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Video-on-Demand (VoD) Cloud

Video-on-Demand

Cloud Computing

Essential Internet service for
people’s daily life nowadays
Require huge amount of
resource & network traffic

Infrastructure as a service (IaaS)
Reduce the cost on accessing
distributed servers

Reduce the risk of resource
over-provisioning
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Cloud Resources as Utility Service

® Content Provider (CP) can
rent service from Cloud
Service Provider

VoD Cloud

Repository .
® Content Provider can

dynamically adjust the
resource deployment

Cloud service enables great

flexibility on resource allocation:

» Scale up storage & streaming
capacities timely

* Flexible resource allocation and
provisioning

A distributed and cooperative cloud * Reduced maintenance cost
architecture for VoD service



Deployment of a Distributed VoD Streaming Cloud

Repository:
VoD Cloud ===% Complete video replication

Repository

Cluster of servers to serve

i Local cloud service:
the associated clients

y Clients: Geographically
L%} heterogeneous video
popularities from clients

Geographic Heterogeneity

of Clients’ Video Popularities

* Local servers may have partial
video storage to save storage cost

* Reduce network load through co-
operation among servers

A distributed and cooperative cloud
architecture for VoD service



Video Management & Resource Allocation

Video Management Resource Allocation

* Video popularity: relatively
stable and predictable in a

Server Cost
» Storage Capacity

Netflix-like VoD system - Processing Capacity
* Canbe planned on a longer Cost due to the total storage
time scale (days) and processing capacity at a
server
Storage (content replication) Link Cost
» What video to store at each * Link Capacity
server * Bandwidth Utilization

Cost due to the bandwidth
capacity reserved and data
transmitted between pairs of
servers to serve the misses

Retrieval (server selection)
* Which servers to stream the
missing video from



Deployment Cost vs. Quality-of-Service (QoS)

Deployment Cost Quality-of-Service

Server Cost
» Storage capacity

; Processw.\g capacity * Due to server utilization
Link Cost

 Due to link utilization

Total Delay

* Link capacity
* Bandwidth utilization

A

Trade-off between Cost and Delay
 Satisfy the quality-of-service constraints
* Minimize total deployment cost



Bad Examples: 2 Extreme Scenarios

Full Replication Repository Only

Full video storage among Only video storage at the
all local servers repository

+ +
*  Minimum delay *  Minimum storage cost

* No network cost -

- « Maximum network cost
« Maximum storage cost * Huge end-to-end delay
« Cost much on cold video * Heavy load for repository

* Neither scenarios is efficient
* Both video management and resource allocation matters
* A joint optimization on comprehensive mode is required



Objective

Video Management and Resource Allocation are closely related

» Resource allocations is based on information of projected user request
» Content replication and retrieval are constrained by resource

Minimize total deployment cost

» Server cost: storage and processing capacity
* Link cost: link capacity and bandwidth utilization
» Geographically heterogeneous video popularity

Quality-of-service constraints

« Satisfactory level of end-to-end delay

Low algorithmic time complexity

» Accommodate a large video pool (in terms of video number |V])




Approach

Relaxed Linear Programming

* Consider the video stored in each server as continuous variable
* Formulate and solve a linear programming (LP) problem

Quantization from Super Optimum

+ Solution of the relaxed linear programming as the super-optimum
* Randomized rounding for video storage decision

* Probabilistic video retrieval decision

* Resource allocation decision based on QoE constraints

Video Clustering for Large Video Pool

« Group videos by Spectral Clustering to reduce the algorithmic complexity



Contributions

Video Management

« Server selection & content replication
Resource allocation

« Server cost (storage, processing) & link cost
Geographically heterogeneous popularity

Joint optimization
formulation based on
a comprehensive VoD
cloud model

RAVO: LP solution Efficient optimization algorithm
* No extra encoding scheme

« Applicable for current system

* Proven optimality

with quantization
algorithm

Video clustering Reduce the algorithmic time complexity
method * Little compromise on deployment cost




Fundamental difference:
Re I ated WO I‘k Truly JOINT optimization algorithm

Related Work RAVO

Traditional » Based on heuristic approach » Discretized from LP solution
resource T : :

. * The optimality gap is not clear + Closely optimal
allocation

Content Storage
and Retrieval for
VoD

» Partial replication to lower the
storage cost
Servers help each other to fully
utilize the resource

Current resource * Assume full replication
allocation for * Only consider bandwidth
cloud service allocation
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Major Symbols Used

The set of servers (central and
pProxy servers)

Average transmission rate from
server m to n (bits/s)

n

Total upload rate of server m
(bits/s)

Link capacity from server m to
£ n (bits/s)

Access probability of video v at Processing capacity of server m
server m i for remote streaming (bits/s)

|74 The set of videos -

KPR Length of video v (seconds) -

o)
N\
<
N/

Boolean variable indicating Link cost due to directed traffic
whether server m stores video v L from server mton

\

Storage capacity of server m
m (bits)

@) | Probability of streaming video
wis v from server m ton

%3 Cost of server m

Delay due to directed traffic
& from server mton

=

S
EH

Request rate at server m
1 (requests/second)

Delay due to upload streaming
of server m

=



The Problem of Joint Optimization on

Video Management and Resource Allocation

Server cost Link cost
minimize z Cy (Hyy Ay, Upy) + Z cN (an, K...,) —* System deployment cost
meS \ m,nes
Stora‘ge/Processmg Access bandwidth
Subjectto  Capacity consumed)
Storage I,Sf) €{0,1},vmeS,veV —» Whether video v stored at m

Retrieval 0 < RS{% < 17517)’ VmneSvev . Probability of video v retrieved
frommton

Yoy [VLDy®D < H  vmeS .

Storage constraint at m

Zmes ng)l =1, VvneS,vevV " A video shall be retrieved

= Dvev P(v) gv)ﬂnR(v%L(v))/(v), Vm,n €S —+ Remote traffic

Qs DN (L. Knn) + Dy (U, Ay) <D, VmneS — + Delay




NP-hardness of Integer Programming: I’ = {0, 1}

The dominating set problem: (NP-complete)

« A dominating set for a graph T = (S, E) is a subset (a)
D of V such that every vertex not in D is adjacent
to at least one member of D.

« The domination number {(T) is the number of
vertices in a smallest dominating set for T.

« The dominating set problem concerns testing (b) O
whether {(T) < ] for a given graph T and input J.

The joint optimization is NP-hard

« The dominating set problem is reducible to our (c)
joint optimization problem.
« Considering that:

— The VoD system has only one video
— The storage cost for a replica is 1 Dominating sets
— No any other cost (red vertices)
« The servers that have the video replica form a
dominating set.
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RAVO: Relaxing the Joint Formulation as a Linear

Program and Quantization of the Solution

Step 1: Linear Program Step 2: Quantization

Video Management

Q ° [} | A(v) (17)
Formulation Relaxation Randomized round I, to get I,
» Request from the repository if no

+ Continuous I (0 < I < 1) other proxy server can help

* Co(Hm, A, Un): Con (T, K, « Otherwise we obtain Ym,n € S
DNon Tnns Kiny) @and D3, (Upy, Ayy) @5 0 if [V = 0.
piecewise linear function ®) ~ ) " ’

*  Efficient algorithm for solving linear Rin = Rin 10 — o
programming y _ (@pw’ ™

meS ‘m mn

Resource Allocation
» Server storage capacity as

Hpy = ey I,(,’l’)L(”)y(”) ,YmesS

Solve LP for Super-optimum +  GetT,,, and U, from I and R
» Video storage: 1‘,5? * Put[,,, and U,, to equation
- Video retrieval: R%" D3, (Um, A) = Dy, YM E S;

]D)rl\rlm(rmnr Konn) = Drl;lmr vm,n €S,
and solve them to get A,,, and K,,,,,



Algorithmic Complexity

LP solver has constant
expected iterations and
O(N?) for each iteration (N
is the number of variables)

I(MNEI488 Dominate

4

Discretize Discretize

Video Video |V| IS LARG E?

What if

Storage Retrieval

o(lsIvI) o(ISI?IVI)
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Observation on Concurrency Density

. Concurrency density (b = p M) gives the per-storage user concurrency of a
video

« Videos with same concurrency density result in the same per-bit deployment
cost

« Video groups with the same concurrency density will NOT change the result of
the linear programming, but the number of parameters (problem complexity) is

smaller.
0.1
« Minimize
EI-1 R Geographic Heterogeneity
nosf A video has different i
popularity in each server
0.08
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Spectral Clustering for Video Group

« Treat the concurrency density of a video v as an |S|

dimensional vector, namely b® = (bf’),bé") y bl(;’l))
« Minimize

|G|
arg, ) )16 ~5eo|
l i=1veg;

« bW is the mean concurrency density of group g;
« Resulting group size may not be the same
« Use spectral clustering to solve multi-dimensional K-means

« After solving the linear pro%ram use rarest first for video
placement I’ and R = RY: )V veg,

« Then use method in RAVO for further parameter
guantization



Algorithmic Complexity Reduction

LP solver has constant
expected iterations and
O(N?) for each iteration (N
is the number of variables)

O(ISI°1G %)

0(|S|®) isa
‘ huge factor

Quantization Quantization

Reducing
complexity by

Spectral
o(vI?)

on I,(,',’) on R,(,',’,), Clustering

o(lsIvI) o(ISI?IVI) odlsIIv)
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Simulation Environment

Video popularity

« Zipf's distribution: f (i) « 1/i*

« Geographic heterogeneity

* Partially reshuffle video rank

» Trace driven based on real data

Cost functions

* Proportional to resource used
 Server cost: Cp, = 0, Hyy+CpApy,
 Link cost: CN., = cpynKmn

Delay Function

« M\M\1 queueing model
* Piece-wise linear approximation

Average Delay

----- ---- Linear Approximation
M/M/1 Queueing Model

0 0.5 0.8
Bandwidth Utilization (I'/K)



26

Performance Metrics & Comparison Schemes

Performance Metrics Comparison Schemes

iGreedy with optimal
Total cost & components resource allocation
« Server storage cost Consider local popularity
« Server processing cost No cooperative replication

* Link cost
IPTV-RAM with optimal
Delay content management
« Caused by links « 2 video categories based
 Caused by servers on global popularity
Running time Super-optimal

LP solution before
quantization

Algorithmic running time



Close to optimal performance

(Cost versus Request Rate)

Total Cost
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Close to optimal performance

(Cost versus Delay Requirement)
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Effective Clustering Method

(Cost versus Zipf Parameter)

« Skewness of video popularity has greater impact
* RAVO can better utilize cheap resource

2000 | Y, | | |

\ —-£F-- IPTV-RAM
1800 - B K iGreedy N
N —>— Spectral RAVO
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Effective Clustering Method

(Cost versus Group Number)

« Longer running time for better optimality

Total Cost
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Trace-driven Simulation: Video Popularity

Movie access probability in Concurrency density and replica
descending order number versus movie index
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« The video access probability follows Zipf's distribution
+ Videos with higher concurrency density have more replicas on the cloud



Trace-driven Simulation: Performance

Deployment cost given different
request rate

Deployment and component

cost given different request rate

700 I 1800 I \
—¥— RAVO —-+--- IPTV-RAM
- -[E- - Super Optimum 1600 |- ——+ iGreedy i
600 '+ Sserver Storage . — ¢ RAVO
Server Streaming 1400 - Super Optimum =
500 ||~ © — Network Cost N T .

1200 e 1
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Ic © e |
B 800+
S 300 2 e

600 N
200
400
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0 0 | |
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* RAVO outperform the comparison schemes with large margin
« Storage cost increases slower than the other components due to cold video
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Conclusion

Comprehensive
Model for VoD Cloud

RAVO
Efficient Algorithm

Video Grouping
Spectral Clustering

Extensive
Simulation Study
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Thank You! Any Questions?




