 249–257

Brito e Abreu F (1995) The MOOD metrics set. In: Proceedings of European conference on object-oriented
programming, vol 95, p 267

Brixtel R, Fontaine M, Lesner B, Bazin C, Robbes R (2010) Language-independent clone detection applied
to plagiarism detection. In: Proceedings of the 10th IEEE working conference on source code analysis
and manipulation. IEEE, pp 77–86

Bulychev P, Minea M (2009) An evaluation of duplicate code detection using anti-unification. In: Proceed-
ings of the 3rd international workshop on software clones. Citeseer, pp 22–27

Burd E, Bailey J (2002) Evaluating clone detection tools for use during preventative maintenance. In: Pro-
ceedings of the 2nd international workshop on source code analysis and manipulation. IEEE, pp 36–
43

Cai D, Kim M (2011) An empirical study of long-lived code clones. Fundamental approaches to software
engineering, pp 432–446

558 Empir Software Eng (2016) 21:517–564

http://www.alexa.com/topsites


Calefato F, Lanubile F, Mallardo T (2004) Function clone detection in web applications: a semiautomated
approach. J Web Eng 3:3–21

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Chugh R, Meister JA, Jhala R, Lerner S (2009) Staged information flow for javascript. In: ACM Sigplan
Notices, vol 44. ACM, pp 50–62

Cordy JR, Dean TR, Synytskyy N (2004) Practical language-independent detection of near-miss clones. In:
Proceedings of the 2004 conference of the centre for advanced studies on collaborative research. IBM
Press, pp 1–12

Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable
distributions. In: Proceedings of the 12th annual symposium on computational geometry. ACM, pp 253–
262

De Lucia A, Francese R, Scanniello G, Tortora G (2005) Understanding cloned patterns in web applications.
In: Proceedings of the 13th international workshop on program comprehension. IEEE, pp 333–336

De Lucia A, Scanniello G, Tortora G (2007) Identifying similar pages in web applications using a competitive
clustering algorithm. J Softw Maint Evol Res Pract 19(5):281–296

De Lucia A, Risi M, Scanniello G, Tortora G (2009) An investigation of clustering algorithms in the
identification of similar web pages. J Web Eng 8(4):346–370

Di Lucca GA, Di Penta M, Fasolino AR (2002) An approach to identify duplicated web pages. In: Proceed-
ings of the 26th annual international computer software and applications conference. IEEE, pp 481–
486

Di Lucca GA, Fasolino AR, Tramontana P (2005) Recovering interaction design patterns in web applica-
tions. In: Proceedings of the 9th European conference on software maintenance and reengineering. IEEE,
pp 366–374

Ducasse S, Nierstrasz O, Rieger M (2004) Lightweight detection of duplicated code–a language-
independent approach. Institute for Applied Mathematics and Computer Science. University of
Berne

Ducasse S, Nierstrasz O, Rieger M (2006) On the effectiveness of clone detection by string matching. J Softw
Maint Evol Res Pract 18(1):37–58

Falke R, Frenzel P, Koschke R (2008) Empirical evaluation of clone detection using syntax suffix trees.
Empir Softw Eng 13(6):601–643

Finifter M, Weinberger J, Barth A (2010) Preventing capability leaks in secure javascript subsets. In: NDSS
Fowler M, Beck K (1999) Refactoring : improving the design of existing code. Addison-Wesley, Reading
GitHub Inc (2013) JavaScript Projects in GitHub. https://github.com/trending?l=javascript
Guarnieri S, Pistoia M, Tripp O, Dolby J, Teilhet S, Berg R (2011) Saving the world wide web from

vulnerable JavaScript. In: Proceedings of the 20th international symposium on software testing and
analysis

Harris S (2013) Simian–similarity analyser. http://www.harukizaemon.com/simian/index.html
Hegedűs P, Bakota T, Illés L, Ladányi G, Ferenc R, Gyimóthy T (2011) Source code metrics and main-

tainability: a case study. In: Software engineering, business continuity, and education. Springer, Berlin
Heidelberg New York, pp 272–284

Hill R, Rideout J (2004) Automatic method completion. In: Proceedings of the 19th international conference
on automated software engineering. IEEE, pp 228–235

Hotta K, Sano Y, Higo Y, Kusumoto S (2010) Is duplicate code more frequently modified than non-duplicate
code in software evolution?: an empirical study on open source software. In: Proceedings of the joint
ERCIM workshop on software evolution and international workshop on principles of software evolution,
pp 73–82

Islam M, Islam M, Halim T (2011) A study of code cloning in server pages of web applications developed
using classic asp. net and asp. net mvc framework. In: Proceedings of the 14th international conference
on computer and information technology. IEEE, pp 497–502

Jang J, Agrawal A, Brumley D (2012) ReDeBug: finding unpatched code clones in entire os distributions.
In: Proceedings of symposium on security and privacy. IEEE, pp 48–62

Jiang L, Misherghi G, Su Z, Glondu S (2007a) Deckard: scalable and accurate tree-based detection of code
clones. In: Proceedings of the 29th international conference on software engineering. IEEE, pp 96–
105

Jiang L, Su Z, Chiu E (2007b) Context-based detection of clone-related bugs. In: Proceedings of the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering. ACM, pp 55–64

Jones MC (2011) Remix and reuse of source code in software production. PhD thesis, Citeseer

Empir Software Eng (2016) 21:517–564 559

https://github.com/trending?l=javascript
http://www.harukizaemon.com/simian/index.html


Juergens E, Deissenboeck F, Hummel B (2009a) CloneDetective–a workbench for clone detection research.
In: Proceedings of the 31st international conference on software engineering. IEEE, pp 603–606

Juergens E, Deissenboeck F, Hummel B, Wagner S (2009b) Do code clones matter? In: Proceedings of the
31st international conference on software engineering. IEEE Computer Society, pp 485–495

Kamei Y, Sato H, Monden A, Kawaguchi S, Uwano H, Nagura M, Matsumoto Ki, Ubayashi N (2011) An
empirical study of fault prediction with code clone metrics. In: Proceedings of the joint conference of the
21th international workshop on software measurement and the 6th international conference on software
process and product measurement. IEEE, pp 55–61

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans Softw Eng 28(7):654–670

Kapser C, Godfrey M (2003) Toward a taxonomy of clones in source code: a case study. In: Proceedings of
the conference on evolution of large scale industrial software architectures, pp 67–78

Kapser CJ, Godfrey MW (2008) “Cloning Considered harmful” considered harmful: patterns of cloning in
software. Empir Softw Eng 13(6):645–692

Kienle HM, Müller HA, Weber A (2003) In the web of generated “clones” (position paper)
Kim H, Jung Y, Kim S, Yi K (2011) Mecc: memory comparison-based clone detector. In: Proceedings of the

33rd international conference on software engineering. IEEE, pp 301–310
Kim M, Sazawal V, Notkin D, Murphy G (2005) An empirical study of code clone genealogies. ACM

SIGSOFT Softw Eng Notes 30(5):187–196
Kontogiannis K (1997) Evaluation experiments on the detection of programming patterns using software

metrics. In: Proceedings of the 4th working conference on reverse engineering. IEEE, pp 44–54
Kontogiannis K, DeMori R, Merlo E, Galler M, Bernstein M (1996) Pattern matching for clone and concept

detection. Autom Softw Eng 3(1-2):77–108
Koschke R (2007) Survey of research on software clones. Duplication, redundancy, and similarity in software.

http://drops.dagstuhl.de/volltexte/2007/962/
Koschke R, Falke R, Frenzel P (2006) Clone detection using abstract syntax suffix trees. In: Proceedings of

the 13th working conference on reverse engineering. IEEE, pp 253–262
Koschke R, Baxter ID, Conradt M, Cordy JR (2012) Software clone management towards industrial

application (dagstuhl seminar 12071). Dagstuhl Reports 2(2)
Kou G, Lou C (2012) Multiple factor hierarchical clustering algorithm for large scale web page and search

engine clickstream data. Ann Oper Res 197(1):123–134
Kozlov D, Koskinen J, Sakkinen M, Markkula J (2010) Exploratory analysis of the relations between code

cloning and open source software quality. In: Proceedings of the 7th international conference on the
quality of information and communications technology. IEEE, pp 358–363

Krinke J (2007) A study of consistent and inconsistent changes to code clones. In: Proceedings of the 14th
working conference on reverse engineering. IEEE, pp 170–178

Krinke J (2008) Is cloned code more stable than non-cloned code? In: Proceedings of the 8th international
working conference on source code analysis and manipulation. IEEE, pp 57–66

Krinke J (2011) Is cloned code older than non-cloned code? In: Proceedings of the 5th international workshop
on software clones. ACM, pp 28–33

Lague B, Proulx D, Mayrand J, Merlo E, Hudepohl J (1997) Assessing the benefits of incorporating function
clone detection in a development process. In: Proceedings of the international conference on software
maintenance, vol 97

Lanubile F, Mallardo T (2003) Finding function clones in web applications. In: Proceedings of the 7th
European conference on software maintenance and reengineering. IEEE, pp 379–386

Lee H, Won S, Jin J, Cho J, Ryu S (2012) SAFE: Formal specification and implementation of a scalable
analysis framework for ECMAScript. In: Proceedings of the 19th international workshop on foundations
of object-oriented languages

Li C, Sun J, Chen H (2014) An improved method for tree-based clone detection in web applications. In:
Proceedings of the 4th international conference on digital information and communication technology
and it’s applications. IEEE, pp 363–367

Li J, Ernst MD (2012) Cbcd: cloned buggy code detector. In: Proceedings of the 2012 international
conference on software engineering. IEEE Press, pp 310–320

Livieri S, Higo Y, Matsushita M, Inoue K (2007) Analysis of the linux kernel evolution using code clone
coverage. In: Proceedings of the 4th international workshop on mining software repositories. IEEE,
pp 22–22

Lozano A, Wermelinger M, Nuseibeh B (2008) Evaluating the relation between changeability decay and the
characteristics of clones and methods. In: Proceedings of the 23rd international conference on automated
software engineering-workshops. IEEE, pp 100–109

560 Empir Software Eng (2016) 21:517–564

http://drops.dagstuhl.de/volltexte/2007/962/


Martin D, Cordy JR (2011) Analyzing web service similarity using contextual clones. In: Proceedings of the
5th international workshop on software clones. ACM, pp 41–46

Martinsen JK, Grahn H, Isberg A (2011) A comparative evaluation of javascript execution behavior. In: Web
engineering. Springer, Berlin Heidelberg New York, pp 399–402

Mayrand J, Leblanc C, Merlo EM (1996) Experiment on the automatic detection of function clones in a
software system using metrics. In: Proceedings of international conference on software maintenance.
IEEE, pp 244–253

Merlo E, Antoniol G, Di Penta M, Rollo VF (2004) Linear complexity object-oriented similarity for clone
detection and software evolution analyses. In: Proceedings of the 20th international conference on
software maintenance. IEEE, pp 412–416

Merlo E, Dagenais M, Bachand P, Sormani J, Gradara S, Antoniol G (2002) Investigating large software
system evolution: the Linux kernel. In: Proceedings of the 26th annual international computer software
and applications conference. IEEE, pp 421–426

Mondal M, Roy CK, Rahman MS, Saha RK, Krinke J, Schneider KA (2012) Comparative stability of cloned
and non-cloned code: an empirical study. In: Proceedings of the 27th annual symposium on applied
computing. ACM, pp 1227–1234

Monden A, Nakae D, Kamiya T, Sato S, Matsumoto K (2002) Software quality analysis by code clones in
industrial legacy software. In: Proceedings of the 8th symposium on software metrics. IEEE, pp 87–94

Muhammad T, Zibran MF, Yamamoto Y, Roy CK (2013) Near-miss clone patterns in web applications: an
empirical study with industrial systems. In: Canadian conference on electrical and computer engineering

Negara N, Tsantalis N, Stroulia E (2013) Feature detection in ajax-enabled web applications. In: Proceed-
ings of the 17th European conference on software maintenance and reengineering. IEEE, pp 154–
163

Nikiforakis N, Invernizzi L, Kapravelos A, Van Acker S, Joosen W, Kruegel C, Piessens F, Vigna G (2012)
You are what you include: large-scale evaluation of remote javascript inclusions. In: Proceedings of the
2012 ACM conference on computer and communications security. ACM, pp 736–747

Ocariza F, Pattabiraman K, Zorn B (2011) Javascript errors in the wild: an empirical study. In: Proceedings
of the 22nd international symposium on software reliability engineering. IEEE, pp 100–109

Patenaude JF, Merlo E, Dagenais M, Laguë B (1999) Extending software quality assessment techniques
to Java systems. In: Proceedings of the 7th international workshop on program comprehension. IEEE,
pp 49–56

PLRG@KAIST (2012) SAFE: Scalable Analysis Framework for ECMAScript. http://plrg.kaist.ac.kr/
redmine/projects/jsf/repository

PMD (2013) PMD’s copy/paste detector. http://pmd.sourceforge.net/pmd-5.0.5/cpd-usage.html
Rahman F, Bird C, Devanbu P (2012) Clones: what is that smell Empir Softw Eng 17(4-5):503–530
Rajapakse D, Jarzabek S (2005) An investigation of cloning in web applications. Web Engineering pp 252–

262
Rajapakse DC, Jarzabek S (2007) Using server pages to unify clones in web applications: a trade-off analysis.

In: Proceedings of the 29th international conference on software engineering. IEEE, pp 116–126
Ramage D, Heymann P, Manning CD, Garcia-Molina H (2009) Clustering the tagged web. In: Proceedings

of the 2nd ACM international conference on web search and data mining. ACM, pp 54–63
Ratanaworabhan P, Livshits B, Zorn BG (2010) JSMeter: comparing the behavior of JavaScript bench-

marks with real web applications. In: Proceedings of the 2010 USENIX conference on Web application
development. USENIX Association, pp 3–3

Richards G, Hammer C, Burg B, Vitek J (2011) The eval that men do. In: Proceedings of the 25th European
conference on object-oriented programming. Springer, Berlin Heidelberg New York, pp 52–78

Richards G, Lebresne S, Burg B, Vitek J (2010) An analysis of the dynamic behavior of JavaScript programs.
In: Proceedings of the SIGPLAN conference on programming language design and implementation,
vol 45. ACM, pp 1–12

Rieger M, Ducasse S, Lanza M (2004) Insights into system-wide code duplication. In: Proceedings of the
11th working conference on reverse engineering. IEEE, pp 100–109

Roy C, Cordy J (2007) A survey on software clone detection research. Queen’s School of Computing TR
541:115

Roy C, Cordy J (2010a) Are scripting languages really different? In: Proceedings of the 4th international
workshop on software clones. ACM, pp 17–24

Roy C, Cordy J (2010b) Near-miss function clones in open source software: an empirical study. J Softw
Maint Evol Res Pract 22(3):165–189

Roy CK, Cordy JR (2008) An empirical study of function clones in open source software. In: Proceedings of
the 15th working conference on reverse engineering. IEEE, pp 81–90

Empir Software Eng (2016) 21:517–564 561

http://plrg.kaist.ac.kr/redmine/projects/jsf/repository
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository
http://pmd.sourceforge.net/pmd-5.0.5/cpd-usage.html


Roy CK, Cordy JR (2009) A mutation/injection-based automatic framework for evaluating code clone detec-
tion tools. In: Proceedings of the international conference on software testing, verification and validation
workshops. IEEE, pp 157–166

Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection techniques and
tools: a qualitative approach. Sci Comput Program 74(7):470–495

Roy CK, Zibran MF, Koschke R (2014) The vision of software clone management: past, present, and future.
In: Proceedings of the IEEE CSMR-18/WCRE-21 software evolution week

Rysselberghe FV, Demeyer S (2004) Evaluating clone detection techniques from a refactoring perspective.
In: Proceedings of the 19th international conference on automated software engineering. IEEE Computer
Society, pp 336–339

SAFE Corporation (2012) CodeMatch. http://www.safe-corp.biz/products codematch.htm
Saha RK, Roy CK, Schneider KA (2011) An automatic framework for extracting and classifying near-miss

clone genealogies. In: Proceedings of the 27th international conference on software maintenance. IEEE,
pp 293–302

Schleimer S, Wilkerson DS, Aiken A (2003) Winnowing: local algorithms for document fingerprinting. In:
Proceedings of the 2003 ACM SIGMOD international conference on management of data. ACM, pp 76–
85

Selamat A, Wahid N (2007) Code clone detection using string based tree matching technique. InTech
Shawky DM, Ali AF (2010) An approach for assessing similarity metrics used in metric-based clone detec-

tion techniques. In: Proceedings of the 3rd international conference on computer science and information
technology, vol 1. IEEE, pp 580–584

Stephan M, Alalfi MH, Stevenson A, Cordy JR (2013) Using mutation analysis for a model-clone detector
comparison framework. In: Proceedings of the 2013 international conference on software engineering.
IEEE Pres, Piscataway, pp 1261–1264

Stephan M, Alalfi MH, Cordy JR (2014) Towards a taxonomy for simulink model mutations. In: Proceedings
of the 7th international conference on software testing, verification and validation workshops. IEEE,
pp 206–215

Svajlenko J, Roy CK, Zibran MF, Cordy JR (2013) A mutation analysis based benchmarking framework for
clone detectors. In: Proceedings of short/tool papers track of the ICSE 7th international workshop on
software clones

Tairas R, Gray J (2006) Phoenix-based clone detection using suffix trees. In: Proceedings of the 44th annual
southeast regional conference. ACM, pp 679–684

Thummalapenta S, Cerulo L, Aversano L, Di Penta M (2010) An empirical study on the maintenance of
source code clones. Empir Softw Eng 15(1):1–34

Van Welie M, Van der Veer GC (2003) Pattern languages in interaction design: structure and organization.
In: Proceedings of interact, vol 3, pp 1–5

Wang T, Harman M, Jia Y, Krinke J (2013) Searching for better configurations: a rigorous approach to clone
evaluation. In: Proceedings of the 2013 9th joint meeting on foundations of software engineering. ACM,
pp 455–465

Wikipedia (2015) List of graphical user interface builders and rapid application development tools. http://en.
wikipedia.org/wiki/List of graphical user interface builders and rapid application development tools

Yamanaka Y, Choi E, Yoshida N, Inoue K, Sano T (2013) Applying clone change notification system into
an industrial development process. In: Proceedings of the 21st international conference on program
comprehension. IEEE, pp 199–206

Zibran MF, Roy CK (2012) Ide-based real-time focused search for near-miss clones. In: Proceedings of the
27th annual ACM symposium on applied computing. ACM, pp 1235–1242

Zibran MF, Saha RK, Asaduzzaman M, Roy CK (2011) Analyzing and forecasting near-miss clones in evolv-
ing software: an empirical study. In: Proceedings of the 16th international conference on engineering of
complex computer systems. IEEE, pp 295–304

562 Empir Software Eng (2016) 21:517–564

http://www.safe-corp.biz/products_codematch.htm
http://en.wikipedia.org/wiki/List_of_graphical_user_interface_builders_and_rapid_application_development_tools
http://en.wikipedia.org/wiki/List_of_graphical_user_interface_builders_and_rapid_application_development_tools


Wai Ting Cheung received the BEng degree in computer engineering and the MPhil degree in computer
science and engieering from The Hong Kong University of Science and Technology. He is currently pursuing
the joint PhD degree in Computer Science at Korea Advanced Institute of Science and Technology and The
Hong Kong University of Science and Technology. His research interests include code clone analysis and
fault localization.

Sukyoung Ryu is an assistant professor of Computer Science at Korea Advanced Institute of Science and
Technology (KAIST). Before joining KAIST, she worked at Sun Microsystems Laboratories to design and
develop the new programming language, Fortress. Before that, she was a Research Associate in Computer
Science at Harvard, where she worked on the Debugging Everywhere project. She is the lead author of the
publicly-available Scalable Analysis Framework for ECMAScript (SAFE), which is integrated in the Tizen
SDK of the Tizen Linux Foundation project. Her main research interests include programming languages,
program analysis, and programming environments for debugging and testing.

Empir Software Eng (2016) 21:517–564 563



Sunghun Kim is an Assistant Professor of Computer Science at the Hong Kong University of Science and
Technology. He got his BS in Electrical Engineering at Daegu University, Korea in 1996. He completed
his Ph.D. in the Computer Science Department at the University of California, Santa Cruz in 2006. He was
a postdoctoral associate at Massachusetts Institute of Technology and a member of the Program Analysis
Group. He was a Chief Technical Officer (CTO), and led a 25-person team at the Nara Vision Co. Ltd, a
leading Internet software company in Korea for six years.

His core research area is Software Engineering, focusing on software evolution, program analysis and
empirical studies. He publishes his work on top venues such as TSE, ICSE, FSE, AAAI, SOSP and ISSTA.
He is a four-time winner of the ACM SIGSOFT Distinguished Paper Award (ICSE 2007, ASE 2012, ICSE
2013 and ISSTA 2014). Besides, he received various awards including 2010 and 2011 Microsoft Software
Innovation Awards and 2011 Google Faculty Research Award. He served on a variety of program committees
including FSE 2011, FSE 2013, FSE 2015, ASE 2013, ICSE 2012, ICSE 2013 and ICSE 2015. He was a
program co-chair of MSR 2013 and 2014. Further information is available at http://www.cse.ust.hk/∼hunkim.

564 Empir Software Eng (2016) 21:517–564

http://www.cse.ust.hk/~hunkim

	Development nature matters: An empirical study of code clones in JavaScript applications
	Abstract
	Introduction
	Related Work
	Empirical Studies of Code Clones
	Studies of Clones in both Statically-Typed and Dynamically-Typed Languages
	Language-Independent Approaches for Clone Detection
	Studies of Clones in Web Applications
	Applications of Clone Detection in Scripting Languages and Web Applications
	Relationship Between Clone Properties and Software Metrics
	Summary of Literature Review

	JScd: JavaScript Clone Detector
	Evaluation
	Generation Phase
	Evaluation Phase
	Clone Oracle

	Empirical Study Design
	Subjects
	Clone Detectors and Code Clone Metrics

	Results
	RQ1: Clone Metrics
	Cloning Locality
	Sizes of Code Clones
	Clone Coverage
	Files Associated with Clones
	Function-Level Clones

	RQ2: Software Metrics
	RQ3: Cloning Patterns
	Common Cloning Patterns
	Case Study 1:google.com
	Case Study 2:yahoo.com
	Case Study 3:twitter.com


	Discussion
	Findings and Implications
	Lessons Learned
	Threats to Validity
	Internal Validity
	External Validity
	Statistical Conclusion Validity


	Conclusion
	Acknowledgments
	References


