Bucket-Filling: An Asymptotically Optimal VoD Network with Source Coding

Published on IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Chang, Zhangyu

Supervised by *Prof. Gary Chan*

9 December 2019

Contents

- Introduction and Related Work
- Problem Formulation as a Linear Program
- Bucket-filling: Efficient Symbol Storage & Retrieval
- Efficient Clustering & Online Re-optimization
- Illustrative Simulation Results
- Conclusion

Video-on-demand as cloud service

Video-on-Demand

- Anytime & anywhere
- **Timely** content delivery
- Resource consuming
- Most (over 50%) of the Internet traffic

Distributed Cloud

- Bandwidth and Storage at geo-dispersed servers
- Servers cooperatively store and retrieve movies

A Typical Distributed VoD Cloud Service

Deployment of a VoD cloud

Repository

Complete movie storage

Proxy server

Distributed server to serve users cooperatively

User

Each user is associated with a local (home) server

"Bucket-filling" with source coding

A movie can be divided into several packets for streaming. Each packet is further source-coded to generate n coded symbols.

By collecting any q coded symbols, one can recover the original movie source. (q is usually given in the system, $n \ge q$.)

This flexibility in choosing coded symbols leads to better optimality.

Example:

$$n = 8$$

$$q = 4$$

Complexity:

 $O(q^2n)$ for encoding $O(q^2)$ for decoding

In practice:

Overhead **much lower** as compared with video decoding

Symbol distribution and retrieval

Major challenge: Storage, Retrieval & Complexity

Cloud parameters

Movie streaming rate, popularity, price, etc.

Storage

How many symbols to store at each server

Retrieval

Which servers to stream the rest symbols

Complexity

Running time for large movie pool

Objective

Total deployment /running cost

Server cost

- Storage
- Bandwidth utilization

Network cost

streaming among servers to serve the misses

Minimize total deployment/running cost

Low running time complexity

Approach

Relaxed Linear Programming

- consider the number of symbols $(n_v^{(m)})$ stored in each server as continuous
- formulate a linear programming (LP) problem

Discretize the LP solutions for movie **Storage** & **Retrieval**

- Greater q leads to smaller discretization penalty
- Bucket-filling is asymptotically optimal in terms of q;
- i.e., system cost approaches the exact minimum as q increases

Clustering for Large Movie Pool

Group movies by K-means clustering to reduce the algorithmic time

Contributions

Bucket-filling:
distribution & retrieval with source coding

Comprehensive cost model

- Server cost (storage & streaming)
- Network cost

Minimizing system deployment cost

Provably
2 asymptotically optimality

Bucket-filling with LP is asymptotically optimal

- In terms of q
- A greater q makes solution closer to the exact global minimum (q = 30 is good enough)

Movie clustering & On-line reoptimization

Efficient movie clustering method

- Significantly reduce running time
- With little sacrifice of deployment cost

On-line re-optimization with minimum system changes

Related work

	Related Work	Bucket-filling
Heuristics: S. Borst et al. INFOCOM'10 A. Nimkar et al. IMSAA'09 S. Zaman et al. TPDS'11 etc.	 Not clear how far they are from the optimum 	 Provably asymptotical optimality in q
Cost optimization: Y. R. Choe et al. ACMMM'07 D. Wu et al. CSVT'13 D. Niu et al. INFOCOM'12 etc.	Consider cost only partially	Comprehensively capture network access cost, storage constraint & bandwidth utilization
P2P VoD: Y. Zhou et al. INFOCOM'12 Y. Zhou et al. ToN'13 B. Tan et al. ToN'13 etc.	Maximize the sharing of peers to offload the server load	Minimize the deployment cost

Contents

- Introduction and Related Work
- Problem Formulation as a Linear Program
- Bucket-filling: Efficient Symbol Storage & Retrieval
- Efficient Clustering & Online Re-optimization
- Illustrative Simulation Results
- Conclusion

Major Symbols Used

V	The set of servers (central and proxy servers)	$r_{uv}^{(m)}$	Amount of movie m streamed from server u to v (seconds)
M	The set of movies	λ_v	Request rate at server v (requests/second)
$L^{(m)}$	Length of movie m before source coding (in seconds)	$\Gamma_{\!uv}$	Average transmission rate from server u to v (bits/s)
$p^{(m)}$	Access probability of movie m at server v	R_{v}	Total uploading rate of server v (bits/s)
$I_v^{(m)}$	Amount of movie m server v stores (in seconds)	$\mathcal{C}_{uv}^{ ext{N}}$	Network cost due to directed traffic from server u to v
B_{v}	Storage capacity of server v (in seconds)	C_v^{S}	Cost of server v
$\alpha^{(m)}L^{(m)}$	Average holding (viewing) time of movie m (in seconds)	S	Movie streaming rate (bits/s)

JOSR:

Joint Optimization on Movie Storage & Retrieval

Contents

- Introduction and Related Work
- Problem Formulation as a Linear Program
- Bucket-filling: Efficient Symbol Storage & Retrieval
- Efficient Clustering & Online Re-optimization
- Illustrative Simulation Results
- Conclusion

Parameter discretization to achieve asymptotic optimum

Step 1: Linear Program

Assume the number of symbols in each server as **continuous** variable

storage
$$I_v^{(m)}$$
 retrieval $r_{uv}^{(m)}$

Step 2: Discretization

- ightharpoonup Symbol Storage: ($m{I}_v^{(m)}
 ightarrow m{n}_v^{(m)}$)
- Step 1: $n_v^{(m)} \propto I_v^{(m)}$
- **Step 2:** round up/down $n_v^{(m)}$ by popularity
- \succ Symbol Retrieval: $(r_{uv}^{(m)}
 ightarrow n_{uv}^{(m)})$
- Step 1: $n_{uv}^{(m)} \propto r_{uv}^{(m)}$
- **Step 2:** round up $n_{uv}^{(m)}$ to satisfy requests
- **Step 3**: unsatisfied request to repository

Algorithmic complexity

LP

LP solver has constant expected iterations and $O(N^3)$ for each iteration (N: number of variables)

V Number of servers

Number of movies

Linear Program Asymptotically optimal

Discretize Symbol Storage Discretize Symbol Retrieval What if | M | is large?

 $O(|V|^6|M|^3)$

O(|V||M|)

 $O(|V|^2|M|)$

M

 $O(|V|^6)$ is a huge factor

Overall time complexity:

 $O(|V|^6|M|^3)$

Contents

- Introduction and Related Work
- Problem Formulation as a Linear Program
- Bucket-filling: Efficient Symbol Storage & Retrieval
- Efficient Clustering & Online Re-optimization
- Illustrative Simulation Results
- Conclusion

Motivation of movie clustering

Load index: $d^{(m)} = p^{(m)} \alpha^{(m)}$

Access probability and **holding time** indicate the streaming load of movie

If group the movies with the **same** load index

Linear programming result will **NOT** change

Movie clustering

Minimize the load index difference within each group

K-means clustering for movie grouping

Minimize:

$$\arg_{g_i} \sum_{i=1}^{|G|} \sum_{m \in g_i} |d^{(m)} - \mu^{(g_i)}|^2$$

- $\mu^{(g_i)}$ is the mean load index of group g_i
- Resulting group size may not be the same

Algorithmic complexity

|G| Number of groups

K-means

M Number of movies

K-means Clustering in 1D can be solved in polynomial time: $O(|M|^2|G|)$

Movie group as a "super movie"

Group length: Sum of the group movie length

Group load index: weighted average of movie index within group

Parameter discretization from group to movie

	Guiding principle	Method
$n_v^{(g_i)} ightarrow n_v^{(m)}$	movies in group g_i have similar $n_v^{(m)}$	Rarest first : increases the smallest $n^{(m)}$ by 1 for $m \in g_i$ until space for g_i used up.
$n_{uv}^{(g_i)} ightarrow n_{uv}^{(m)}$	$n_{uv}^{(m)} = n_{uv}^{(g_i)}$ if possible	• If $n_{uv}^{(m)} > n_{uv}^{(g_i)}$ for some u , we reduce $n_{uv}^{(m)}$ to make $n_{uv}^{(m)} = n_{uv}^{(g_i)}$ • remaining requests to repository

Time complexity reduction

Number of servers LP solver has constant expected iterations and M Number of movies LP $O(N^3)$ for each iteration (N Number of clusters is the number of variables) **Without Clustering:** $O(|V|^6|G|^3)$ $O(|V|^6|M|^3)$ $O(|V|^6)$ is a huge factor Reducing Discretize **Discretize** complexity by K-means **Symbol Symbol** O(|M|)Clustering Retrieval **Storage** $O(|V|^2|M|)$ O(|V||M|) $O(|M|^2|G|)$

On-line re-optimization

Contents

- Introduction and Related Work
- Problem Formulation as a Linear Program
- Bucket-filling: Efficient Symbol Storage & Retrieval
- Efficient Clustering & Online Re-optimization
- Illustrative Simulation Results
- Conclusion

Environment setup

Movie popularity

- Zipf distribution: $f(i) \propto 1/i^s$
- f(i): popularity of ith movie
- *s*: Zipf parameter

Server Cost

- **Storage cost**: proportional to storage capacity (B_v)
- Streaming cost: delay-based model (piece-wise linear)

Network cost

• proportional to end-to-end transmission bandwidth (Γ_{uv})

Delay-based Streaming cost model

Performance metrics & comparison schemes

Performance Metrics

Total cost & components

- Server Storage cost
- Server streaming cost
- Network cost

Running time

Time to obtain results by running algorithm

Comparison Schemes

Random

- Popularity-blind
- Randomly store

MPF

Most Popular

Local Greedy

- IEEE Infocom 2010
- Full replication: most popular
- Single copy: medium popular
- No copy: unpopular

Uniform Clustering

Groups have the same size

Super-optimal

• Considering *q* as continuous

Asymptotically optimal

- Larger q, closer to super-optimum
- For finite q, the performance is close to *super-optimum*

Substantially low cost

Outperform by a wide margin

Insensitive to popularity skewness

- Better utilize the proxy servers (Versus MPF)
- Cooperatively store (Versus Local-Greedy)
- Low miss rate (Versus Random)

Closely optimal grouping

- Still near optimum when grouped
- K-means Clustering outperforms more for larger skewness
- K-means even outperform the ungrouping method for small Zipf parameters

Smaller Zipf parameter leads to smaller grouping error; ungrouping method has larger round-off error.

Perform well for large movie pool

Group number does not need to be large

$$|M| = 10,000$$

Clustering Type	Complexity as $ M $ increases
K-means	$O(M ^2)$
Uniform	$O(M \log M)$

LP with **K-means** clustering running time for |G| = 10 on laptop:

Less than **10** seconds

Efficient On-line re-optimization

• The transmission of symbols increases sub-linearly

Contents

- Introduction and Related Work
- Problem Formulation as a Linear Program
- Bucket-filling: Efficient Symbol Storage & Retrieval
- Efficient Clustering & Online Re-optimization
- Illustrative Simulation Results
- Conclusion

Conclusion

Comprehensive Cost Model

- Minimize total deployment cost
- Server cost : storage & streaming
- Network cost
- Content replication & Server selection

Bucket-fillingAsymptotically optimal

- LP formulation → super optimum solution
- Symbol storage & retrieval
- Asymptotically optimal discretization

Movie GroupingK-means Clustering

- Efficient computation
- Little performance Loss
- Polynomial time complexity reduction
- Efficient online re-optimization

Extensive Simulation Study

- Close to optimum performance
- Outperform by multiple times

Selected References

- S. Borst, V. Gupta, and A. Walid, "Distributed caching algorithms for content distribution networks," in *Proc. IEEE INFOCOM*, Mar. 2010, pp. 1–9.
- A. Nimkar, C. Mandal, and C. Reade, "Video placement and disk load balancing algorithm for VoD proxy server," in *Proc. IEEE Int. Conf. Internet Multimedia Services Archit. Appl.*, Dec. 2009, pp. 1–6.
- S. Zaman and D. Grosu, "A distributed algorithm for the replica placement problem," *IEEE Trans. Parallel Distrib. Syst.*, vol. 22, no. 9, pp. 1455–1468, Sep. 2011.
- Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, "Improving VoD server efficiency with bittorrent," in *Proc. MULTIMEDIA '07*: 15th Int. Conf. Multimedia, New York, NY, USA, 2007, pp. 117–126.
- D. Wu, J. He, Y. Zeng, X. Hei, and Y. Wen, "Towards optimal deployment of cloud-assisted video distribution services," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 23, no. 10, pp. 1717–1728, Oct. 2013.
- D. Niu, H. Xu, B. Li, and S. Zhao, "Quality-assured cloud bandwidth auto-scaling for video-on-demand applications," in *Proc. IEEE INFOCOM*, Mar. 2012, pp. 460–468.
- Y. Zhou, T. Z. J. Fu, and D. M. Chiu, "A unifying model and analysis of P2P VoD replication and scheduling," in *Proc. IEEE INFOCOM*, Mar. 2012, pp. 1530–1538.
- Y. Zhou, T. Z. J. Fu, and D. M. Chiu, "On replication algorithm in P2P VoD," *IEEE/ACM Trans. Netw.*, vol. 21, no. 1, pp. 233–243, Feb. 2013.
- B. Tan and L. Massoulié, "Optimal content placement for peer-to-peer video-on-demand systems," *IEEE/ACM Trans. Netw.*, vol. 21, no. 2, pp. 566–579, Apr. 2013.

Thank You

Any Questions?

Appendix: An example of source coding

Suppose we want to code 3 numbers: a = 5, b = 6, c = 2013 in to n symbols.

We compute

$$s_1 = a + b + c$$

$$s_2 = a + 2b + 2^2c$$

$$s_3 = a + 3b + 3^2c$$

$$... ...$$

$$s_n = a + nb + n^2c$$

Then, by taking **any** 3 of s_i , $i \in \{1 ... n\}$, we formulate a linear system and **solve** it to get **original** a, b, c.

Appendix: Z_p field algebra

To avoid overflow problem, we use ${\cal Z}_p$ field algebra for computation

In Z_p field algebra

$$a +_p b = (a + b) \operatorname{mod} p$$

 $a *_p b = (a * b) \operatorname{mod} p$

If p is a prime number, for every number (except o), we can find a multiplicative inverse

For example, in $Z_5\ 2$,and 3 are multiplicative inverses to each other

$$a *_{5} 2 *_{5} 3 = a$$