
Bucket-Filling:
An Asymptotically Optimal VoD
Network with Source Coding

Chang, Zhangyu

Supervised by Prof. Gary Chan

9 December 2019

1

Published on IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Contents

2

• Introduction and Related Work

• Problem Formulation as a Linear Program

• Bucket-filling: Efficient Symbol Storage & Retrieval

• Efficient Clustering & Online Re-optimization

• Illustrative Simulation Results

• Conclusion

Video-on-demand as cloud service

3

Video-on-Demand

• Anytime & anywhere

• Timely content delivery

• Resource consuming

• Most (over 50%) of the

Internet traffic

Distributed Cloud

• Bandwidth and Storage at

geo-dispersed servers

• Servers cooperatively store

and retrieve movies

A Typical Distributed

VoD Cloud Service

Deployment of a VoD cloud

4

Repository

Complete movie storage

Proxy server

Distributed server to

serve users cooperatively

User

Each user is associated

with a local (home) server

“Bucket-filling” with source coding

5

𝑘 = 4

Example:
𝑛 = 8
𝑞 = 4

Encoding

Decoding

Complexity:
𝑂 𝑞2𝑛 for encoding

𝑂 𝑞2 for decoding

In practice:
Overhead much

lower as compared

with video decoding

A movie can be divided into several packets for streaming. Each packet is further

source-coded to generate 𝑛 coded symbols.

By collecting any 𝑞 coded symbols, one can recover the original movie source. (𝑞
is usually given in the system, 𝑛 ≥ 𝑞.)

This flexibility in choosing coded symbols leads to better optimality.

Symbol distribution and retrieval

6

…

…

…

…

VoD network3 more

needed

Client

Central server (Repository):

Complete movie storage Example:
𝑛 = 8
𝑞 = 4

Flexible retrieval

to achieve better

optimality

Proxy server
(limited storage)

Major challenge: Storage, Retrieval & Complexity

7

…

…

…

…

VoD network

Cloud parameters

Movie streaming rate,

popularity, price, etc.

Storage

How many symbols to

store at each server

Retrieval

Which servers to stream

the rest symbols

Complexity

Running time for large

movie pool

Objective

8

Server cost

 Storage

 Bandwidth

utilization

Total

deployment /running

cost

Network cost

 streaming among

servers to serve

the misses

Minimize total deployment/running cost

Low running time complexity

Approach

9

Relaxed Linear Programming

• consider the number of symbols (𝑛𝑣
(𝑚)
) stored in each server as continuous

• formulate a linear programming (LP) problem

Discretize the LP solutions for movie Storage & Retrieval

• Greater 𝑞 leads to smaller discretization penalty

• Bucket-filling is asymptotically optimal in terms of 𝑞;
• i.e., system cost approaches the exact minimum as 𝑞 increases

Clustering for Large Movie Pool

• Group movies by K-means clustering to reduce the algorithmic time

Contributions

10

1

Bucket-filling:

distribution &

retrieval with

source coding

Comprehensive cost model

• Server cost (storage & streaming)

• Network cost

Minimizing system deployment cost

2
Provably

asymptotically

optimality

Bucket-filling with LP is asymptotically optimal

• In terms of 𝑞
• A greater 𝑞 makes solution closer to the exact

global minimum (𝑞 = 30 is good enough)

3
Movie clustering

& On-line re-

optimization

Efficient movie clustering method

• Significantly reduce running time

• With little sacrifice of deployment cost

On-line re-optimization with minimum system

changes

Related work

11

Related Work Bucket-filling

Heuristics:
S. Borst et al. INFOCOM'10

A. Nimkar et al. IMSAA'09

S. Zaman et al. TPDS'11

etc.

• Not clear how far they are

from the optimum

• Provably asymptotical

optimality in q

Cost optimization:
Y. R. Choe et al. ACMMM'07

D. Wu et al. CSVT'13

D. Niu et al. INFOCOM'12

etc.

• Consider cost only partially

• Comprehensively capture

network access cost, storage

constraint & bandwidth

utilization

P2P VoD:
Y. Zhou et al. INFOCOM'12

Y. Zhou et al. ToN'13

B. Tan et al. ToN'13

etc.

• Maximize the sharing of peers

to offload the server load
• Minimize the deployment cost

Contents

12

• Introduction and Related Work

• Problem Formulation as a Linear Program

• Bucket-filling: Efficient Symbol Storage & Retrieval

• Efficient Clustering & Online Re-optimization

• Illustrative Simulation Results

• Conclusion

Major Symbols Used

13

𝑉
The set of servers (central and

proxy servers) 𝒓𝒖𝒗
(𝒎)

Amount of movie 𝑚 streamed

from server 𝑢 to 𝑣 (seconds)

𝑀 The set of movies 𝜆𝑣
Request rate at server 𝑣
(requests/second)

𝐿(𝑚)
Length of movie 𝑚 before

source coding (in seconds)
Γ𝑢𝑣

Average transmission rate from

server 𝑢 to 𝑣 (bits/s)

𝑝(𝑚)
Access probability of movie 𝑚

at server 𝑣
𝑅𝑣

Total uploading rate of server 𝑣
(bits/s)

𝑰𝒗
(𝒎)

Amount of movie 𝑚 server 𝑣
stores (in seconds)

𝐶𝑢𝑣
N

Network cost due to directed

traffic from server 𝑢 to 𝑣

𝐵𝑣
Storage capacity of server 𝑣 (in

seconds)
𝐶𝑣
S Cost of server 𝑣

𝛼(𝑚)𝐿(𝑚)
Average holding (viewing) time

of movie 𝑚 (in seconds)
𝑠 Movie streaming rate (bits/s)

JOSR:
Joint Optimization on Movie Storage & Retrieval

14

 𝐶𝑣
S

𝑣∈𝑉

𝐵𝑣, 𝑅𝑣 + 𝐶𝑢𝑣
N

𝑢,𝑣∈𝑉

(Γ𝑢𝑣)

0 ≤ 𝑟𝑢𝑣
𝑚
≤ 𝐿 𝑚 , ∀𝑢, 𝑣 ∈ 𝑉,𝑚 ∈ 𝑀

 𝐼𝑣
𝑚

𝑚∈𝑀 ≤ 𝐵𝑣 , ∀𝑣 ∈ 𝑉,

0 ≤ 𝐼𝑣
𝑚
≤ 𝐿 𝑚 , ∀𝑣 ∈ 𝑉,𝑚 ∈ 𝑀

𝑟𝑢𝑣
𝑚
≤ 𝐼𝑣
𝑚
, ∀𝑢, 𝑣 ∈ 𝑉,𝑚 ∈ 𝑀

 𝑟𝑢𝑣
𝑚

𝑢∈𝑉 ≥ 𝐿 𝑚 , ∀𝑣 ∈ 𝑉,𝑚 ∈ 𝑀

Minimize

Subject to

Storage

Retrieval

Total system deployment cost

Amount of symbols stored at 𝑣

Amount of symbols retrieved

from 𝑢 to 𝑣

Storage constraint at 𝑣

Supply only the amount stored

A movie shall be retrieved

Server Cost Network Cost

Storage Bandwidth

utilization

Access bandwidth

(consumed)

Γ𝑢𝑣 = 𝑝
(𝑚)𝜆𝑣𝛼

(𝑚)

𝑚∈𝑀

𝑟𝑢𝑣
𝑚
𝑠, ∀𝑢, 𝑣 ∈ 𝑉 𝑅𝑣 = Γ𝑢𝑣

𝑢∈𝑉,𝑢≠𝑣

, ∀𝑣 ∈ 𝑉

Contents

15

• Introduction and Related Work

• Problem Formulation as a Linear Program

• Bucket-filling: Efficient Symbol Storage & Retrieval

• Efficient Clustering & Online Re-optimization

• Illustrative Simulation Results

• Conclusion

Parameter discretization to achieve asymptotic optimum

16

Step 1: Linear

Program
Step 2: Discretization

 Assume the number of

symbols in each server

as continuous variable

 Symbol Storage: (𝑰𝒗
(𝒎)
→ 𝒏𝒗
(𝒎)

)

• Step 1: 𝒏𝒗
(𝒎)
∝ 𝑰𝒗
𝒎

• Step 2: round up/down 𝑛𝑣
(𝑚)

 by popularity

 Solve LP to get super-

optimal symbol:

storage 𝑰𝒗
(𝒎)

retrieval 𝒓𝒖𝒗
(𝒎)

 Symbol Retrieval: (𝒓𝒖𝒗
(𝒎)
→ 𝒏𝒖𝒗
(𝒎)

)

• Step 1: 𝒏𝒖𝒗
(𝒎)
∝ 𝒓𝒖𝒗
𝒎

• Step 2: round up 𝑛𝑢𝑣
(𝑚)

 to satisfy requests

• Step 3: unsatisfied request to repository

Algorithmic complexity

18

Overall time complexity: O(|𝑉|6|𝑀|3)

Asymptotically optimal

Discretize

Symbol

Storage

Discretize

Symbol

Retrieval

O(|𝑉|6|𝑀|3) O(|𝑉||𝑀|)

|V| Number of servers

|M| Number of movies
LP

LP solver has constant

expected iterations and

𝑂 𝑁3 for each iteration

(𝑁: number of variables)

Linear

Program

O(|𝑉|2 𝑀)

What if

𝑀 is large?

O(|𝑉|6) is a
huge factor

Contents

19

• Introduction and Related Work

• Problem Formulation as a Linear Program

• Bucket-filling: Efficient Symbol Storage & Retrieval

• Efficient Clustering & Online Re-optimization

• Illustrative Simulation Results

• Conclusion

Motivation of movie clustering

20

Load index:

𝒅(𝒎) = 𝒑(𝒎)𝜶(𝒎)

Access probability and

holding time indicate the

streaming load of movie

If group the movies with

the same load index

Linear programming result

will NOT change

Movie clustering

Minimize the load index

difference within each group

K-means clustering for movie grouping

21

Minimize: arg
𝒈𝑖

 𝒅(𝒎) − 𝝁(𝒈𝒊)
2

𝒎∈𝒈𝑖
|𝐺|
𝑖=1

• 𝜇(𝑔𝑖) is the mean load index of group 𝑔𝑖
• Resulting group size may not be the same

Algorithmic complexity

K-means Clustering in 1D can be solved in polynomial time: 𝑶(𝑴 𝟐 𝑮)

Movie group as a “super movie”

• Group length: Sum of the group movie length

• Group load index: weighted average of movie index within group

K-means

|G| Number of groups

|M| Number of movies

Parameter discretization from group to movie

23

Guiding principle Method

𝒏𝒗
(𝒈𝒊) → 𝒏𝒗

(𝒎)

movies in group 𝑔𝑖

have similar 𝑛𝑣
(𝑚)

Rarest first: increases the

smallest 𝑛(𝑚) by 1 for 𝑚 ∈ 𝑔𝑖
until space for 𝑔𝑖 used up.

𝒏𝒖𝒗
(𝒈𝒊) → 𝒏𝒖𝒗

(𝒎)
 𝑛𝑢𝑣

(𝑚)
= 𝑛𝑢𝑣
(𝑔𝑖) if possible

• If 𝑛𝑢𝑣
(𝑚)
> 𝑛𝑢𝑣
(𝑔𝑖) for some 𝑢,

we reduce 𝑛𝑢𝑣
(𝑚)

 to make

𝑛𝑢𝑣
(𝑚)
= 𝑛𝑢𝑣
(𝑔𝑖)

• remaining requests to

repository

Time complexity reduction

25

O(|𝑉|6|𝐺|3)

Discretize

Symbol

Storage

Discretize

Symbol

Retrieval

O(𝑉 𝑀) O(|𝑉|2 𝑀)

|V| Number of servers

|M| Number of movies

|G| Number of clusters
LP

LP solver has constant

expected iterations and

𝑂 𝑁3 for each iteration (𝑁

is the number of variables)

K-means

Clustering

O(|𝑀|2 𝐺)

Reducing

complexity by

O(𝑀)

O(|𝑉|6) is a
huge factor

Without Clustering:

 O(|𝑉|6|𝑀|3)

On-line re-optimization

26

System Changes

Movie Changes

Server Changes

Network Changes

Symbols in server 𝑣

𝑡

𝑡 + 1

Δ𝑣 𝑡

Re-Optimize

> 0 repository transfer 𝑛 symbols of movie 𝑚 to server 𝑣

< 0 server 𝑣 discard 𝑛 symbols of movie 𝑚

Symbol changes

+𝟏 −𝟏 −𝟑 +𝟑

+𝒏

−𝒏

Contents

28

• Introduction and Related Work

• Problem Formulation as a Linear Program

• Bucket-filling: Efficient Symbol Storage & Retrieval

• Efficient Clustering & Online Re-optimization

• Illustrative Simulation Results

• Conclusion

Environment setup

29

Movie popularity

• Zipf distribution: 𝑓(𝑖) ∝ 1/𝑖𝑠
• 𝑓(𝑖): popularity of 𝑖th movie

• 𝑠: Zipf parameter

Server Cost

• Storage cost: proportional to

storage capacity (𝐵𝑣)
• Streaming cost: delay-based

model (piece-wise linear)

Network cost

• proportional to end-to-end

transmission bandwidth (Γ𝑢𝑣)

Increase sharply

Bandwidth utilization percentage

Delay-based Streaming cost model

Performance metrics & comparison schemes

30

Performance Metrics

Total cost & components

• Server Storage cost

• Server streaming cost

• Network cost

Running time
• Time to obtain results by

running algorithm

Comparison Schemes

Random
• Popularity-blind

• Randomly store

MPF
• Most Popular

Local Greedy
• IEEE Infocom 2010

• Full replication: most popular

• Single copy: medium popular

• No copy: unpopular

Uniform Clustering
• Groups have the same size

Super-optimal
• Considering 𝑞 as continuous

Asymptotically optimal

31

• Larger 𝑞, closer to super-optimum

• For finite 𝑞, the performance is close to super-optimum

Substantially low cost

32

• Outperform by a wide margin

Insensitive to popularity skewness

35

• Better utilize the proxy servers (Versus MPF)

• Cooperatively store (Versus Local-Greedy)

• Low miss rate (Versus Random)

Closely optimal grouping

36

• Still near optimum when grouped

• K-means Clustering outperforms more for larger skewness

• K-means even outperform the ungrouping method for small Zipf parameters

Smaller Zipf

parameter leads

to smaller

grouping error;

ungrouping

method has

larger round-off

error.

Perform well for large movie pool

37

• Group number does not need to be large

|𝑀| = 10,000

Clustering

Type

Complexity

as |𝑀|
increases

K-means 𝑂(|𝑀|2)

Uniform 𝑂(|𝑀| log |𝑀|)

LP with K-means clustering

running time for |𝐺| = 10

on laptop:

Less than 10 seconds

Efficient On-line re-optimization

39

• The transmission of symbols increases sub-linearly

Contents

40

• Introduction and Related Work

• Problem Formulation as a Linear Program

• Bucket-filling: Efficient Symbol Storage & Retrieval

• Efficient Clustering & Online Re-optimization

• Illustrative Simulation Results

• Conclusion

Conclusion

41

Comprehensive
Cost Model

• Minimize total deployment cost

• Server cost : storage & streaming

• Network cost

• Content replication & Server selection

Bucket-filling
Asymptotically optimal

• LP formulation → super optimum solution

• Symbol storage & retrieval

• Asymptotically optimal discretization

Movie Grouping
K-means Clustering

• Efficient computation

• Little performance Loss

• Polynomial time complexity reduction

• Efficient online re-optimization

Extensive
Simulation Study

• Close to optimum performance

• Outperform by multiple times

Selected References

42

• S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution

networks,” in Proc. IEEE INFOCOM , Mar. 2010, pp. 1–9.

• A. Nimkar, C. Mandal, and C. Reade, “Video placement and disk load balancing algorithm for

VoD proxy server,” in Proc. IEEE Int. Conf. Internet Multimedia Services Archit. Appl., Dec. 2009,

pp. 1–6.

• S. Zaman and D. Grosu, “A distributed algorithm for the replica placement problem,” IEEE Trans.

Parallel Distrib. Syst., vol. 22, no. 9, pp. 1455–1468, Sep. 2011.

• Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving VoD server efficiency with

bittorrent,” in Proc. MULTIMEDIA ’07: 15th Int. Conf. Multimedia, New York, NY, USA, 2007, pp.

117–126.

• D. Wu, J. He, Y. Zeng, X. Hei, and Y. Wen, “Towards optimal deployment of cloud-assisted video

distribution services,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 10, pp. 1717–1728,

Oct. 2013.

• D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth auto-scaling for video-on-

demand applications,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 460–468.

• Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “A unifying model and analysis of P2P VoD replication and

scheduling,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 1530–1538.

• Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “On replication algorithm in P2P VoD,” IEEE/ACM Trans.

Netw., vol. 21, no. 1, pp. 233–243, Feb. 2013.

• B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer video-on-demand

systems,” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 566–579, Apr. 2013.

Thank You Any Questions?

43

Appendix: An example of source coding

44

Suppose we want to code 3 numbers: 𝑎 = 5, 𝑏 = 6, 𝑐
= 2013 in to 𝑛 symbols.

We compute
𝑠1 = 𝑎 + 𝑏 + 𝑐
𝑠2 = 𝑎 + 2𝑏 + 2

2𝑐
𝑠3 = 𝑎 + 3𝑏 + 3

2𝑐
……

𝑠𝑛 = 𝑎 + 𝑛𝑏 + 𝑛
2𝑐

Then, by taking any 3 of 𝑠𝑖 , 𝑖𝜖{1…𝑛}, we formulate a
linear system and solve it to get original 𝑎, 𝑏, 𝑐.

Appendix: 𝒁𝒑 field algebra

45

To avoid overflow problem, we use 𝑍𝑝 field algebra for
computation

In 𝑍𝑝 field algebra
𝑎 +𝑝 𝑏 = (𝑎 + 𝑏)mod𝑝
𝑎 ∗𝑝 𝑏 = (𝑎 ∗ 𝑏)mod𝑝

If 𝑝 is a prime number, for every number (except 0), we
can find a multiplicative inverse

For example, in 𝑍5 ,2 and 3 are multiplicative inverses
to each other

𝑎 ∗5 2 ∗5 3 = 𝑎

