
BUCKET-FILLING: AN ASYMPTOTICALLY
OPTIMAL VIDEO-ON-DEMAND NETWORK

WITH SOURCE CODING

by

ZHANGYU CHANG

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for
the Degree of Master of Philosophy

in Computer Science and Engineering

August 2015, Hong Kong

Copyright c© by Zhangyu Chang 2015

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to other

institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce the

thesis by photocopying or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

ZHANGYU CHANG

ii

BUCKET-FILLING: AN ASYMPTOTICALLY
OPTIMAL VIDEO-ON-DEMAND NETWORK

WITH SOURCE CODING

by

ZHANGYU CHANG

This is to certify that I have examined the above M.Phil. thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

PROF. S.-H. GARY CHAN, THESIS SUPERVISOR

PROF. QIANG YANG, HEAD OF DEPARTMENT

Department of Computer Science and Engineering

25 August 2015

iii

ACKNOWLEDGMENTS

I would never have completed this work without the help from many people. First of all, I thank

my advisor, Professor S.-H. Gary Chan, for his years of mentoring, advice, and encouragement. I

have learned a lot from him how to develop, evaluate, express, and defend my work. Such skills

would be beneficial for my later Ph.D. study.

I thank the members of my thesis committee, Professor A and Professor B, for their insightful

comments on improving this work.

I thank my colleagues in HKUST, Mr. Bo Zhang, Mr. Hongzheng Xiong, Mr. Huang Lu, Ms.

Lijia Hong and many others, for their constructive suggestion and comments of this work. They

helped me a lot. I also thank my parents for their support.

iv

TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures vii

List of Tables viii

Abstract ix

Chapter 1 Introduction 1

Chapter 2 Related Work 5

Chapter 3 System Description and Problem Formulation 8

3.1 System Operation 8

3.2 A Linear Programming Formulation 10

Chapter 4 Bucket-filling: symbol storage and retrieval 14

4.1 Parameter Discretization to Achieve Asymptotic Optimum 14

4.2 Efficient Computation for Large Movie Pool 16

4.3 Re-optimization due to Changes in System Parameters 18

v

Chapter 5 Illustrative Simulation Results 20

5.1 Simulation Environment and Performance Metrics 20

5.2 Bucket-filling Performance 24

5.3 Movie Grouping with K-means Clustering 30

5.4 Re-optimization due to System Changes 33

Chapter 6 Conclusion 36

References 37

Appendix A Linear Source Coding and Its Use in Bucket-Filling 42

Appendix B Proof of Asymptotic Optimality of Bucket-Filling 44

vi

LIST OF FIGURES

1.1 A distributed servers architecture for VoD service. 2

3.1 An illustrative example for bucket-filling with q = 7, 1 movie, n(1) = 12, and 2
proxy servers. 9

5.1 Streaming cost model at proxy server. 22

5.2 Total cost versus request rate given q. 24

5.3 Optimal n(m) versus movie index. 25

5.4 Total cost and the cost components versus proxy storage. 26

5.5 Total cost versus request rate given different schemes. 27

5.6 Computation time versus movie number given different schemes. 28

5.7 Total cost versus Zipf parameter of movie popularity given different schemes. 28

5.8 Server cost distribution given different schemes. 29

5.9 Cost of each movie given different schemes. 30

5.10 Total cost versus Zipf parameter of movie popularity given different schemes. 31

5.11 Total cost versus group number given different schemes. 32

5.12 Total cost versus computation time given different schemes. 33

5.13 Number of transmitted symbols versus number of movie change. 34

vii

LIST OF TABLES

3.1 Major symbols used in this thesis. 10

5.1 Baseline parameters used in our study. 21

5.2 Network Transmission Cost. 22

5.3 Parameters for large movie pool. 31

viii

BUCKET-FILLING: AN ASYMPTOTICALLY
OPTIMAL VIDEO-ON-DEMAND NETWORK

WITH SOURCE CODING

by

ZHANGYU CHANG

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

There has been growing interest in recent years for content providers to provide video-on-demand

(VoD) as a cloud service. In such a network, the content provider may rent heterogeneous resources

(such as streaming and storage capacities) from geographically distributed data centers deployed

close to user pools. These data centers (or proxy servers) collaboratively share contents with each

other to serve their local users. A critical challenge is hence to optimize movie storage and re-

trieval to minimize the deployment cost consisting of streaming, storage, and network transmission

between data centers.

We propose a novel and effective movie storage and retrieval using linear source coding. All

the movies are source-encoded once at the repository, by taking every q source symbols of movie

m to generate n(m) coded symbols. These coded symbols are then distributed to the servers in

the cloud. Based on a general and comprehensive cost model, we optimize n(m) and the number

of symbols to retrieve from remote servers for a local movie request. The optimal solution can

ix

be efficiently computed with a linear programming (LP) formulation. Our solution is proved to

approach asymptotically the global minimum cost as q increases. Even when q is low (say, 30),

near optimality can be achieved. To accommodate large movie pool and system parameter changes,

we propose algorithms for movie grouping and on-line re-optimization which significantly reduce

the computational complexity with little compromise on optimality. Through extensive simulation,

our algorithm is shown to achieve remarkably the lowest cost, outperforming traditional and state-

of-the-art heuristics with a substantially wide margin (of multiple times in many cases).

x

CHAPTER 1

INTRODUCTION

There has been growing interest for content providers to provide video-on-demand (VoD) as a

cloud service. In order to cost-effectively provide such distributed service, a content provider may

rent resources (bandwidth and storage) at data centers. These data centers cooperatively store and

retrieve movies, greatly reducing network load and scaling up the streaming and storage capaci-

ties [19, 5, 1].

We show in Figure 1.1 a cooperative VoD network with distributed data centers (servers). The

network consists of a central server (repository) storing all the movies and data centers, also termed

as proxy servers in this thesis, placed geographically close to user pools.1 While the central server

stores all the movies, the proxy servers may be of limited, and possibly heterogeneous, storage

which can only locally store a fraction of the movies (full replication at all the proxy servers is not

cost-effective, especially for VoD applications where movie popularity is often skewed). Each user

has a home (or local) proxy server to serve his movie request. If the home server has the requested

content (a hit), it directly streams to the users from its local storage. Otherwise (i.e., a miss), the

home server requests the content from a remote server, which is either a proxy or the central server.

The missed content is then streamed “via” the home server to the request. To minimize user delay,

movies are not downloaded at the clients before they are played back. (The user startup delay can

be further reduced by pre-storing the “prefixes” of the leading, say, 30 seconds of movies at each

server. In any case, such technique is orthogonal to our current study.)

In the VoD cloud, a critical challenge for the content provider is to minimize the total de-

ployment cost given by the sum of server and network costs through optimizing movie storage

and retrieval at the servers. We consider server cost as a general function of its own storage and

streaming bandwidth (maximum capacity or utilized). In addition, we consider network cost as the

1In this thesis, “client” and “user” are used interchangeably, and so are “movie,” “video” and “content.”

1

VoD Cloud

Repository

… …

… …
… …

Figure 1.1: A distributed servers architecture for VoD service.

bandwidth cost to stream data from a server to another (a function of the data traffic between two

locations). As different from previous work [4, 26, 34, 9, 12, 33, 2, 10, 27], our cost model is much

more general and captures the important cost components for system deployment.

Optimal movie storage and retrieval in a VoD network is generally regarded as NP-hard [8, 26].

This is mainly because a movie (or its constituent segments) at a server is often regarded as either

stored or not, resulting in a 0-1 integer programming problem. Because of the intractability of

the problem, many heuristic algorithms have been proposed. It is often not clear how well these

heuristics perform as compared with the optimum, let alone approaching such optimum.

We propose a novel movie storage and retrieval algorithm which achieves asymptotically opti-

mal solution, i.e., the deployment cost can be arbitrarily close to the global minimum (by increasing

a system parameter q which trades off optimality gap and coding complexity). Even under practical

and realistic condition, the system performs very close to the optimum, significantly better than the

other state-of-the-art heuristics (often by many times).

In the VoD network, movie m is source-encoded only once at the repository by taking every q

2

source symbols to generate n(m) ≥ q coded symbols using a general linear source coding technique

(such as Reed-Solomon code, Maximum-Distance-Separable (MDS) systematic erasure code, etc.),

where n(m) is the optimizing parameter in our study, and q is a tunable network-wide parameter

depending on how much coding complexity and decoding delay one is willing to accept.

The repository stores q of these n(m) coded symbols, and the remainder is distributed at the

other proxy servers without duplication (obviously no more than q at each server). So long as any

q out of the n(m) symbols are collected, the original source symbols can be recovered at the proxy.

As the decoding overhead of linear coding has been shown to be low (as compared with video

decoding), such decoding can be done either at the proxies or directly at the users [13].

To serve a local request for a movie, one hence may imagine that the request carries a “bucket”

of size q symbols. The bucket is first filled by downloading the coded symbols at its home server.

If this does not fully fill up the bucket, the home server collects by pulling the remaining symbols

from the other servers (including the repository). Once q coded symbols are collected, the source

symbols can then be played back.

It is clear from above that by distributing and retrieving symbols from servers in an intelligent

manner, the deployment cost can be minimized. The major issues are hence, given q, what the

optimal n(m) is for movie m, how many symbols should be stored at a server, and how many

symbols to retrieve from each of them for a movie request.

Our contributions are three-folds:

• Bucket-filling: A novel movie distribution and retrieval algorithm based on source coding

(SC): We propose a novel video-on-demand network using linear source coding. Our scheme,

termed bucket-filling, is a remarkably simple and effective movie distribution and retrieval

scheme minimizing system cost.

• Provably asymptotically optimal performance for distributed video-on-demand: By optimiz-

ing n(m) for movie m, bucket-filling is able to minimize deployment cost consisting of server

storage, server bandwidth, and network access. Bucket-filling uses an efficient linear pro-

gram (LP) and discretization to optimize symbol distribution and retrieval at servers. Its cost

3

can be proved to be arbitrarily close to the exact global minimum as q increases, i.e., asymp-

totically optimal in terms of q. We illustrate that even under the most general and realistic

condition of low values of q (around 30), the system performs closely optimal.

• Efficient grouping and on-line re-optimization for large movie pool: To further address large

movie pool, we propose a movie grouping algorithm based on K-means clustering which

significantly reduces computational complexity (by a factor of O(|M |), where |M | is the

number of movies) with little compromise in optimality. Our scheme also easily applies to

system changes due to, for example, introduction and removal of movies, change in network

cost, introduction of servers, etc.

We conduct extensive simulation and comparison study with other traditional and state-of-the-

art schemes. Our results show that bucket-filling achieves asymptotic optimality in system cost,

outperforming the other schemes by a significantly wide margin (multiple times in most cases).

The results show that the performance of many previously proposed heuristics are still far from

the global optimum, and bucket-filling can achieve performance arbitrarily close to it. Further-

more, with very low computational cost, our grouping scheme can still achieve close to optimal

performance.

This thesis is organized as follows. We first review related work in Chapter 2. We then de-

scribe how the VoD system works with source coding and formulate the optimization problem in

Chapter 3. In Chapter 4, we present symbol storage and retrieval solutions for bucket-filling, movie

grouping algorithm for large movie pool, and system re-optimization due to parameter changes. In

Chapter 5, we show illustrative simulation results on the performance and comparison of bucket-

filling. We conclude in Chapter 6. We review linear source coding and prove the asymptotic

optimality of bucket-filling in Appendix A and B, respectively.

4

CHAPTER 2

RELATED WORK

We briefly discuss previous work below. There has been much work applying network coding or

fountain codes in peer-to-peer VoD [21, 16, 32, 23, 28]. These schemes incur significant processing

and re-encoding overhead in the peer network and may lead to duplicated symbols, which decreases

network efficiency. As receiving duplicated symbols affects stream continuity, the work in [22]

discusses the design of (q, n) for source-coded VoD to reduce duplicated symbols in the network.

The objective of the work, together with the recent work on peer-to-peer VoD [39, 38, 30, 3], is

to fully utilize the uploading bandwidth of the peers. The work in [36, 17] presents heuristics

to efficiently search for movie segments in order to support user interactivity. All the work in

[21, 22, 16, 32, 23, 28, 39, 38, 36, 17, 30, 3] has not considered the optimal movie storage and

retrieval to minimize the deployment cost due to bandwidth and storage. Our work presents an

asymptotically optimal solution for a novel VoD network. The use of source coding is a one-step

encoding process without any symbol duplication in the network, which leads to storage and access

efficiency.

For the work studying the cost issue for VoD [4, 26, 34, 9, 12, 33, 2, 10, 27], they often have not

sufficiently considered the general case including all the cost components. We consider a realistic

and general VoD deployment model, which captures a comprehensive set of parameters with major

cost components in regards to network access cost, storage constraint and streaming cost of the

servers.

As movie replication and retrieval problem is typically regarded as NP-hard, various heuris-

tics have been proposed [4, 37, 8, 26, 18]. These algorithms are generally sub-optimal. As the

performance bounds of these algorithms are not easy to analyze or derive, it is not clear how far

their performance is from the optimum. In contrast, bucket-filling achieves asymptotically optimal

performance, i.e., it can be arbitrarily close to the exact minimum cost by increasing the system

parameter q. Such optimality is hence achieved with increasing decoding overhead given by q.

5

Our optimality is shown to be significantly better than the state-of-the-art schemes. Furthermore,

previous algorithms are often based on iteration [20, 11], which may have convergence issue for a

large network. Bucket-filling, on the other hand, is efficient as it is not based on iteration and has a

guaranteed worst-case algorithmic complexity.

In summary, our work distinguishes and advances from the previous ones in the following major

aspects:

1. We propose a novel video-on-demand network based on source coding for efficient movie

distribution and retrieval. This architecture ensures efficient video access without duplicated

symbols.

2. We comprehensively consider the major cost components of a realistic VoD network and

address its cost optimization issue.

3. Our algorithm is provably asymptotically optimal and has guaranteed worst-case time com-

plexity, which outperforms the state-of-the-art schemes in terms of both deployment cost and

algorithmic complexity.

A video-on-demand network called LP-SR has been presented in [35, 6]. In this scheme, the

movies are partitioned into many segments for storage and retrieval. Compared with it, bucket-

filling advances in the following ways:

1. Bucket-filling substantially reduces the time complexity of the optimization. It is not based

on segments, and uses a radically different and efficient discretization process by means of

source coding. As any q of n(m) coded symbols can recover the original source symbols,

bucket-filling is flexible and amendable to system changes. Such novel use of source coding

markedly reduces the time complexity of the solution, and leads to a much different joint

movie storage and retrieval strategy (see Section 4).

2. Bucket-filling is provably asymptotically optimal. Due to the simplicity and tractability of

bucket-filling, we are able to prove that bucket-filling approaches the exact optimum as q

increases.

6

3. We propose an efficient movie grouping algorithm based on K-means clustering, which sub-

stantially reduces the time complexity. Simulation results show that our scheme can optimize

a typical VoD network with thousands of movies in seconds with little sacrifice on perfor-

mance (see Section 5.3). Besides, we give an on-line re-optimization algorithm to accommo-

date system changes with minimal symbol redistribution.

A preliminary version of this work has been reported in [7]. This work extends it in various

major ways:

1. We prove the asymptotic optimality of bucket-filling. This proof demonstrates that bucket-

filling can be arbitrarily close to the exact optimum as q increases.

2. We propose an efficient movie grouping algorithm based on K-means clustering, which great-

ly reduces the running time of the algorithm for large movie pool with close-to-optimal per-

formance.

3. We present a novel and efficient re-optimization method with little overhead in symbol redis-

tribution when re-optimizing the system.

4. We show more substantial illustrative results to validate the strong performance of bucket-

filling, our new clustering and re-optimization methods.

7

CHAPTER 3

SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

In this chapter, we first present how bucket-filling works in the VoD network (Section 3.1). We

then present the cost optimization problem of the VoD network for the asymptotic case q → ∞
(Section 3.2). In this case, the formulation becomes an LP which can be solved efficiently. For

finite q, the LP solution requires further discretization which is discussed in Chapter 4.

3.1 System Operation

A movie m is source-coded only once at the repository by taking every q equal-sized source sym-

bols to generate n(m) ≥ q coded symbols of the same size. (Given a certain symbol size (in bits), a

movie of longer length hence generates more number of source symbols and thereof coded symbol-

s.) Out of the n(m) coded symbols, the repository stores any of the q coded symbols, and distributes

the remainder without replication to the proxy servers. Note that the repository and servers do not

need to store more than q symbols out of n(m), because the original q source symbols can be fully

reconstructed with any q of the n(m) symbols.

In bucket-filling, the symbols are “streamed” to the server and the number of symbols to retrieve

from each server for a request is determined in the optimization process at the repository. Such

retrieval decision is deterministic where a fixed number of symbols are retrieved from a server

(a non-probabilistic approach). As the solution can be obtained with a simple table look-up, the

communication overhead of servers is minimal.

In the network, movies are distributed and retrieved according to the following:

• Coded Symbol Distribution: Given q, the repository computes the optimal n(m) for each

movie. It then encodes the movies accordingly once and distributes the coded symbols of the

8

3

2

2 2

3
2

7

Stream to server A

Stream to server B

Figure 3.1: An illustrative example for bucket-filling with q = 7, 1 movie, n(1) = 12, and 2 proxy
servers.

movies to each server. Such symbol distribution needs to be done only upon major system

changes, e.g., upon the introduction and removal of movies or change in movie popularity

which affects movie storage in a major way. (We address how this re-distribution can be done

efficiently due to re-optimization in Section 4.3.)

• Coded Symbol Retrieval: A movie request carries a bucket of size q symbols. If its home

server has not stored, and hence cannot supply, q symbols to serve the request, it “pulls”

the missing ones from the other proxy or central servers so as to fill up the bucket. Through

this bucket-filling mechanism, the servers cooperatively store and supply symbols on-demand

with each other to fulfill requests.

We present an illustrative example of bucket-filling in Figure 3.1, which shows a simple VoD

network with 1 movie and 2 proxy servers. Given q = 7, suppose the optimal solution is n(1) = 12,

i.e., the repository (central server) encodes the movie using 7 source symbols to generate 12 coded

symbols.

After storing q = 7 coded symbols itself, the repository distributes the remaining 5 (= n(1) −
q) coded symbols to the proxy servers. In this example, servers A and B get 2 and 3 symbols,

9

Table 3.1: Major symbols used in this thesis.
Notation Definition
T (V,E) The directed graph representing the overlay network topology
V The set of servers (repository and distributed proxy servers)
|V | The number of servers
M The set of movies
|M | The number of movies
L(m) Length of movie m before linear source coding (in seconds)
p(m) Access probability of movie m
I
(m)
v Amount of coded movie m server v stores (in seconds)
Bv Storage capacity of server v (in seconds)
r
(m)
uv Amount of coded movie m streamed from server u to server v (in seconds)
λv Request rate at server v (requests per second)
α(m)L(m) Average holding (viewing) time of movie m (in seconds) α(m) ≥ 0
Γuv Network transmission bandwidth from server u to v (bits/s)
s Movie streaming rate (bits/s)
Rv Total uploading bandwidth of server v (bits/s)
CS

v Cost of server v (per second)
CS Aggregated server cost (per second)
CN

uv Network cost due to directed traffic flow from server u to v (per second)
CN Total network cost (per second)
C Total deployment cost (= CS + CN)

respectively.

An interactive request for the movie has a bucket of size q = 7 symbols. To fulfill it at server

A, server A supplies its stored 2 symbols and gets 2 and 3 symbols from the repository and server

B, respectively. On the other hand, server B fulfills its request by supplying 3 local symbols and

getting 2 symbols from the repository and server A each.

3.2 A Linear Programming Formulation

In this section, we present the cost-optimization problem of our VoD network for the asymptotic

case q → ∞ given movie popularity (how to estimate movie popularity is beyond the scope of

this work. Interested readers may refer to [17, 25, 36] and references therein). For this case, the

optimization becomes an LP which can be solved efficiently and exactly.

We show in Table 3.1 the important symbols used (similar notations have also been used in

[35, 6]). The overlay network is modeled as a directed graph T = (V,E), where V is the set of

10

central and proxy servers and E ⊆ V × V is the set of overlay edges connecting nodes in V (may

not be complete). Let M be the set of movies and L(m) be the movie length (i.e., movie length

before source coding). Let p(m) be the popularity of movie m, which is the probability that a user

requests movie m, where
∑

m∈M p(m) = 1.

Each movie is source-coded to different length (obviously no less thanL(m)). Let I(m)
v (seconds)

be the amount of coded movie m that server v stores. Obviously, we have

0 ≤ I(m)
v ≤ L(m), ∀v ∈ V,m ∈M. (3.1)

Note that for the repository (i.e., central server), we require I(m)
v = L(m), ∀m ∈M .

Server v has a certain storage capacity Bv (seconds). To meet storage requirement, we require∑
m∈M

I(m)
v ≤ Bv, ∀v ∈ V. (3.2)

Let λv be the total movie request rate at server v (requests per second); the request rate for

movie m at the server is hence p(m)λv. Further let α(m)L(m) be the average holding (or viewing)

time for movie m, where α(m) ≥ 0.

Each user retrieves data from the servers (including his home server) proportional to his holding

time. Let r(m)
uv (seconds) be the amount of movie m supplied from server u to server v for a user

holding time of L(m). We hence must have∑
u∈V

r(m)
uv ≥ L(m), ∀v ∈ V,m ∈M. (3.3)

Note that we have considered user interactivity on movie through α(m), which may be different

for different movies (interesting movies may have α(m) > 1, or vice versa). Furthermore, we are

interested in average holding time, as we are considering time-averaged cost at steady state (hence

the distribution of the holding time may be different for different movies). While interacting with

the movie, a user holds up a stream and may uniformly visit any symbols of the movie over time.

Therefore, the actual amount of streamed data is given by α(m)r
(m)
uv . As the server cannot supply

more than that it stores, we need

0 ≤ r(m)
uv ≤ I(m)

u , ∀u, v ∈ V,m ∈M, (3.4)

11

and, by definition, r(m)
vv = I

(m)
v .

Let Γuv (bits/s) be the total network bandwidth used for symbol transmission from server u to

v, which can be obtained as

Γuv =
∑
m∈M

p(m)λvα
(m)r(m)

uv s, ∀u, v ∈ V, (3.5)

for u 6= v, and, by definition, Γuu = 0.

Let CN
uv be the network cost due to the directed traffic from server u to v. It is a monotonically

non-decreasing piece-wise linear function in Γuv, i.e., CN
uv = CN

uv(Γuv) for all u, v ∈ V with

CN
uu = 0. Note that our model is general as CN

uv does not have to be the same as CN
vu.

The total network cost CN is hence

CN =
∑
u,v∈V

CN
uv. (3.6)

The servers help each other using “cache and stream” model, i.e., a remote server streams to a

user through his home server. In other words, the home server is an intermediate node between the

remote server and the users. For any remote server v ∈ V , the data rate the server u “pulls” from

server v for movie m is p(m)λu(α(m)r
(m)
vu s). The total rate (bits/s) that server v serves other servers

is hence

Rv =
∑

u∈V,u6=v

Γvu, ∀v ∈ V. (3.7)

While network cost depends on the traffic between pairs of servers, the cost of a server depends

on its total storage and uploading rate used (in order to serve other servers in the network). Such

storage and rate are limited by its disk capacities independent of other servers. Let CS
v be the cost

of operating server v, which is a monotonically non-decreasing piece-wise linear function in Bv

and Rv, i.e., CS
v = CS

v(Bv, Rv) for all v ∈ V . In other words, the server cost consists of storage

cost and streaming cost.

Therefore, the aggregated server cost CS is

CS =
∑
v∈V

CS
v . (3.8)

12

Finally, the total system deployment cost C is

C = CS + CN. (3.9)

We state our cost-optimization problem as follows:

Optimal Movie Distribution and Retrieval Problem to Minimize Deployment Cost: Given

topology T , user demand {λv}, storage capacity {Bv}, movie popularity {p(m)} and cost functions

CN
uv and CS

v, we seek to minimize the total cost given by Equation (3.9), subject to Equations (3.1)

to (3.5). The output is the optimal solution of the amount of the movie stored in each server (i.e.,

{I(m)
v }) and the retrieval amount between servers (i.e., {r(m)

uv }).

Note that, for arbitrary piece-wise linear functions of CS
v and CN

uv, the above problem becomes

a linear programming (LP) problem which can be solved efficiently.

Time complexity of the LP solution: To solve the LP, we may employ CVX [15] which imple-

ments the wide-region centering-predictor-corrector algorithm (an interior-point method) to solve

this problem [29]. The number of variables of the above formulation is O(|V |2|M |). Therefore, it

has an O(|V ||M |1/2) worst-case iteration bound and O(|V |6|M |3) overall expected time complex-

ity.

13

CHAPTER 4

BUCKET-FILLING: SYMBOL STORAGE AND
RETRIEVAL

The solution of the LP formulation in Section 3.2 is for the case q → ∞, which requires further

discretization for finite q. We present a discretization process which achieves closely optimal and

is asymptotically optimal in q. The system approaches exactly optimum as q approaches infinity

(Section 4.1). In addition, we propose an efficient movie grouping algorithm based on K-means

clustering for large movie pool (Section 4.2) and an efficient symbol redistribution scheme to re-

spond to changes in system parameters (Section 4.3).

Note that the solutions for symbol distribution and retrieval can be implemented in a central op-

timizer, and updated regularly based on the prediction interval on user traffic and movie popularity

over time.

4.1 Parameter Discretization to Achieve Asymptotic Optimum

The LP yields optimal solution for system parameters {I(m)
v } and {r(m)

uv } for movie m. Given these

parameters, the movie can then be encoded, distributed and retrieved according to the following

(for large q):

• Movie encoding: To obtain the encoding parameter n(m), observe that the source-coded and

raw movie lengths must satisfy the following equation:

∑
v∈V I

(m)
v

L(m)
=
n(m)

q
, ∀m ∈M,

i.e.,

n(m) =

∑
v∈V I

(m)
v

L(m)
q, ∀m ∈M. (4.1)

14

• Symbol distribution (storage): The number of symbols that server v stores out of n(m) coded

symbols is given by

n(m)
v =

I
(m)
v

L(m)
q, ∀m ∈M. (4.2)

• Symbol retrieval (collection): The number of symbols for server u to stream to server v out

of n(m) coded symbols is

n(m)
uv =

r
(m)
uv

L(m)
q, ∀m ∈M. (4.3)

It is clear that {n(m)}, {n(m)
v } and {n(m)

uv } in Equations (4.1)–(4.3) are exactly the LP optimal

solutions as q → ∞. For finite q, they should be discretized to integral values. We present below

a simple discretization approach which converges to the asymptotic optimum as q increases. The

basic idea is that each proxy tries to match the optimal LP solution as much as possible through

integer rounding. In symbol retrieval by filling a bucket, the shortfall in symbols due to rounding

can be obtained from the repository:

• Discretize {n(m)
v }: We first round down the result {n(m)

v } as obtained in Equation (4.2) to its

closest integers. For each server v, it first stores according to these integers for all the movies.

This clearly does not violate its storage constraint (given in Equation (3.2)). For the residual

storage it then stores a symbol of each movie in decreasing popularity until its total storage

is fully used up.

After this, the new {n(m)
v } are of integral values. The coding information n(m) for movie m

is then given by

n(m) =
∑
v∈V

n(m)
v , ∀m ∈M. (4.4)

• Discretize {n(m)
uv }: This is similar to the discretization of {n(m)

v }. First we write {n(m)
uv }

in Equation (4.3) as the sum of an integral part and a positive fractional part. Clearly, the

integral part does not violate the supply constraint as given in Equation (3.4).

15

To recover the source packets (Equation (3.3)), we first rank the movies according to decreas-

ing popularity. We then conditionally round up the fractional parts to 1 of the movies until

Equation (3.3) is satisfied, and the remaining fraction is rounded down to 0. If Equation (3.3)

is still violated after all the rounding, the remaining symbols are assigned to the repository.

In {n(m)
v } discretization, all the home servers and movies are traversed, and the time complex-

ity is O(|V ||M |); in {n(m)
uv } discretization, all the home servers, remote servers and movies are

traversed, and the time complexity is O(|V |2|M |). The time complexity of the discretization steps

is hence O(|V |2|M |). Therefore, the total time complexity of our algorithm is O(|V |6|M |3).

The discretization steps guarantee that all the movies can be recovered at each server. In Sec-

tion 5.2, we can see from the simulation that the performance penalty due to rounding is very low.

We prove that the system cost can be arbitrarily close to the exact optimum as q increases (i.e.,

asymptotically optimal) in Appendix B.

4.2 Efficient Computation for Large Movie Pool

In terms of the number of movies |M |, the computational complexity of linear programming for

bucket-filling is O(|M |3) (Section 4.1). Even though it is of polynomial complexity, for a large

movie pool, it is necessary to find a more efficient way to compute the solutions.

We propose an efficient movie grouping algorithm based on K-means clustering which achieves

a polynomial reduction of a substantial factor of O(|M |) in complexity with close-to-optimal de-

ployment cost. We begin by denoting the load index d(m) as

d(m) = p(m)α(m), ∀m ∈M, (4.5)

since the access and its holding time indicate the streaming load of the movie. The key idea is to

put the movies with the similar load indices into one group and minimize the sum of the difference

on load index within each group. Let G be the set of groups and gi be the ith group in G, and

the number of groups |G| is given as a network parameter. We illustrate the performance with

simulation results in Section 5.3.

16

To motivate our grouping algorithm, consider a set of movies m ∈ g. From Equations (3.5) and

(4.3), we get the network transmission due to movies in g as

Γ(g)
uv =

λvs

q

∑
m∈g

d(m)n(m)
uv L

(m), ∀u, v ∈ V. (4.6)

If all the movies m ∈ g has the same d(m) (given by d(g)) and n(m)
uv (given by n(g)

uv), Equation (4.6)

can be written as

Γ(g)
uv =

λvs

q
d(g)n(g)

uv

∑
m∈g

L(m), ∀u, v ∈ V. (4.7)

Namely, if we group the movies with the same d(m) and let n(m)
uv be the same, g can be treated as a

“super movie” with load index d(g) and length L(g) =
∑

m∈g L
(m) for the linear program.

In the case that the movies are of different d(m), we hence may put the movies with similar d(m)

into a group and minimize the sum of the differences of load index within each group. To formulate

it mathematically, the objective of our movie grouping algorithm is to minimize

arggi

|G|∑
i=1

∑
m∈gi

|d(m) − µ(gi)|2, (4.8)

where µ(gi) is the mean d(m) of group gi. This formulation is exactly K-means [24], a method to

partition data into clusters in which each data belongs to the cluster with the nearest mean. Note

that the group size of each group may not be the same by K-means clustering.

The above grouping scheme leads to the following:

• Length: Each group size L(gi) satisfies

L(gi) =
∑
m∈gi

L(m), ∀gi ∈ G. (4.9)

• Group load index: The group load index d(gi) is given by

d(gi) =

∑
m∈gi d

(m)L(m)∑
m∈gi L

(m)
, ∀gi ∈ G. (4.10)

17

After movie grouping, we run linear programming on these groups by treating them as |G|
“super movies” with load index d(gi) and length L(gi). In the phase of parameter discretization, we

use the methods described in Section 4.1 to get the storage and retrieval parameters n(gi)
v and n(gi)

uv

for each “super movies” gi. Then we need an extra step to get the storage and retrieval parameters

n
(m)
v and n(m)

uv for each movie m.

In the server v, we have n(gi)
v space to store all the movies m ∈ gi. The guiding principle of our

placement algorithm is that all the movies in the same group should have similar n(m)
v . Accordingly,

we use rarest first in symbol placement. Specifically, when a server v makes a symbol placement

for a group gi, it increases the smallest n(m)
v by 1 for movie m ∈ gi until the space budget of gi

is fully consumed. In our retrieval algorithm, we make n(m)
uv = n

(gi)
uv for m ∈ gi. If n(m)

uv > n
(m)
u

for some u, we reduce n(m)
uv to make n(m)

uv = n
(m)
u and the remaining symbols are assigned to the

repository.

General K-means clustering problem is usually regarded as NP-hard. However, K-means clus-

tering in one dimension (our case) can be solved exactly in O(|M |2|G|) time by dynamic pro-

gramming [31]. After we group the movies, the complexity to solve the linear program has been

reduced to O(|V |6|G|3). As the discretization still takes O(|V |2|M |) time, the total complexity

is O(|V |6|G|3 + |M |2|G| + |V |2|M |). In terms of the number of movies |M |, the complexity is

reduced by a factor of O(|M |). In addition, because O(|V |6) is usually quite large, for the running

time of linear programming, the complexity reduction from O(|V |6|M |3) to O(|V |6|G|3) is also

significant.

4.3 Re-optimization due to Changes in System Parameters

Due to changes in system parameters, a VoD network needs to be periodically “re-optimized”

for the best performance. Such changes in system parameters may be due to, for example, the

following:

• Movie changes: The VoD movie pool may be updated from time to time, due to movie

introduction, movie removal, change in the expected movie popularity, etc.

18

• Server changes: Servers may be introduced, replaced or removed from the network. The

storage and bandwidth of some of the servers may also be increased or reduced due to a

change in longer-term user traffic.

• Network changes: Network transmission cost may change due to changes in network tech-

nologies or contractual terms in bandwidth.

Though we do not expect the system going through significant changes very frequently (e.g., on

the daily or weekly basis), such change needs to be considered to achieve the best performance over

time through symbol redistribution (retrieval mechanism is similar and hence will not be discussed

here).

A strength of bucket-filling is that it is easily amendable to system changes, and does not lead

to much overhead in symbol redistribution in times of re-optimizing the system. We present here

a simple and efficient solution which involves only incremental network transmission upon system

changes which requires no re-encoding or re-distributing all the movies. This is due to source

coding we use — stored coded symbols can be independently re-used, added, or replaced to reduce

symbol transmission. This greatly saves the re-optimization work of the network.

We redistribute the movie symbols when the system changes from time t to t+ 1. Let −→n v(t) =

[n
(1)
v (t), n

(2)
v (t), ..., n

(|M |)
v (t)] be the number of symbols for movie m that server v stores at time t

(∀m ∈ M). Let
−→4v(t) = [4(1)

v (t),4(2)
v (t), ...,4(|M |)

v (t)] be the symbol difference between time t

and t+ 1, given by
−→4v(t) = −→n v(t+ 1)−−→n v(t) for all v ∈ V .

Therefore, if4(m)
v (t) > 0, the repository will transfer |4(m)

v (t)| symbols of movie m to server

v. On the other hand, if4(m)
v (t) < 0, server v will discard |4(m)

v (t)| symbols of movie m.

To make the encoding more efficient, the repository may initially generate coded symbols once

off-line by a generator matrix with some high {n(m)
v }. This is to avoid encoding the same movies a-

gain under system changes. In this way, the repository only needs to send its pre-computed symbols

to proxy servers upon system changes. Note that our symbol redistribution is a one-step process

(and hence no convergence problem), and is able to maintain the optimal movie distribution among

the servers while keeping the symbol transmission minimal.

19

CHAPTER 5

ILLUSTRATIVE SIMULATION RESULTS

5.1 Simulation Environment and Performance Metrics

In this chapter, we present our simulation environment and performance metrics to study the per-

formance of bucket-filling.

Bucket-filling can be applied to any movie popularity. For concreteness in our simulation, we

consider that movie popularity follows the Zipf distribution with Zipf parameter s, i.e., the request

probability of the ith movie, denoted as f(i), is given by f(i) ∝ 1/is. In our simulation, we

consider that requests arrive at each proxy server according to a Poisson process with total rate λ

(req./second). It is clear from Section 4 that the optimization of bucket-filling does not depend on

the specific request process at server v but its arrival rate λv. Therefore, the results and conclusions

may be extended to any request processes or traces so long as they share the same request rate.

The proxy servers have heterogeneous storage space and bandwidth following a Zipf distribution

(independent of each other). The repository stores all the movies with a streaming capacity twice

of the average streaming capacity of the proxy servers. The VoD network consists of a number of

distributed proxy servers. All our results are obtained at steady state. Unless otherwise stated, we

use the default values shown in Table 5.1 for our system parameters (the baseline case).

We consider the network cost function from server u to server v proportional to the bandwidth

between them, i.e.,

CN
uv(Γuv) = cuvΓuv, ∀u, v ∈ V, (5.1)

where cuv is some constant (by definition, cvv = 0).

The server cost is a function of its storage and its total bandwidth used to serve the remote

servers, modeled as

CS
v = σBBv + Cv(Rv), ∀v ∈ V, (5.2)

20

Table 5.1: Baseline parameters used in our study.
Parameter Default value
q 30
Number of proxy servers 20
Number of movies 200
Average server storage 20 movies
Zipf parameter of server storage 0.4
Average proxy server bandwidth capacity 160 Mbits/s
Zipf parameter of server bandwidth 0 (i.e., same bandwidth)
Zipf parameter of movie popularity 0.6
Movie length 90 minutes
Average movie holding time Movie length (i.e., α(m) = 1)
Movie streaming rate 1 Mbits/s
Total request rate in the network 0.6 req./s (equally distributed to the proxies)
cuv between central and proxy server 0.01 unit/s
cuv between proxies Zipf with parameter 0.6 and mean 0.005 unit/s

where σB is a constant (σB = 3.33 × 10−6 in our simulation), and Cv(Rv) is a piece-wise linear

function monotonically increasing in Rv. We show in Figure 5.1 Cv(Rv) versus Rv/Uv in our

simulation, where Uv is the streaming capacity of the server and hence Rv/Uv is the bandwidth

utilization of the server. There are three linear segments formed by points (0, 0), (0.8, 0.125),

(0.93, 0.4375) and (0.99, 1.925) (these coordinates are obtained from the queueing model σS/(Uv−
Rv), where σS is some constant). The cost increases with the bandwidth utilization. As the con-

sumed bandwidthRv approaches the bandwidth capacity Uv, the server cost increases more sharply.

To validate the streaming cost in our simulation setting, we have conducted an experiment to

measure the queueing time of a server given the bandwidth utilization levels.1 Figure 5.1 shows

that the experiment results match our queueing model well.

We validate our storage and network transmission cost in our simulation with the data of Google

Cloud Platform [14]. We show in Table 5.2 the network transmission cost in North America and

Asia, which indicates that linear functions fit the price well. The cloud platform also indicates the

storage cost as fixed at $0.026 for a GB per month, which agrees well with our simulation setting.

The performance metrics we are interested in are:

• Total cost (unit/s), which is the sum of server cost and network cost according to Equa-

1We use a 64-bit ThinkCenter with Intel Core 2 4400 CPU 2.00 GHz and RAM 1.00 GB. The unit is in second.

21

 0

 0.2

 0.4

 0.6

 0.8

 0 0.8 0.93 1
 0

 200

 400

 600

St
re

am
in

g
co

st

Q
ue

ue
in

g
tim

e

Rv/Uv

Queueing model
Experiment results

Figure 5.1: Streaming cost model at proxy server.

Table 5.2: Network Transmission Cost.
Used per month North America (per GB) Asia (per GB)
Up to 1TB $ 0.12 $ 0.21
Up to 9TB $ 0.11 $ 0.18
Up to 90TB $ 0.08 $ 0.15

22

tion (3.9). This is the deployment cost of the network.

• Server cost (unit/s), which is the sum of its storage and streaming defined in Equations (3.8)

and (5.2). We further examine the following cost components:

– Storage cost, which is the total cost due to server storage.

– Streaming cost, which is the server bandwidth cost to support other servers.

• Network cost (unit/s), which is the network transmission cost defined in Equations (3.6) and

(5.1).

• Movie cost (unit/s), which is the average cost to access movie m.

• Computation time, which is the running time of the optimization.2

We compare bucket-filling with the following traditional and recent movie replication schemes:

• Random, where each server randomly stores movies without considering their popularity.

This is a simple storage strategy.

• MPF (Most Popular First), where each server stores the most popular movies. This is a

greedy strategy, but does not take advantage of cooperative replication.

• Local Greedy [4], which divides the movies into three categories: those popular ones which

all servers store (full replication), those medium popular ones which only one proxy server

store (single copy), and those unpopular ones which only the repository stores (no copy). By

formulating an LP problem, it seeks to minimize network cost. As Local Greedy assumes

homogeneous access cost, we set its access cost to be equal to the average access cost between

servers in our network.

• LP-SR [35, 6], which partitions movies into segments for storage and retrieval. LP-SR is also

based on linear programming to achieve closely optimal solution.

2As the running time depends on the machine used, we have normalized the time in terms of some unit. For a 64-bit
ThinkPad T420s with Intel i7 2620M CPU 2.70 GHz and RAM 8.00 GB, the unit is in second.

23

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

To
ta

l c
os

t

Total request rate (# req. per second)

Bucket-filling (q=10)
Bucket-filling (q=30)
Bucket-filling (q=100)
Bucket-filling (q=∞)

Figure 5.2: Total cost versus request rate given q.

For all the comparison schemes except LP-SR, upon a miss request, the home server v chooses

an available server u which has the requested content with a probability proportional to 1/cuv. It

is a reasonable, simple and effective strategy because the server with lower access cost has higher

chance to be chosen. With this probabilistic approach, a server with low access cost is not always

selected so as to avoid congestion, and hence high streaming cost, at the server.

5.2 Bucket-filling Performance

We plot in Figure 5.2 the total cost versus request rate given q. The total cost increases with

the request rate mainly because of the increase in network traffic. As q increases, the network

approaches the exact optimum given by linear programming (corresponding to the case q → ∞).

However, for humble value of q (say 30), the performance is already very close to the optimum (less

than 6% deviation in this). This shows that our network is highly efficient, with closely optimal

performance even for all the practical (finite) value of q.

24

 0

 90

 180

 270

 360

 450

 540

 630

 1 20 40 60 80 100 120 140 160 180 200
 0

 0.0076

 0.0151

 0.0227

 0.0303

 0.0378

 0.0454

 0.053
n(
m
)
(#

 o
f

sy
m

bo
ls

)

M
ov

ie
 p

op
ul

ar
ity

Movie index

n(m) (# of coded symbols)
Movie popularity
q (# of raw symbols)

Figure 5.3: Optimal n(m) versus movie index.

We show in Figure 5.3 the optimal n(m) versus movie index. Also shown is the corresponding

movie popularity (default setting) and the number of raw/source symbols q. We see that the movie

popularity exhibits some skewness with a tail (with s = 0.6 and M = 200, the top 30% of the

movies account for close to 60% of the total traffic). The optimal n(m) decreases with movie

popularity. This is reasonable because the servers tend to locally store more of those popular

movies to reduce transmission cost in the network. For the unpopular ones, fewer symbols are

generated and stored in the whole network. We see that no matter how unpopular the movie is, the

number of symbols is higher than q, meaning that some symbols are stored in the network besides

those at the repository.

We show in Figure 5.4 the cost components (server streaming, server storage and network

traffic) and total cost versus proxy storage (the average storage at proxies). The total cost falls

off quite sharply initially but rises up gradually again, showing a minimum at some storage point.

At the beginning when the proxy servers have little storage, all the traffic concentrates on the

repository, leading to high overall streaming cost. As proxy storage increases, the repository load

25

 0

 10

 20

 30

 40

 50

 60

0 10 20 40 60 80

Co
st

Average storage size for proxy servers

Total cost
Storage cost
Network cost
Streaming cost

Figure 5.4: Total cost and the cost components versus proxy storage.

decreases and so does the streaming and network transmission cost. As storage further increases,

storage cost becomes the major cost component.

We compare in Figure 5.5 the total cost versus the request rate for different schemes. Total

cost increases with request rate mainly due to the increase in network traffic. Bucket-filling clear-

ly achieves much lower total cost among all the schemes, beating them by multiple times except

LP-SR. In other words, given the same deployment budget, bucket-filling can support much higher

request rate (i.e., more concurrent users in the system). MPF does not perform well because it

mainly relies on the central server to serve the requests for the unpopular movies. Random, due to

its popularity-blind nature, stores insufficient copy of the popular movies, leading to considerable

cost. As Local Greedy is based on LP optimization and has a proven upper bound of optimality

gap, it performs substantially better as compared with other approaches in practice (MPF and Ran-

dom). Bucket-filling achieves by far the best performance (near optimality) because of its use of

source coding to achieve design simplicity and comprehensive consideration of every components

of the deployment cost. Though bucket-filling is similar and slightly better than the state-of-the-art

26

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

To
ta

l c
os

t

Total request rate (# req. per second)

MPF
Random
Local Greedy
LP-SR
Bucket-filling

Figure 5.5: Total cost versus request rate given different schemes.

scheme LP-SR, it has much lower computation time as shown in Figure 5.6.

We show in Figure 5.6 the computation time of bucket-filling and LP-SR for different movie

numbers. The computation time increases with the total number of movies. It is because both

bucket-filling and LP-SR capture the information of every movie, and hence increasing movie

number introduces more variables to the linear program. Unlike LP-SR which considers every

movie segment in the linear program, bucket-filling has a simple and efficient discretization algo-

rithm with orders of magnitude improvement in running time. Bucket-filling can be readily and

practically applied to a VoD network with thousands of movies which is not generally feasible with

LP-SR. Due to the complexity of LP-SR, we do not further compare it in the following figures.

We plot in Figure 5.7 the total cost versus the Zipf parameter of movie popularity given different

schemes. The total cost in general decreases with the skewness. This is because more requests are

concentrated on fewer popular movies, which leads to lower miss rate, and hence lower streaming

and network cost. Bucket-filling achieves substantially the lowest total cost even for low skewness

(i.e. when the popularity is quite uniform). This shows that bucket-filling makes good decision on

27

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300

Co
m

pu
ta

tio
n

tim
e

Movie number

LP-SR
Bucket-filling

Figure 5.6: Computation time versus movie number given different schemes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

To
ta

l c
os

t

Zipf parameter of movie popularity

MPF
Random
Local Greedy
Bucket-filling

Figure 5.7: Total cost versus Zipf parameter of movie popularity given different schemes.

28

 0.23
 0.37
 0.61

 1
 1.65
 2.72
 4.48
 7.39

 12.18
 20.09
 33.12
 54.6

 90.02
 148.41
 244.69

 1 3 5 7 9 11 13 15 17 19 21

Se
rv

er
 c

os
t

Server index

MPF
Random
Local Greedy
Bucket-filling

Figure 5.8: Server cost distribution given different schemes.

movie storage and retrieval. Local Greedy performs better than MPF because it takes network cost

into consideration. The cost of Random increases with skewness because it is popularity-blind.

The popular movies, due to the fact that its copy does not increase with its popularity, suffers from

high streaming and network cost.

We plot in Figure 5.8 individual server cost for different schemes. We sort the proxy servers

according to their storage in ascending order (as their streaming capacity is the same in the default

setting), and the last one refers to the repository. As the storage of a proxy increases, its cost

increases because it needs to serve more remote requests. Bucket-filling utilizes very well the

finite storage and bandwidth resources of proxy servers, leading to significantly lower repository

streaming cost. It has strong server cooperation to achieve near optimal system performance. As

MPF only stores the most popular movies at the proxy servers, it has lower proxy cost at the

steep sacrifice of repository cost. The proxies barely contribute their bandwidth and storage to

cooperatively help each other. Local Greedy, with network cost optimization, outperforms Random

in both proxy server cost and repository cost.

29

1 20 40 60 80 100 120 140 160 180 200
 0.04

 0.37

 2.71

 20.1

 148

Movie index

C
o
s
t

1.1 × 103

8.1 × 103

6.0 × 104

4.4 × 105

3.3 × 106

MPF

Random

Local Greedy

Bucket−filling

Figure 5.9: Cost of each movie given different schemes.

We show in Figure 5.9 the cost of each movie for different schemes. The movies are sorted

according to their popularity in descending order. The popularity-based schemes (i.e., bucket-

filling, Local Greedy and MPF) tend to locally store the popular movies, and hence those popular

ones enjoy lower cost at much sacrifice of those not-so-popular movies. Bucket-filling makes

better movie storage decision by cooperatively storing unpopular movies. While bucket-filling

has slightly higher cost for popular movies, most of the movies have quite uniform access cost.

Bucket-filling accomplishes much better optimality with the cost of unpopular movies strikingly

much lower by orders of magnitude than the other schemes. This is the main factor of its success.

For MPF, its high cost mainly comes from the less popular movies. Random treats each movie

equally and thus has the most uniform cost distribution.

5.3 Movie Grouping with K-means Clustering

We conduct simulation to study the performance of our grouping algorithm. For Figure 5.10, we use

the same baseline parameters as given in Section 5.1 with the group number |G| = 10. Due to the

30

Table 5.3: Parameters for large movie pool.
Parameter Value
Number of movies 10000
Total request rate in the network 30 req./s (equally distributed to the proxies)
cuv between central and proxy server 0.0002 unit/second
cuv between proxies Zipf parameter 0.6 and mean 0.0001 unit/s
Average server storage 1000 movies
Average proxy server bandwidth capacity 8000 Mbits/s
Unit storage cost σB 6.66× 10−8

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

To
ta

l c
os

t

Zipf parameter of movie popularity

Uniform clustering
No grouping
K-means clustering
Super-optimum

Figure 5.10: Total cost versus Zipf parameter of movie popularity given different schemes.

time complexity of linear programming, we cannot get the super-optimum with a very large movie

pool. For Figure 5.11 and Figure 5.12, we use the parameters shown in Table 5.3 for large movie

pool. We choose 3 comparison schemes. Super-optimum is the result from the linear programming

and serves as a lower bound. No grouping is the performance of bucket-filling without any grouping

scheme. In uniform clustering, we still group the movies with similar load indices together, but the

number of movies in each group is the same.

We plot in Figure 5.10 the total cost versus the Zipf parameter of movie popularity given d-

31

 18

 20

 22

 24

 26

 28

 1 2 5 10 20 50 100 200

To
ta

l c
os

t

Group number

Uniform clustering (q=30)
Uniform clustering (q=∞)
K-means clustering (q=30)
K-means clustering (q=∞)

Figure 5.11: Total cost versus group number given different schemes.

ifferent schemes. Total cost goes down with the Zipf parameter mainly because there are fewer

requests for not-so-popular movies, which usually have higher cost. K-means clustering performs

better for large Zipf parameter. This is because, when Zipf parameter is small, the load index differ-

ence among movies is also small. Therefore, K-means clustering and uniform clustering will give

similar grouping results. Note that in some cases K-means clustering may slightly outperform no

grouping because, while the grouping scheme approximates the exact movie load index, a smaller

group number indicates less discretization and less performance loss due to such discretization.

We show in Figure 5.11 the total cost of bucket-filling given different group sizes and grouping

schemes. Due to the large movie number, it is impossible to calculate the super-optimum. The total

cost decreases with the total number of groups. It is because, with more groups, the load indices in

the same group are closer to each other. For K-means clustering, the total cost achieves satisfactory

level even with a small group number (|G| = 5) and K-means clustering outperforms with a 10%

margin compared with uniform clustering. As the group number increases, both K-means clustering

and uniform clustering converge to the same value given by the case |G| = |M |.

32

 19.2

 19.3

 19.4

 19.5

 19.6

 19.7

 19.8

 19.9

 3 6 12 60 120 300

To
ta

l c
os

t

Computation time

Uniform clustering
K-means clustering

|G|=100|G|=50

|G|=40

|G|=20

|G|=100|G|=50|G|=40
|G|=20

Figure 5.12: Total cost versus computation time given different schemes.

We next examine the total running time to compute the bucket-filling solution with grouping al-

gorithms. We plot in Figure 5.12 the tradeoff curve between total cost and running time for movie

grouping. K-means clustering already achieves good performance even for very short time and

increasing running time has little impact on performance. As running time increases, uniform clus-

tering achieves better performance and the gap between two grouping schemes becomes very small.

Since for both K-means clustering and uniform clustering, the running time is quite short. The time

complexity would not be a bottleneck for a VoD network with bucket-filling implementation.

5.4 Re-optimization due to System Changes

We conduct simulation to study the number of symbols which need to be transferred from the

repository (i.e., the overhead) upon movie changes. We use the same baseline parameters as given

in Section 5.1. The approach for server or network change is similar and will not be discussed here

for brevity.

33

0 2 4 6 8 10 15 20 25 30 35 40 45 50
0

900

1800

2700

3600

4500

5400

6300

7200

8100

9000

9900

of movie change

#
 o

f
tr

a
n
s
m

it
te

d
 s

y
m

b
o
ls

Introduction

Replacement

Removal

Figure 5.13: Number of transmitted symbols versus number of movie change.

We mainly study the changes in movie as follows (while using the same Zipf distribution)

during the changes:

• Introduction: The additional movies are the most popular ones, and the “older” movies have

lower popularity due to such movie introduction.

• Replacement: The most unpopular movies are replaced with new movies, which are the most

popular.

• Removal: The most unpopular movies are removed.

We show in Figure 5.13 the number of transferred symbols versus the number of movie change.

The number of transferred symbols increases with the number of movie change due to the larger

scale of the system change. As the number of movie change increases, the transmission increases

sub-linearly. This is because there are more not-so-popular movies in the system change, and hence

the number of transmitted symbols does not increase linearly. Movie introduction leads to the

34

highest symbol transmission because popular movies are added, which means that the proxies have

to make much room to store them by replacing others. Movie replacement transfers fewer symbols

than introduction because the removed movies have already made room for the newly introduced

movies. Movie removal has the least number of transferred symbols because the additional space

released by the removed movies is used to store more of the other movies, leading to less shuffling,

and hence transmission, of symbols.

35

CHAPTER 6

CONCLUSION

In this work, we have proposed and studied a VoD network based on source coding, and studied

optimal movie distribution and retrieval to minimize deployment cost. Movies, encoded in symbols

with a parameter q, are distributed and retrieved efficiently using a “bucket-filling” algorithm. The

deployment cost captures the costs of server streaming, server storage and network transmission

cost. We have presented a solution which asymptotically achieves the exact optimum as q increases.

We have formulated the optimization problem for large q as a linear program which can be

solved efficiently. For finite q, we have presented a discretization process which is closely and

asymptotically optimal. For very large movie pool, we have proposed a movie grouping algo-

rithm based on K-means clustering which greatly reduces the running time with closely optimal

performance. We have also presented an efficient on-line re-optimization method to ensure good

performance with low symbol redistribution overhead when system parameters change in the VoD

network.

We have conducted extensive simulation to compare bucket-filling performance with other tra-

ditional and state-of-the-art schemes. The results show that our scheme achieves close optimality

with much lower cost, and outperforms the other schemes by a wide margin (multiple times in

many cases, and more than 100% in most cases). Our results show that many previously proposed

heuristics performs quite far from the optimum, and our VoD network can achieve performance

arbitrarily close to the optimum (depending on the coding complexity and decoding delay one is

willing to accept).

36

REFERENCES

[1] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner,

and Zhi-Li Zhang. Unreeling netflix: Understanding and improving multi-cdn movie delivery.

In Proceedings of IEEE INFOCOM 2012, pages 1620–1628, 2012.

[2] Amr Alasaad, Kaveh Shafiee, Sathish Gopalakrishnan, and Victor Leung. Prediction-based

resource allocation in clouds for media streaming applications. In Globecom Workshops (GC

Wkshps), 2012 IEEE, pages 753–757. IEEE, 2012.

[3] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and KK Ramakrish-

nan. Content placement via the exponential potential function method. In Integer Program-

ming and Combinatorial Optimization, pages 49–61. Springer, 2013.

[4] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for content distribution

networks. In Proceedings of IEEE INFOCOM 2010, pages 1–9, March 2010.

[5] S.-H. Gary Chan and Fouad Tobagi. Distributed servers architecture for networked video

services. IEEE/ACM Transactions on Networking, 9(2):125–136, April 2001.

[6] Shueng-Han Gary Chan and Zhuolin Fannie Xu. LP-SR: Approaching optimal storage and

retrieval for video-on-demand. IEEE Transactions on Multimedia, 15:2125–2136, December

2013.

[7] Shueng-Han Gary Chan and Zhuolin Fannie Xu. Optimizing video-on-demand with source

coding. In Proceedings of the 2013 International Conference on Multimedia and Expo

(ICME), San Jose, CA, USA, 15-19 July 2013.

[8] Le Chang and Jianping Pan. Reducing the overhead of view-upload decoupling in peer-to-

peer video on-demand systems. In IEEE International Conference on Communications (ICC),

pages 1–5, June 2011.

37

[9] Yung R. Choe, Derek L. Schuff, Jagadeesh M. Dyaberi, and Vijay S. Pai. Improving VoD

server efficiency with bittorrent. In MULTIMEDIA ’07: Proceedings of the 15th international

conference on Multimedia, pages 117–126, New York, NY, USA, 2007. ACM.

[10] Y.-M. Chu, N.-F. Huang, and S.-H. Lin. Quality of service provision in cloud-based storage

system for multimedia delivery. Systems Journal, IEEE, PP(99), 2013.

[11] Jie Dai, Zhan Hu, Bo Li, Jiangchuan Liu, and Baochun Li. Collaborative hierarchical caching

with dynamic request routing for massive content distribution. In Proceedings of IEEE IN-

FOCOM 2012, pages 2444–2452, March 2012.

[12] C. Dana, D. Li, D. Harrison, and C. N. Chuah. BASS: Bittorrent assisted streaming system

for video-on-demand. In Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pages

1–4, November 2006.

[13] Christos Gkantsidis, John Miller, and Pablo Rodriguez. Comprehensive view of a live net-

work coding P2P system. In Proceedings of the 6th ACM SIGCOMM conference on Internet

measurement, pages 177–188. ACM, 2006.

[14] Google. Google Cloud Platform. https://cloud.google.com/products/

cloud-storage/, 2014. [Online; accessed 6-May-2014].

[15] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version

1.21. cvxr.com/cvx, April 2011.

[16] Yifeng He, I. Lee, and Ling Guan. Distributed throughput maximization in P2P VoD appli-

cations. IEEE Transactions on Multimedia, 11(3):509–522, April 2009.

[17] Yifeng He, Guobin Shen, Yongqiang Xiong, and Ling Guan. Optimal prefetching scheme in

P2P VoD applications with guided seeks. IEEE Transactions on Multimedia, 11(1):138–151,

January 2009.

[18] M. Hefeeda and B. Noorizadeh. On the benefits of cooperative proxy caching for peer-to-peer

traffic. Parallel and Distributed Systems, IEEE Transactions on, 21(7):998–1010, July 2010.

38

[19] Cheng Huang, Jin Li, and Keith W. Ross. Can internet video-on-demand be profitable? In

SIGCOMM ’07: Proceedings of the 2007 conference on Applications, technologies, archi-

tectures, and protocols for computer communications, pages 133–144, New York, NY, USA,

2007. ACM.

[20] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimizing file availability in peer-to-peer

content distribution. In 26th IEEE International Conference on Computer Communications

(INFOCOM), pages 1973–1981, May 2007.

[21] Y. Kao, C. Lee, P. Wu, and H. Kao. A network coding equivalent content distribution scheme

for efficient peer-to-peer interactive VoD streaming. IEEE Transactions on Parallel and Dis-

tributed Systems, PP(99):1, 2011.

[22] Fangming Liu, Shijun Shen, Bo Li, Baochun Li, Hao Yin, and Sanli Li. Novasky: Cinematic-

quality VoD in a P2P storage cloud. In Proceedings of IEEE INFOCOM 2011, pages 936–

944, April 2011.

[23] Zimu Liu, Chuan Wu, Baochun Li, and Shuqiao Zhao. Uusee: large-scale operational on-

demand streaming with random network coding. In Proceedings of IEEE INFOCOM 2010,

pages 1–9, 2010.

[24] James MacQueen et al. Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, volume 1, pages 281–297. California, USA, 1967.

[25] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray. Asynchronous dis-

tributed averaging on communication networks. IEEE/ACM Transactions on Networking,

15(3):512–520, June 2007.

[26] A. Nimkar, C. Mandal, and C. Reade. Video placement and disk load balancing algorithm

for VoD proxy server. In IEEE International Conference on Internet Multimedia Services

Architecture and Applications (IMSAA), pages 1–6, December 2009.

39

[27] Di Niu, Hong Xu, Baochun Li, and Shuqiao Zhao. Quality-assured cloud bandwidth auto-

scaling for video-on-demand applications. In Proceedings of IEEE INFOCOM 2012, pages

460–468, 2012.

[28] Hyung Rai Oh, Dapeng Oliver Wu, and Hwangjun Song. An effective mesh-pull-based P2P

video streaming system using fountain codes with variable symbol sizes. Computer Networks,

55(12):2746–2759, 2011.

[29] J. F. Sturm. Primal-dual interior point approach to semidefinite programming. PhD thesis,

Erasmus Universiteit Rotterdam, 1997.

[30] Bo Tan and Laurent Massoulié. Optimal content placement for peer-to-peer video-on-demand

systems. IEEE/ACM Transactions on Networking (TON), 21(2):566–579, 2013.

[31] H. Wang and M. Song. Ckmeans.1d.dp: Optimal k-means clustering in one dimension by

dynamic programming. The R Journal, 3:29–33, 2011.

[32] Mea Wang and Baochun Li. R2: Random push with random network coding in live peer-

to-peer streaming. Selected Areas in Communications, IEEE Journal on, 25(9):1655–1666,

December 2007.

[33] D Wu, J He, Yupeng Zeng, Xiaojun Hei, and Yonggang Wen. Towards optimal deployment

of cloud-assisted video distribution services. IEEE Transactions on Circuits and Systems for

Video Technology, 2013.

[34] Weijie Wu and J. C. S. Lui. Exploring the optimal replication strategy in P2P-VoD systems:

Characterization and evaluation. In Proceedings of IEEE INFOCOM 2011, pages 1206–1214,

April 2011.

[35] Z. Xu and S.-H. Gary Chan. LP-based optimization of storage and retrieval for distributed

video-on-demand. In Proceedings of Globecom 2012 - Communications Software, Services

and Multimedia Symposium, pages 2161–2166, 3-7 December 2012.

[36] Wai-Pun Ken Yiu, Xing Jin, and S.-H. Gary Chan. VMesh: Distributed segment storage for

peer-to-peer interactive video streaming. IEEE Journal on Selected Areas in Communication-

40

s Special Issue on Advances in Peer-to-Peer Streaming Systems, 25(9):1717–31, December

2007.

[37] S. Zaman and D. Grosu. A distributed algorithm for the replica placement problem. IEEE

Transactions on Parallel and Distributed Systems, 22(9):1455–1468, September 2011.

[38] Y. Zhou, T. Z. J. Fu, and D. M. Chiu. On replication algorithm in P2P VoD. IEEE/ACM

Transactions on Networking, PP(99):1, 2012.

[39] Yipeng Zhou, T. Z. J. Fu, and Dah Ming Chiu. A unifying model and analysis of P2P VoD

replication and scheduling. In Proceedings of IEEE INFOCOM 2012, pages 1530–1538,

March 2012.

41

APPENDIX A

LINEAR SOURCE CODING AND ITS USE IN
BUCKET-FILLING

In linear source coding (LSC), q source symbols are linearly combined to form n (n ≥ q) coded

symbols such that the original data can be recovered from any q out of the n coded symbols. We

discuss in the following how bucket-filling makes use of LSC.

There is a code generator matrix G given by

G =


1 g1 g21 . . . gq−11

1 g2 g22 . . . gq−12
...

...
...

1 gn g2n . . . gq−1n

 , (A.1)

where gi are the non-zero coefficients from the finite field Zp(p > n) for some prime p. Denote the

q source symbols as X = [x1, x2, ..., xq], xi ∈ Zp. Let the n coded symbols be Y = [y1, y2, ..., yn],

yi ∈ Zp. For each movie, its coded symbol yi is computed once from the source symbols by

yi =

q−1∑
j=0

gji xj mod p, (A.2)

or equivalently, GX = Y .

To apply LSC in our VoD network, we take n = maxm n
(m). The system-wide parameters

of coding coefficients [g1, g2, ..., gn] and p can be initially transmitted to all the proxies, so that

they know the code generator matrix in advance. This only needs to be transmitted once at server

join time. There is no need to change the coefficients upon changes in system parameters, and

coefficients only need to be incrementally transmitted if the newly optimized system has a higher

n. For movie m, the server only needs to use the subset [g1, g2, ..., gn] to decode the source packets.

42

With the knowledge of G, anyone in the network only needs to receive no less than q distinct

yi to derive the original data. Let i1, i2, ..., iq be q distinct integers in the set {1, 2, ..., n}. Then the

following Vandermonde matrix

A =


1 gi1 g2i1 . . . gq−1i1

1 gi2 g2i2 . . . gq−1i2
...

...
...

1 gin g2in . . . gq−1iq

 (A.3)

is invertible over the finite field Zp.

Suppose that coded symbols yi1 , yi2 , ...yiq are received and denoted as Y ′ = [yi1 , yi2 , ...yiq].

Since A is invertible, solving AX = Y ′ gives source content X .

43

APPENDIX B

PROOF OF ASYMPTOTIC OPTIMALITY OF
BUCKET-FILLING

In Section 3.2, we have a continuous solution of VoD optimization problem given by linear pro-

gram. This solution serves as the super-optimum (lower bound) since, for any q, the practical solu-

tion always satisfies the constraints given by Section 3.2 and cannot be better than the LP solution.

For a particular q, the solution that achieves the lowest cost is the exact optimum. Bucket-filling also

gives a solution for this q, but it may not be the exact optimum. It is not computationally feasible to

know the exact optimum due to the NP-hardness of this VoD optimization problem. By definition,

the total deployment cost given by bucket-filling (CBF), exact optimum (CEO) and super-optimum

(CSO) satisfies

CSO ≤ CEO ≤ CBF. (B.1)

To prove the asymptotic optimality, if we can show that bucket-filling approaches super-optimum

as q increases, it also approaches exact optimum. For clarity, we denote the symbols related to

super-optimum (i.e., the continuous linear program) with superscript tildes. For bucket-filling, we

use plain symbols. We also use ∆ to denote the difference of a parameter between super-optimum

and bucket-filling.

Claim: ∀δ > 0 ∃q s.t. ∆C = |C − C̃| ≤ δ.

Proof: From Equations (3.5) and (4.3) we get

Γuv =
1

q

∑
m∈M

p(m)λvα
(m)n(m)

uv L
(m)s, ∀u, v ∈ V. (B.2)

If u is not the repository, n(m)
uv is rounded up or down by at most 1. Therefore,

∆Γuv = |Γuv − Γ̃uv| ≤
1

q

∑
m∈M

p(m)λvα
(m)L(m)s. (B.3)

44

Consider the worst case that, for a server v, n(m)
uv is rounded down by 1 ∀u and ∀m. In this case,

the remaining symbols are assigned to the repository. Therefore, for repository w,

∆Γwv ≤
|V |
q

∑
m∈M

p(m)λvα
(m)L(m)s. (B.4)

As all the parameters other than q in Equations (B.3) and (B.4) are fixed, we can increase q to make

∆Γuv and ∆Γwv arbitrarily small. Similarly, by Equation (3.7), ∆Rv = |Rv − R̃v| can also be

arbitrarily small by increasing q.

Bv is fixed in the optimization. As functions CN
uv and CS

v are continuous and depend on Bv, Γuv

andRv, ∀u, v ∈ V, ∃q such that we can also make ∆CN
uv and ∆CS

v small enough (≤ δ/(|V |2+|V |)).

Therefore ∆C ≤ δ.

45

