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Video-on-demand as cloud service 
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Video-on-Demand 

• Anytime & anywhere  

• Timely content delivery 

• Resource consuming 

• Most (over 50%) of the 

Internet traffic 

Distributed Cloud 

• Bandwidth and Storage at 

geo-dispersed servers 

• Servers cooperatively store 

and retrieve movies 

A Typical Distributed 

VoD Cloud Service 



Deployment of a VoD cloud 
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Repository 

Complete movie storage 

Proxy server 

Distributed server to  

serve users cooperatively 

User 

Each user is associated 

with a local (home) server 



“Bucket-filling” with source coding 
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𝑘 = 4 

 

Example: 
𝑛 = 8 
𝑞 = 4 

Encoding 

Decoding 

Complexity: 
𝑂 𝑞2𝑛  for encoding 

𝑂 𝑞2  for decoding 

In practice: 
Overhead much 

lower as compared 

with video decoding 

A movie can be divided into several packets for streaming. Each packet is further 

source-coded to generate 𝑛 coded symbols. 

By collecting any 𝑞 coded symbols, one can recover the original movie source. (𝑞 
is usually given in the system, 𝑛 ≥ 𝑞.) 

This flexibility in choosing coded symbols leads to better optimality. 



Symbol distribution and retrieval 
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…

…

…

…

VoD network3 more  

needed 

Client

Central server (Repository): 

Complete movie storage Example: 
𝑛 = 8 
𝑞 = 4 

Flexible retrieval 

to achieve better 

optimality 

Proxy server
(limited storage) 



Major challenge: Storage, Retrieval & Complexity 
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…

…

…

…

VoD network

Cloud parameters 

Movie streaming rate, 

popularity, price,  etc. 

Storage 

How many symbols to 

store at each server  

Retrieval 

Which servers to stream 

the rest symbols  

Complexity 

Running time for large 

movie pool 



Objective 
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Server cost 
 
 Storage 

 Bandwidth 

utilization 

Total  

deployment /running 

cost 

Network cost 
 

 streaming among 

servers to serve 

the misses 

Minimize total deployment/running cost 

Low running time complexity 



Approach 

9 

Relaxed Linear Programming 

• consider the number of symbols (𝑛𝑣
(𝑚)
) stored in each server as continuous 

• formulate a linear programming (LP) problem 

Discretize the LP solutions for movie Storage & Retrieval 

• Greater 𝑞 leads to smaller discretization penalty 

• Bucket-filling is asymptotically optimal in terms of 𝑞;   
• i.e., system cost approaches the exact minimum as 𝑞 increases 

Clustering for Large Movie Pool 

• Group movies by K-means clustering to reduce the algorithmic time 



Contributions 
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1 

Bucket-filling: 

distribution & 

retrieval with 

source coding 

Comprehensive cost model 

• Server cost (storage & streaming) 

• Network cost 

Minimizing system deployment cost 

2 
Provably 

asymptotically 

optimality 

Bucket-filling with LP is asymptotically optimal 

• In terms of 𝑞 
• A greater 𝑞 makes solution closer to the exact 

global minimum (𝑞 = 30 is good enough) 

3 
Movie clustering 

& On-line re-

optimization 

Efficient movie clustering method 

• Significantly reduce running time 

• With little sacrifice of deployment cost 

On-line re-optimization with minimum system 

changes 



Related work 
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Related Work Bucket-filling 

Heuristics: 
S. Borst et al. INFOCOM'10 

A. Nimkar et al. IMSAA'09 

S. Zaman et al. TPDS'11 

etc. 

• Not clear how far they are 

from the optimum 

• Provably asymptotical 

optimality in q 

Cost  optimization: 
Y. R. Choe et al. ACMMM'07 

D. Wu et al. CSVT'13 

D. Niu et al. INFOCOM'12 

etc. 

• Consider cost only partially 

• Comprehensively capture 

network access cost, storage 

constraint & bandwidth 

utilization 

P2P VoD:  
Y. Zhou et al. INFOCOM'12 

Y. Zhou et al. ToN'13 

B. Tan et al. ToN'13 

etc. 

• Maximize the sharing of peers 

to offload the server load 
• Minimize the deployment cost 
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Major Symbols Used 
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𝑉 
The set of servers (central and 

proxy servers) 𝒓𝒖𝒗
(𝒎)

 
Amount of movie 𝑚 streamed 

from server 𝑢 to 𝑣 (seconds) 

𝑀 The set of movies 𝜆𝑣 
Request rate at server 𝑣 
(requests/second) 

𝐿(𝑚) 
Length of movie 𝑚 before 

source coding (in seconds) 
Γ𝑢𝑣 

Average transmission rate from 

server 𝑢 to 𝑣 (bits/s) 

𝑝(𝑚) 
Access probability of movie 𝑚 

at server 𝑣 
𝑅𝑣 

Total uploading rate of server 𝑣 
(bits/s) 

𝑰𝒗
(𝒎)

 
Amount of movie 𝑚 server 𝑣 
stores (in seconds) 

𝐶𝑢𝑣
N  

Network cost due to directed 

traffic from server 𝑢 to 𝑣 

𝐵𝑣 
Storage capacity of server 𝑣 (in 

seconds) 
𝐶𝑣
S Cost of server 𝑣 

𝛼(𝑚)𝐿(𝑚) 
Average holding (viewing) time 

of movie 𝑚 (in seconds) 
𝑠 Movie streaming rate (bits/s) 



JOSR:  
Joint Optimization on Movie Storage & Retrieval 
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 𝐶𝑣
S

𝑣∈𝑉

𝐵𝑣, 𝑅𝑣 +  𝐶𝑢𝑣
N

𝑢,𝑣∈𝑉

(Γ𝑢𝑣) 

 

0 ≤ 𝑟𝑢𝑣
𝑚
≤ 𝐿 𝑚 , ∀𝑢, 𝑣 ∈ 𝑉,𝑚 ∈ 𝑀  

 

 𝐼𝑣
𝑚

𝑚∈𝑀 ≤ 𝐵𝑣 , ∀𝑣 ∈ 𝑉,  
 

0 ≤ 𝐼𝑣
𝑚
≤ 𝐿 𝑚 , ∀𝑣 ∈ 𝑉,𝑚 ∈ 𝑀  

 

𝑟𝑢𝑣
𝑚
≤ 𝐼𝑣
𝑚
, ∀𝑢, 𝑣 ∈ 𝑉,𝑚 ∈ 𝑀  

 

 𝑟𝑢𝑣
𝑚

𝑢∈𝑉 ≥ 𝐿 𝑚 , ∀𝑣 ∈ 𝑉,𝑚 ∈ 𝑀  
 

Minimize 

Subject to 

Storage 

Retrieval 

Total system deployment cost 

Amount of symbols stored at  𝑣 

Amount of symbols retrieved 

from 𝑢 to 𝑣 

Storage constraint at 𝑣 

Supply only the amount stored 

A movie shall be retrieved 

Server Cost Network Cost 

Storage Bandwidth 

utilization 

Access bandwidth 

(consumed) 

Γ𝑢𝑣 =  𝑝
(𝑚)𝜆𝑣𝛼

(𝑚)

𝑚∈𝑀

𝑟𝑢𝑣
𝑚
𝑠,  ∀𝑢, 𝑣 ∈ 𝑉 𝑅𝑣 =  Γ𝑢𝑣

𝑢∈𝑉,𝑢≠𝑣

, ∀𝑣 ∈ 𝑉 
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Parameter discretization to achieve asymptotic optimum 
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Step 1: Linear 

Program 
Step 2: Discretization 

 Assume the number of 

symbols in each server 

as continuous variable 

 Symbol Storage: (𝑰𝒗
(𝒎)
→ 𝒏𝒗
(𝒎)

) 

• Step 1: 𝒏𝒗
(𝒎)
∝ 𝑰𝒗
𝒎

 

• Step 2: round up/down 𝑛𝑣
(𝑚)

 by popularity 

 Solve LP to get super-

optimal symbol:  

storage 𝑰𝒗
(𝒎)

 

retrieval 𝒓𝒖𝒗
(𝒎)

 

 Symbol Retrieval: (𝒓𝒖𝒗
(𝒎)
→ 𝒏𝒖𝒗
(𝒎)

) 

• Step 1: 𝒏𝒖𝒗
(𝒎)
∝ 𝒓𝒖𝒗
𝒎

 

• Step 2: round up 𝑛𝑢𝑣
(𝑚)

  to satisfy requests  

• Step 3: unsatisfied request to repository 



Algorithmic complexity 
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Overall time complexity:  O(|𝑉|6|𝑀|3) 

Asymptotically optimal 

Discretize 

Symbol 

Storage 

Discretize 

Symbol 

Retrieval 

O(|𝑉|6|𝑀|3) O(|𝑉||𝑀|) 

|V| Number of servers 

|M| Number of movies 
LP 

LP solver has constant 

expected iterations and 

𝑂 𝑁3  for each iteration  

(𝑁:  number of variables) 

Linear 

Program 

O(|𝑉|2 𝑀 ) 

What if  

𝑀  is large? 

O(|𝑉|6) is a 
huge factor 
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Motivation of movie clustering 
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Load index:  

𝒅(𝒎) = 𝒑(𝒎)𝜶(𝒎) 

Access probability and 

holding time indicate the 

streaming load of movie 

If group the movies with 

the same load index 

Linear programming result 

will NOT change 

Movie clustering 

Minimize the load index 

difference within each group 



K-means clustering for movie grouping 
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Minimize: arg
𝒈𝑖

   𝒅(𝒎) − 𝝁(𝒈𝒊)
2

𝒎∈𝒈𝑖
|𝐺|
𝑖=1  

• 𝜇(𝑔𝑖) is the mean load index of group 𝑔𝑖 
• Resulting group size may not be the same 

Algorithmic complexity 

K-means Clustering in 1D can be solved in polynomial time: 𝑶( 𝑴 𝟐 𝑮 ) 

Movie group as a “super movie” 

• Group length: Sum of the group movie length 

• Group load index: weighted average of movie index within group 

K-means 

|G| Number of groups 

|M| Number of movies 



Parameter discretization from group to movie 
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Guiding principle Method 

𝒏𝒗
(𝒈𝒊) → 𝒏𝒗

(𝒎)
 

movies in group 𝑔𝑖 

have similar 𝑛𝑣
(𝑚)

 

Rarest first: increases the 

smallest 𝑛(𝑚) by 1 for 𝑚 ∈ 𝑔𝑖 
until space for 𝑔𝑖 used up. 

𝒏𝒖𝒗
(𝒈𝒊) → 𝒏𝒖𝒗

(𝒎)
 𝑛𝑢𝑣

(𝑚)
= 𝑛𝑢𝑣
(𝑔𝑖) if possible 

• If 𝑛𝑢𝑣
(𝑚)
> 𝑛𝑢𝑣
(𝑔𝑖) for some 𝑢, 

we reduce 𝑛𝑢𝑣
(𝑚)

 to make 

𝑛𝑢𝑣
(𝑚)
= 𝑛𝑢𝑣
(𝑔𝑖)   

• remaining requests to 

repository 



Time complexity reduction 
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O(|𝑉|6|𝐺|3) 

Discretize 

Symbol 

Storage 

Discretize 

Symbol 

Retrieval 

O( 𝑉 𝑀 ) O(|𝑉|2 𝑀 ) 

|V| Number of servers 

|M| Number of movies 

|G| Number of clusters 
LP 

LP solver has constant 

expected iterations and 

𝑂 𝑁3  for each iteration (𝑁 

is the number of variables) 

K-means 

Clustering 

O(|𝑀|2 𝐺 ) 

Reducing 

complexity by 

O( 𝑀 ) 

O(|𝑉|6) is a 
huge factor 

Without Clustering: 

  O(|𝑉|6|𝑀|3) 



On-line re-optimization 
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System Changes 

Movie Changes 

Server Changes 

Network Changes 

Symbols in server 𝑣 

𝑡 

𝑡 + 1 

Δ𝑣 𝑡  

Re-Optimize 

> 0 repository transfer 𝑛 symbols of movie 𝑚 to server 𝑣 

< 0 server 𝑣 discard 𝑛 symbols of movie 𝑚 

Symbol changes 

+𝟏 −𝟏 −𝟑 +𝟑 

+𝒏 

−𝒏 
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Environment setup 
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Movie popularity 

•  Zipf distribution: 𝑓(𝑖) ∝ 1/𝑖𝑠 
• 𝑓(𝑖): popularity of 𝑖th movie 

• 𝑠: Zipf parameter 

Server Cost 

• Storage cost: proportional to 

storage capacity (𝐵𝑣) 
• Streaming cost: delay-based 

model (piece-wise linear) 

Network cost 

• proportional to end-to-end 

transmission bandwidth (Γ𝑢𝑣) 

Increase sharply 

Bandwidth utilization percentage 

Delay-based Streaming cost model 



Performance metrics & comparison schemes 
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Performance Metrics  

Total cost & components 

• Server Storage cost 

• Server streaming cost 

• Network cost 

 

Running time 
• Time to obtain results by 

running algorithm 

 

Comparison Schemes 

Random 
• Popularity-blind 

• Randomly store 

MPF 
• Most Popular  

Local Greedy  
• IEEE Infocom 2010 

• Full replication: most popular 

• Single copy: medium popular 

• No copy: unpopular 

Uniform Clustering  
• Groups have the same size 

Super-optimal 
• Considering 𝑞 as continuous 



Asymptotically optimal 
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• Larger 𝑞, closer to super-optimum 

• For finite 𝑞, the performance is close to super-optimum  



Substantially low cost 
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• Outperform by a wide margin 



Insensitive to popularity skewness 
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• Better utilize the proxy servers (Versus MPF) 

• Cooperatively store (Versus Local-Greedy) 

• Low miss rate (Versus Random) 

 



Closely optimal grouping 
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• Still near optimum when grouped 

• K-means Clustering outperforms more for larger skewness 

• K-means even outperform the ungrouping method for small Zipf parameters 

 

Smaller Zipf 

parameter leads 

to smaller 

grouping error; 

ungrouping 

method has 

larger round-off 

error. 
 



Perform well for large movie pool 
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• Group number does not need to be large 

|𝑀|  =  10,000 

Clustering 

Type 

Complexity 

as |𝑀| 
increases  

K-means 𝑂(|𝑀|2) 

Uniform 𝑂(|𝑀| log |𝑀|) 

LP with K-means clustering 

running time for |𝐺| = 10 

on laptop: 

Less than 10 seconds 



Efficient On-line re-optimization 
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•  The transmission of symbols increases sub-linearly 
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Conclusion 
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Comprehensive 
Cost Model 

• Minimize total deployment cost 

• Server cost : storage & streaming 

• Network cost 

• Content replication & Server selection 

Bucket-filling  
Asymptotically optimal 

• LP formulation → super optimum solution 

• Symbol storage & retrieval 

• Asymptotically optimal discretization 

Movie Grouping  
K-means Clustering 

• Efficient computation 

• Little performance Loss 

• Polynomial time complexity reduction 

• Efficient online re-optimization 

Extensive  
Simulation Study 

• Close to optimum performance 

• Outperform by multiple times 
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Thank You Any Questions? 
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Appendix: An example of source coding 
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Suppose we want to code 3 numbers: 𝑎 = 5, 𝑏 = 6, 𝑐
= 2013 in to 𝑛 symbols. 

We compute 
𝑠1 = 𝑎 + 𝑏 + 𝑐 
𝑠2 = 𝑎 + 2𝑏 + 2

2𝑐 
𝑠3 = 𝑎 + 3𝑏 + 3

2𝑐 
…… 

𝑠𝑛 = 𝑎 + 𝑛𝑏 + 𝑛
2𝑐 

Then, by taking any 3 of 𝑠𝑖 , 𝑖𝜖{1…𝑛}, we formulate a 
linear system and solve it to get original 𝑎, 𝑏, 𝑐. 

 



Appendix: 𝒁𝒑 field algebra 
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To avoid overflow problem, we use 𝑍𝑝 field algebra for 
computation 

In 𝑍𝑝 field algebra 
𝑎 +𝑝 𝑏 = (𝑎 + 𝑏)mod𝑝 
𝑎 ∗𝑝 𝑏 = (𝑎 ∗ 𝑏)mod𝑝 

If 𝑝 is a prime number, for every number (except 0), we 
can find a multiplicative inverse 

For example, in 𝑍5  ,2 and 3 are multiplicative inverses 
to each other 

𝑎 ∗5 2 ∗5 3 = 𝑎 


