Video Management and Resource Allocation for a Large-Scale VoD Cloud

Chang, Zhangyu

Supervised by **Prof. Gary Chan**

September 28, 2017

Contents

- Introduction and Related Work
- Problem Formulation and Its NP-hardness
- RAVO: Efficient LP-based Solution
- Efficient Computation for Large Video Pool
- Illustrative Simulation Results
- Conclusion

Video-on-Demand (VoD) Cloud

Video-on-Demand

- Essential Internet service for people's daily life nowadays
- Require huge amount of resource & network traffic

Cloud Computing

- Infrastructure as a service (IaaS)
- Reduce the cost on accessing distributed servers
- Reduce the risk of resource over-provisioning

A Typical VoD Cloud Service

Cloud Resources as Utility Service

A distributed and cooperative cloud architecture for VoD service

- Content Provider (CP) can rent service from Cloud Service Provider
- Content Provider can dynamically adjust the resource deployment

Cloud service enables great **flexibility** on resource allocation:

- Scale up storage & streaming capacities timely
- Flexible resource allocation and provisioning
- Reduced maintenance cost

Deployment of a Distributed VoD Streaming Cloud

A distributed and cooperative cloud architecture for VoD service

Repository:

Complete video replication

Local cloud service:

Cluster of servers to serve the associated clients

Clients: Geographically heterogeneous video popularities from clients

Geographic Heterogeneity of Clients' Video Popularities

- Local servers may have partial video storage to save storage cost
- Reduce network load through cooperation among servers

Video Management & Resource Allocation

Video Management

- Video popularity: relatively stable and predictable in a Netflix-like VoD system
- Can be *planned* on a longer time scale (days)

Storage (content replication)

What video to store at each server

Retrieval (server selection)

Which servers to stream the missing video from

Resource Allocation

Server Cost

- Storage Capacity
- Processing Capacity
 Cost due to the total storage
 and processing capacity at a server

Link Cost

- Link Capacity
- Bandwidth Utilization
 Cost due to the bandwidth
 capacity reserved and data
 transmitted between pairs of
 servers to serve the misses

Deployment Cost vs. Quality-of-Service (QoS)

Deployment Cost

Server Cost

- Storage capacity
- Processing capacity

Link Cost

- Link capacity
- Bandwidth utilization

Quality-of-Service

Total Delay

- Due to server utilization
- Due to link utilization

Trade-off between Cost and Delay

- Satisfy the quality-of-service constraints
- Minimize total deployment cost

Bad Examples: 2 Extreme Scenarios

Full Replication

Full video storage among all local servers

+

- Minimum delay
- No network cost

_

- Maximum storage cost
- Cost much on cold video

Repository Only

Only video storage at the repository

+

Minimum storage cost

- Maximum network cost
- Huge end-to-end delay
- Heavy load for repository

- Neither scenarios is efficient
- Both video management and resource allocation matters
- A joint optimization on comprehensive mode is required

Objective

Video Management and Resource Allocation are closely related

- Resource allocations is based on information of projected user request
- Content replication and retrieval are constrained by resource

Minimize total deployment cost

- Server cost: storage and processing capacity
- Link cost: link capacity and bandwidth utilization
- Geographically heterogeneous video popularity

Quality-of-service constraints

Satisfactory level of end-to-end delay

Low algorithmic time complexity

• Accommodate a large video pool (in terms of video number |V|)

Approach

Relaxed Linear Programming

- Consider the video stored in each server as continuous variable
- Formulate and solve a linear programming (LP) problem

Quantization from Super Optimum

- Solution of the relaxed linear programming as the super-optimum
- Randomized rounding for video storage decision
- **Probabilistic** video retrieval decision
- Resource allocation decision based on QoE constraints

Video Clustering for Large Video Pool

Group videos by Spectral Clustering to reduce the algorithmic complexity

Contributions

Joint optimization
formulation based on
a comprehensive VoD
cloud model

Video Management

• Server selection & content replication

Resource allocation

Server cost (storage, processing) & link cost

Geographically heterogeneous popularity

RAVO: LP solution

with quantization
algorithm

Efficient optimization algorithm

- No extra encoding scheme
- Applicable for current system
- Proven optimality

Wideo clustering method

Reduce the algorithmic time complexity

Little compromise on deployment cost

Related Work

Fundamental difference: Truly **JOINT** optimization algorithm

	Related Work	RAVO
Traditional resource allocation	Based on heuristic approachThe optimality gap is not clear	Discretized from LP solutionClosely optimal
Content Storage and Retrieval for VoD	 Need resource allocation result first Rigid setting, less flexibility 	 One-step offline algorithm for both resource allocation and content management Easy to deploy in the real scenario
Current resource allocation for cloud service	Assume full replicationOnly consider bandwidth allocation	 Partial replication to lower the storage cost Servers help each other to fully utilize the resource

Contents

- Introduction and Related Work
- Problem Formulation and Its NP-hardness
- RAVO: Efficient LP-based Solution
- Efficient Computation for Large Video Pool
- Illustrative Simulation Results
- Conclusion

Major Symbols Used

S	The set of servers (central and proxy servers)	Γ_{mn}	Average transmission rate from server m to n (bits/s)
V	The set of videos	U_m	Total upload rate of server m (bits/s)
$L^{(v)}$	Length of video \emph{v} (seconds)	K_{mn}	Link capacity from server m to n (bits/s)
$P_m^{(v)}$	Access probability of video v at server m	Λ_m	Processing capacity of server m for remote streaming (bits/s)
$I_m^{(v)}$	Boolean variable indicating whether server m stores video v	$\mathcal{C}_{mn}^{ ext{N}}$	Link cost due to directed traffic from server m to n
H_m	Storage capacity of server m (bits)	C_m^{S}	Cost of server m
$R_{mn}^{(v)}$	Probability of streaming video v from server m to n	$D_{mn}^{ m N}$	Delay due to directed traffic from server m to n
μ_m	Request rate at server m (requests/second)	D_m^{S}	Delay due to upload streaming of server m

The Problem of Joint Optimization on Video Management and Resource Allocation

Server cost Link cost minimize
$$\sum_{m \in S} \mathbb{C}^{\mathbb{S}}_m(H_m, \Lambda_m, U_m) + \sum_{m,n \in S} \mathbb{C}^{\mathbb{N}}_{mn}(\Gamma_{mn}, K_{mn})$$
 System deployment cost Storage Processing Capacity Storage $I_m^{(v)} \in \{0, 1\}, \ \forall m \in S, v \in V$ Whether video v stored at m Retrieval $0 \leq R_{mn}^{(v)} \leq I_m^{(v)}, \ \forall m, n \in S, v \in V$ Probability of video v retrieved from m to n Storage constraint at m $\sum_{v \in V} I_m^{(v)} L^{(v)} \gamma^{(v)} \leq H_m, \ \forall m \in S$ Storage constraint at m $\sum_{m \in S} R_{mn}^{(v)} = 1, \ \forall n \in S, v \in V$ A video shall be retrieved $\Gamma_{mn} = \sum_{v \in V} p_n^{(v)} \varepsilon_n^{(v)} \mu_n R_{mn}^{(v)} L^{(v)} \gamma^{(v)}, \ \forall m, n \in S$ Remote traffic QoS $\mathbb{D}_{mn}^{\mathbb{N}} (\Gamma_{mn}, K_{mn}) + \mathbb{D}_m^{\mathbb{S}} (U_m, \Lambda_m) \leq \overline{D}, \ \forall m, n \in S$ Delay

NP-hardness of Integer Programming: $I_m^{(v)} = \{0, 1\}$

The **dominating set problem**: (NP-complete)

- A **dominating set** for a graph T = (S, E) is a subset D of V such that every vertex not in D is **adjacent** to at least one member of D.
- The **domination number** $\zeta(T)$ is the number of vertices in a **smallest** dominating set for T.
- The **dominating set problem** concerns testing whether $\zeta(T) \leq J$ for a given graph T and input J.

The joint optimization is NP-hard

- The dominating set problem is reducible to our joint optimization problem.
- Considering that:
 - The VoD system has only one video
 - The storage cost for a replica is 1
 - No any other cost
- The servers that have the video replica form a dominating set.

Dominating sets (red vertices)

Contents

- Introduction and Related Work
- Problem Formulation and Its NP-hardness
- RAVO: Efficient LP-based Solution
- Efficient Computation for Large Video Pool
- Illustrative Simulation Results
- Conclusion

RAVO: Relaxing the Joint Formulation as a Linear Program and Quantization of the Solution

Step 1: Linear Program

Formulation Relaxation

- Continuous $\hat{I}_m^{(v)}$ $(0 \le \hat{I}_m^{(v)} \le 1)$
- $\mathbb{C}_m^{\mathrm{S}}(H_m, \Lambda_m, U_m)$, $\mathbb{C}_{mn}^{\mathrm{N}}(\Gamma_{mn}, K_{mn})$, $\mathbb{D}_{mn}^{\mathrm{N}}(\Gamma_{mn}, K_{mn})$ and $\mathbb{D}_m^{\mathrm{S}}(U_m, \Lambda_m)$ as piecewise linear function
- Efficient algorithm for solving linear programming

Solve LP for Super-optimum

- Video storage: $\hat{I}_m^{(v)}$
- Video retrieval: $\hat{R}_{mn}^{(v)}$

Step 2: Quantization

Video Management

- Randomized round $\hat{I}_m^{(v)}$ to get $I_m^{(v)}$
- Request from the *repository* if no other proxy server can help
- Otherwise we obtain $\forall m, n \in S$

$$R_{mn}^{(v)} = \begin{cases} 0, & \text{if } I_m^{(v)} = 0; \\ \frac{\widehat{R}_{mn}^{(v)}}{\sum_{m \in S} I_m^{(v)} \widehat{R}_{mn}^{(v)}}, & \text{if } I_m^{(v)} = 0. \end{cases}$$

Resource Allocation

- Server storage capacity as $H_m = \sum_{v \in V} I_m^{(v)} L^{(v)} \gamma^{(v)}, \forall m \in S$
- Get Γ_{mn} and U_m from $I_m^{(v)}$ and $R_{mn}^{(v)}$
- Put Γ_{mn} and U_m to equation $\mathbb{D}_m^S(U_m, \Lambda_m) = D_m^S, \ \forall m \in S;$ $\mathbb{D}_{mn}^N(\Gamma_{mn}, K_{mn}) = D_{mn}^N, \ \forall m, n \in S,$ and solve them to get Λ_m and K_{mn}

Algorithmic Complexity

Contents

- Introduction and Related Work
- Problem Formulation and Its NP-hardness
- RAVO: Efficient LP-based Solution
- Efficient Computation for Large Video Pool
- Illustrative Simulation Results
- Conclusion

Observation on Concurrency Density

- Concurrency density $(b_m^{(v)} = p_m^{(v)} \varepsilon_m^{(v)})$ gives the per-storage user concurrency of a video
- Videos with same concurrency density result in the same per-bit deployment cost
- Video groups with the same concurrency density will NOT change the result of the linear programming, but the number of parameters (problem complexity) is smaller.
- Minimize

Spectral Clustering for Video Group

- Treat the concurrency density of a video v as an |S| dimensional vector, namely $\boldsymbol{b}^{(v)} = (b_1^{(v)}, b_2^{(v)}, \dots, b_{|S|}^{(v)})$.
- Minimize

$$\arg_{g_i} \sum_{i=1}^{|G|} \sum_{v \in g_i} \|\boldsymbol{b}^{(v)} - \widetilde{\boldsymbol{b}}^{(g_i)}\|^2$$

- $\widetilde{m{b}}^{(g_i)}$ is the mean concurrency density of group g_i
- Resulting group size may not be the same
- Use spectral clustering to solve multi-dimensional K-means
- After solving the linear program, use *rarest first* for video placement $I_m^{(v)}$ and $\hat{R}_{mn}^{(v)} = \hat{R}_{mn}^{(g_i)}$, $\forall v \in g_i$
- Then use method in RAVO for further parameter quantization

Algorithmic Complexity Reduction

LP

LP solver has constant expected iterations and $O(N^3)$ for each iteration (N is the number of variables)

S	Number of servers
<i>V</i>	Number of videos
G	Number of groups

Contents

- Introduction and Related Work
- Problem Formulation and Its NP-hardness
- RAVO: Efficient LP-based Solution
- Efficient Computation for Large Video Pool
- Illustrative Simulation Results
- Conclusion

Simulation Environment

Video popularity

- Zipf's distribution: $f(i) \propto 1/i^z$
- Geographic heterogeneity
- Partially reshuffle video rank
- Trace driven based on real data

Cost functions

- Proportional to resource used
- Server cost: $C_m^S = \sigma_m H_m + c_m \Lambda_m$
- Link cost: $C_{mn}^{N} = c_{mn} K_{mn}$

Delay Function

- M\M\1 queueing model
- Piece-wise linear approximation

Performance Metrics & Comparison Schemes

Performance Metrics

Total cost & components

- Server storage cost
- Server processing cost
- Link cost

Delay

- Caused by links
- Caused by servers

Running time

Algorithmic running time

Comparison Schemes

iGreedy with optimal resource allocation

- Consider local popularity
- No cooperative replication

IPTV-RAM with optimal content management

 2 video categories based on global popularity

Super-optimal

 LP solution before quantization

Close to optimal performance (Cost versus Request Rate)

Close to optimal performance (Cost versus Delay Requirement)

Effective Clustering Method (Cost versus *Zipf* Parameter)

- Skewness of video popularity has greater impact
- RAVO can better utilize cheap resource

Effective Clustering Method (Cost versus Group Number)

Longer running time for better optimality

Trace-driven Simulation: Video Popularity

Concurrency density and replica number versus movie index

- The video access probability follows Zipf's distribution
- Videos with higher concurrency density have more replicas on the cloud

Trace-driven Simulation: Performance

- RAVO outperform the comparison schemes with large margin
- Storage cost increases slower than the other components due to cold video

Contents

- Introduction and Related Work
- Problem Formulation and Its NP-hardness
- RAVO: Efficient LP-based Solution
- Efficient Computation for Large Video Pool
- Illustrative Simulation Results
- Conclusion

Conclusion

Comprehensive Model for VoD Cloud

- Minimize total cost: Server + Link
- Video management & Resource allocation
- Quality-of-service (delay) constraints
- Geographic heterogeneity

RAVO Efficient Algorithm

- LP formulation → super optimum
- Randomized rounding
- Probabilistic video retrieval

Video Grouping Spectral Clustering

- Efficient computation
- Little performance Loss
- Significant time complexity reduction
- Geographic heterogeneity

Extensive Simulation Study

- Close-to-optimum performance
- Outperform the comparison scheme
- Trace-driven simulation based on real data

Thank You!

Any Questions?