Bucket-Filling:
An Asymptotically Optimal VoD
Network with Source Coding

Published on IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Chang, Zhangyu

Supervised by Prof. Gary Chan
9 December 2019

Introduction and Related Work
Problem Formulation as a Linear Program

Bucket-filling: Efficient Symbol Storage & Retrieval

Contents

Efficient Clustering & Online Re-optimization

Illustrative Simulation Results

Conclusion

Video-on-demand as cloud service

Video-on-Demand - L winiNote
7

* Anytime & anywhere
« Timely content delivery

* Resource consuming ~ ™ Notebook
* Most (over 50%) of the Mobile
Internet traffic e 1 Ne .
Distributed Cloud L
it L] Mini-Note

« Bandwidth and Storage at
geo-dispersed servers . .
- Servers cooperatively store A Typical Distributed

and retrieve movies VoD Cloud Service

Deployment of a VoD cloud

VoD Cloud Repository

Repository Complete movie storage

Proxy server

Distributed server to
serve users cooperatively

v

I g
v

[

[
I
L
[

Each user is associated
with a local (home) server

"Bucket-filling” with source coding

A movie can be divided into several packets for streaming. Each packet is further
source-coded to generate n coded symbols.

By collecting any q coded symbols, one can recover the original movie source. (q
is usually given in the system, n > q.)

This flexibility in choosing coded symbols leads to better optimality.

Ex:n;p{l}e: Encodi Complexity:
g =4 ncoding 0(g*n) for encoding

0(gq?) for decoding
In practice:
Overhead much
Decoding lower as compared
with video decoding

Symbol distribution and retrieval

Central server (Repository):
Complete movie storage

e
77
1B
[

4
]

///a

a

=

Flexible retrieval Proxy server
to achieve better . § (limited storage)

optimalit
- i g Client

Major challenge: Storage, Retrieval & Complexity

Cloud parameters

Movie streaming rate,
popularity, price, etc.

Storage

How many symbols to
store at each server

Retrieval =

Which servers to stream
the rest symbols

Complexity

Running time for large
movie pool

Objective

deployment /runnir

Server cost

» Storage

» Bandwidth
utilization

_

-ﬂze total deployment/runnin-
-Low running time complexity-

Network cost

» streaming among
servers to serve
the misses

~N

J

Approach

Relaxed Linear Programming

« consider the number of symbols (nf,m)) stored in each server as continuous
« formulate a linear programming (LP) problem

Discretize the LP solutions for movie

» Greater q leads to smaller discretization penalty
» Bucket-filling is asymptotically optimal in terms of g;
* l.e., system cost approaches the exact minimum as g increases

Clustering for Large Movie Pool

« Group movies by K-means clustering to reduce the algorithmic time

Contributions

Bucket-filling: Comprehensive cost model
distribution & * Server cost (storage & streaming)

retrieval with « Network cost
source coding Minimizing system deployment cost

Bucket-filling with LP is asymptotically optimal

* Interms of g

» A greater g makes solution closer to the exact
global minimum (q = 30 is good enough)

Provably

asymptotically
optimality

Efficient movie clustering method

VI QUTR TR LT« Significantly reduce running time

& On-line re- « With little sacrifice of deployment cost
optimization On-line re-optimization with minimum system
changes

Related work

Heuristics:

S. Borst et al. INFOCOM'10
A. Nimkar et al. IMSAA'09
S.Zaman et al. TPDS'11
etc.

Cost optimization:

Y. R. Choe et al. ACMMM'07
D. Wu et al. CSVT'13

D. Niu et al. INFOCOM'12
etc.

P2P VoD:

Y. Zhou et al. INFOCOM'12
Y. Zhou et al. ToN'13

B. Tan et al. ToN'13

etc.

Related Work Bucket-filling

* Not clear how far they are
from the optimum

« Consider cost only partially

« Maximize the sharing of peers
to offload the server load

Provably asymptotical
optimality in g

Comprehensively capture
network access cost, storage
constraint & bandwidth
utilization

Minimize the deployment cost

Introduction and Related Work
Problem Formulation as a Linear Program

Bucket-filling: Efficient Symbol Storage & Retrieval

Contents

Efficient Clustering & Online Re-optimization

Illustrative Simulation Results

Conclusion

Major Symbols Used

Amount of movie m streamed
from server u to v (seconds)

The set of servers (central and
proxy servers)

Request rate at server v

The set of movies (requests/second)

<

s | =

Length of movie m before
source coding (in seconds)

Average transmission rate from
server u to v (bits/s)

Access probability of movie m Total uploading rate of server v
at server v v (bits/s)

Amount of movie m server v Network cost due to directed
stores (in seconds) uv traffic from server u to v

Storage capacity of server v (in

C> Cost of server v
seconds)

Average holding (viewing) time
of movie m (in seconds)

o (M) [,(m)

Movie streaming rate (bits/s)

R —

JOSR:

Joint Optimization on Movie Storage & Retrieval

Server Cost Network Cost

Minimize z cS (B, R,) + Z cN (r,,) * Total system deployment cost

VeV / \ u,vev \

b. Storage Bandwidth Access bandwidth
Subject to utilization (consumed)

Storage 0< I,Sm) <L™,vveV,meM > Amount of symbols stored at v

Amount of symbols retrieved

: (m) (m)
< < B
Retrieval 0<nr, =LY, Vuvel,meM fromuto v

(m) :
Ymemly' W < By, YVEV, —» Storage constraint at v

rlg,”) < 1,5’"), Vu,veEV,meM — Supply only the amount stored

ey r,f?) >L.M vpeV,meM > Amovie shall be retrieved

Fuv — Z p(m)/lva(m) ré;?l)s, Vu,v evVv Rv - Z Fuv, VveV

meM uev,u+v

Introduction and Related Work
Problem Formulation as a Linear Program

Bucket-filling: Efficient Symbol Storage & Retrieval

Contents

Efficient Clustering & Online Re-optimization

Illustrative Simulation Results

Conclusion

Parameter discretization to achieve asymptotic optimum

Step 1: Linear

Step 2: Discretization
Program

> Assume the number of » Symbol Storage: (I(m) - nf,m)
symbols in each server (m) . I(m)

as continuous variable

)
« Stepl:n,
. Step 2: round up/down n™ by popularity

> Solve LP to get super- » Symbol Retrieval (r() 1(:17)1))
optimal symbol: (m) (m)
(m) - Steplin,, <1,
storage I, ,
() « Step 2: round up nuv to satisfy requests

retrieval r, Step 3: unsatisfied request to repository

Algorithmic complexity

LP solver has constant

expected iterations and m Number of movies
O(N?) for each iteration
(N: number of variables)

‘ Asymptotically optimal

Discretize @ Discretize
Symbol Symbol
Storage Retrieval

What if
|M| is large?

Linear
Program

o(|V|®)is a
O(|V|6|M|3) O(|V||IM|) O(|V|2|M|) huge factor

Overall time complexity: O(|V|6 |M|3)

Introduction and Related Work
Problem Formulation as a Linear Program

Bucket-filling: Efficient Symbol Storage & Retrieval

Contents

Efficient Clustering & Online Re-optimization

Illustrative Simulation Results

Conclusion

Motivation of movie clustering

Load index:
d™ = p(m) g (m)

Access probability and b¢—=— | -
holding time indicate the \ |
streaming load of movie x 008 1
e 2 ——
group the movies with EEERsl -
. o
the load index o 0ot -
. . § 0.05 IE i Q I -
Linear programming result
will NOT change o \ i
003k E
MOVie CIUStering 0.0z 1 1 1 1 1 1 | 1 | 1 1 I Y ? ? ? I:\ I
R 2 3 4 5 B 7 g 9 m N 12 13 14 15 16 17 18

Movie index

Minimize the load index
difference within each group

K-means clustering for movie grouping

G|

Minimize: 2i=1 ZmEgi‘d(m) — ”(gi) |2

« 199 js the mean load index of group g; K-means
« Resulting group size may not be the same

Algorithmic complexity

K-means Clustering in 1D can be solved in polynomial time: 0(|M|?|G|)

Movie group as a “super movie”

* Group length: Sum of the group movie length
* Group load index: weighted average of movie index within group

Parameter discretization from group to movie

Guiding principle | Method ___

movies in group g; Rarest first: increases the

have similar 7,0™ smallest n(™ by 1 for m € g;
ve similar n

n@) 5 p™
v until space for g; used up.

.« 1™ > 199 for some u,

we reduce n™ to make
) - D i m _ @)
vy =Ny, If possible n(™ = i
* remaining requests to

repository

n

(90 _, ng;l) "

uv

Time complexity reduction

LP solver has constant
expected iterations and
O(N?) for each iteration (N
is the number of variables)

Without Clustering:

o(|V|°|M|?
oy es (IV1°1M]°)

huge factor

o(IVI°1G %)

4

Discretize Discretize

Reducing
complexity by
o(IMl)

K-means
Clustering

Symbol Symbol
Storage Retrieval

o(lviiMl) o(VI*IMI) o(IM|%|G1)

On-line re-optimization

System Changes Symbols in server v

B (| [|

Movie Changes t
Re-Optimize
Server Changes _ t+1 B ([] [

Network Changes A, (t) +1] 3] 3]
Symbol changes l
B >0 repository transfer n symbols of movie m to server v

] <0 server v discard n symbols of movie m

Introduction and Related Work
Problem Formulation as a Linear Program

Bucket-filling: Efficient Symbol Storage & Retrieval

Contents

Efficient Clustering & Online Re-optimization

Illustrative Simulation Results

Conclusion

Environment setup

Delay-based Streaming cost model

Movie popularity

» Zipf distribution: f (i) o 1/i° 0.8 Queueing mod T s0
* f(i): popularity of ith movie X Experiment results 3
* s: Zipf parameter 06 - "
@ [X | g
Server Cost S Increase sharply—— ¢ | 4 s
€ 04f § 5
» Storage cost: proportional to 5 X | 3
storage capacity (B,) @ o | <20 ©
« Streaming cost: delay-based ' j
model (piece-wise linear) " |
Q —=x % | L 0
0 0.8 0.931
. Ry/Uy
* proportional to end-to-end Bandwidth utilization percentage

transmission bandwidth (I;,)

Performance metrics & comparison schemes

Performance Metrics Comparison Schemes

Random
» Popularity-blind
Randomly store

Total cost & components
» Server Storage cost MPF

Most Popular

Local Greedy
IEEE Infocom 2010
Full replication: most popular
Running time Single copy: medium popular
« Time to obtain results by No copy: unpopular
running algorithm Uniform Clustering
* Groups have the same size
Super-optimal
» Considering g as continuous

« Server streaming cost
» Network cost

Asymptotically optimal

* Larger g, closer to super-optimum
* For finite g, the performance is close to super-optimum

350 | | | 77
-2+ Bucket-filling (q=10) A
—><— Bucket-filling (q=30) Rz
300 | —-o—-- Bucket-filling (q=100))Ié]
- -~ - Bucket-filling (q=) '//3
250 . |
I
8 200 - .
e
S 150 - .
100 — _
50 ~ -
0%

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Total request rate (# req. per second)

Substantially low cost

* Outperform by a wide margin

800 | |
----- - MPF &
700 - —--0—-- Random o
-~~~ Local Greedy /£>
—>&— Bucket-fillin) ‘
600 | cket- g K
500 . #

400

Total cost

300
200
100

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Total request rate (# req. per second)

Insensitive to popularity skewness

 Better utilize the proxy servers (Versus MPF)
* Cooperatively store (Versus Local-Greedy)
* Low miss rate (Versus Random)

450 | I | | | |
. ——O MPF
400 6\“\6) - ~%¥- - Random -
“x@ Local Greedy
350 "“‘-\&‘ —>— Bucket-filling |
300 | o .
3 S
S 250 Ro% -
r_U \\‘ - X’ - ‘><
2 200 - Sk ¥
= 150%——%—%——%———:—%——%—*-—*'" oy
\@\\
100 |]
)
50 g -
0 | A S B S S S

c 010203040506 070809 1 1112

Zipf parameter of movie popularity

Closely optimal grouping

* Still near optimum when grouped
* K-means Clustering outperforms more for larger skewness
* K-means even outperform the ungrouping method for small Zipf parameters

24 | | | | | | | |
Uniform clustering
23 & —--—-- No grouping .
S ller Ziof ™ —>¢— K-means clustering
matier Ip 22 Super-optimum =
parameter leads 3
to smaller -
- 2
grouping error; o 20 [_
ungrouping g 19 - i
method has 18|)

larger round-off

error. 177 \ }

16 [

15 | | | | | | |
0.3 04 05 06 07 08 09 1

Zipf parameter of movie popularity

Perform well for large movie pool

* Group number does not need to be large

IM| = 10,000 28, l o

) Uniform clustering (q=30)
—--3—-- Uniform clustering (q=c0)
—>&— K-means clustering (q=30)
26 - - 2¢- - K-means clustering (q=c0)

Clustering | Complexity

Type as |M|
increases

K-means 0(|M|%)
Uniform O(|M|log|M|)

Total cost

LP with K-means clustering - %- e e
running time for |G| = 10 8 ‘ | | | | \
on laptop: 12 5 10 20 50 100 200

Less than 10 seconds Group number

Efficient On-line re-optimization

* The transmission of symbols increases sub-linearly

9900IIIIIIIIII I I I I I 1)

—&— Introduction
9000 ---%-- Replacement

-—/\— Removal

of transmitted symbols

123
0 246810 15 20 25 30 35 40 45 50
of movie change

Introduction and Related Work
Problem Formulation as a Linear Program

Bucket-filling: Efficient Symbol Storage & Retrieval

Contents

Efficient Clustering & Online Re-optimization

Illustrative Simulation Results

Conclusion

Conclusion

Comprehensive
Cost Model

Bucket-filling
Asymptotically optimal

Movie Grouping
K-means Clustering

Extensive
Simulation Study

Minimize total deployment cost
Server cost : storage & streaming
Network cost

Content replication & Server selection

LP formulation — super optimum solution
Symbol storage & retrieval
Asymptotically optimal discretization

Efficient computation

Little performance Loss

Polynomial time complexity reduction
Efficient online re-optimization

Close to optimum performance
Outperform by multiple times

Selected References

S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution
networks,” in Proc. IEEE INFOCOM , Mar. 2010, pp. 1-9.

A. Nimkar, C. Mandal, and C. Reade, "Video placement and disk load balancing algorithm for
VoD proxy server," in Proc. IEEE Int. Conf. Internet Multimedia Services Archit. Appl., Dec. 2009,
pp. 1-6.

S. Zaman and D. Grosu, "A distributed algorithm for the replica placement problem,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 9, pp. 1455-1468, Sep. 2011.

Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving VoD server efficiency with
bittorrent,” in Proc. MULTIMEDIA '07: 15th Int. Conf. Multimedia, New York, NY, USA, 2007, pp.
117-126.

D. Wu, J. He, Y. Zeng, X. Hei, and Y. Wen, "Towards optimal deployment of cloud-assisted video
distribution services,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 10, pp. 1717-1728,
Oct. 2013.

D. Niu, H. Xu, B. Li, and S. Zhao, "Quality-assured cloud bandwidth auto-scaling for video-on-
demand applications,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 460-468.

Y. Zhou, T. Z. J. Fu, and D. M. Chiu, "A unifying model and analysis of P2P VoD replication and
scheduling,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 1530-1538.

Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “On replication algorithm in P2P VoD," IEEE/ACM Trans.
Netw., vol. 21, no. 1, pp. 233-243, Feb. 2013.

B. Tan and L. Massoulié, "Optimal content placement for peer-to-peer video-on-demand
systems,” [EEE/ACM Trans. Netw., vol. 21, no. 2, pp. 566-579, Apr. 2013.

ThankYou Any Questions?

Appendix: An example of source coding

Suppose we want to code 3 numbers: a = 5,b = 6, ¢
= 2013 in to n symbols.

We compute
si=a+b+c
s, =a+2b+ 2%
s3 =a+3b+ 3%

s, = a+nb + nc

Then, by taking any 3 of s;, ie{1 ... n}, we formulate a
linear system and solve it to get original a, b, c.

Appendix: Z,, field algebra

To avoid overflow problem, we use Z,, field algebra for
computation

In Z,, field algebra

a+,b=(a+b)modp

a *,b=(a*xb)modp
If p is a prime number, for every number (except o), we
can find a multiplicative inverse

For example, in Zs 2 ,and 3 are multiplicative inverses
to each other
aA *g 2 *5 3=a

