
An Approximation Algorithm to 

Maximize User Capacity for an  

Auto-scaling VoD System 

Chang, Zhangyu 

Supervised by Prof. Gary Chan 

9 September 2019 



Contents 

2 

1. Introduction and Related Work 

2. Problem Formulation and its NP-hardness 

3. AVARDO: An Approximation Algorithm 

4. Illustrative Trace-driven Experimental Results 

5. Conclusion 



User Request Pattern for Blockbuster Videos: 

Stable Popularity, Volatile Traffic 

3 

Blockbuster video service (e.g., 

Netflix) to a large group of audience 

• Video access popularity: rather 

stable and predictable over days or 

weeks 

• User request traffic: may vary by 

an order of magnitude in hours 

• Statically allocates a fixed number 

of servers is not efficient. 

• Auto-scaling can meet the 

demand in a timely and cost-

effective manner. 



Request Rate Over a Typical Day 

• Blockbuster videos have rather 
stable and predictable over 
days or weeks (cf. UGC). 

• Popularity remains quite stable 
(varies less than 10%) over a 
day. 

• Request traffic may vary by an 
order of magnitude over merely 
hours. 

• Auto-scaling is a solution to 
meet demand in a timely and 
cost-effective manner.  

4 

User request of a leading video service 

website in China over a day 



A Typical Auto-scaling VoD Cloud  

Auto-scaling Server 

• Server has a certain storage 

and streaming capacity 

• Server can be activated or 

deactivated in a short time 

• Homogeneous servers 

• Activating server according to 

incoming traffic 

Traffic Dispatcher 

• Distribute request to an active 

server with the video 

• Otherwise to core network 

Video Block 

• Blocks have the same size 

• Partition large video into blocks 

• Video block is only for 

management purpose (cf. 

DASH segments) 

5 

A video cloud consisting of 

auto-scaling VoD data centers. 



Maximizing the User Request Rate Threshold 

• The total block request rate 𝜆 
(requests/second) is mapped to an 

auto-scaling level 𝑖 (𝑖=0, 1, 2,…). 

• Auto-scaling level 𝑖 has a request 

rate threshold 𝜆𝑖 with a predefined 

set of active server 𝑉𝑖. 𝑉𝑖 contains all 

the video blocks (at least one 

replica for each block). 

• When 𝜆𝑖 < 𝜆 ≤ 𝜆𝑖+1, servers in 𝑉𝑖+1 
are activated. 

• Let |𝑉0| =  𝜈, we have |𝑉𝑖| =  𝜈 + 𝑖. 

• To minimize the deployment cost, 

we seek to maximize the user 

capacity supported by the active 

servers, which is proportional to 𝜆𝑖. 

6 

Request rate  Increase  Decrease 

Auto-scaling level  Increase Decrease 

Active servers More Less 



Optimizing Following Inter-dependent Dimensions 

7 

Block Allocation (BA) 

• A server has limited storage and cannot store all the video blocks. 

• Which blocks should be allocated (or replicated) in each server? 

• Servers in 𝑉𝑖 shall store at least one replica of each video block. 

Server Selection (SS) 

• Which servers should be activated (i.e., in 𝑉𝑖) for auto-scaling level 𝑖? 

• Servers in 𝑉𝑖 shall have enough replicas for each video block. 

Request Dispatching (RD) 

• Some video blocks may be stored on multiple active servers. 

• Which server to cater a video block request? 

• The dispatcher has to balance the load of each active server. 



Challenges: Timescale and Interdependence  

8 

Block Allocation (BA) 

• Timescale: in day or week 

• Videos are pre-allocated (preloaded) in all the servers for SS and RD 

• On-the-fly BA is not necessary due to the relatively stable popularity 

Server Selection (SS) 

• Timescale: in hour 

• SS decision should be based on a given BA 

Request Dispatching (RD) 

• Timescale: in second 

• RD decision should be based on a given BA and SS 

• We shall jointly optimize these 3 interdependent dimensions. 



9 

Contributions 

Problem formulation and its NP-hardness 

• Study the novel problem: maximize 𝜆𝑖 for each auto-scaling level 

• A multi-objective mixed-integer linear programming problem 

• We prove the problem is NP-hard 

• Traditional static provisioning is a special case of our problem 

Stack-based algorithm with proven approximation ratio 

• AVARDO: Auto-scaling Video Allocation and Request Dispatching 

Optimization 

• Efficient and closely optimal algorithm with proven approximation ratio 

• Stack-based approach with minimum overhead: servers are activated 

(deactivated) due to the increment (decrement) of auto-scaling level 

Extensive trace-driven experimental study based on real-world data 

• Trace-driven experiments with real-world VoD data 

• Achieve significantly lower optimality gap in active server number (by 

multiple times) compared with other state-of-the-art schemes 



Related Work 

10 

Cloud-based VoD architecture resource provisioning 

• Yet to consider some important features inside the data center due to model 

abstraction [1], [2], [3] 

• AVARDO complements to these studies by investigating from a more detailed point 

of view 

Content replication in traditional and cloud-based VoD data centers 

• Assumes no dynamics within the data center: the server configurations and 

bandwidth reservation are rarely changed [4] 

• Not considered the change of storage and video replication of the auto-scaling 

servers [5] 

• AVARDO optimize for every possible auto-scaling levels 

Cloud resources auto-scaling mechanism 

• Predict the user demand and improves the performance in the online phase [6], [7] 

• Each request or task considered in the problems is served by only one server [8]-

[10] 

• AVARDO considers BA and RD as some videos are too popular to be served by 

one server 



Contents 

11 

1. Introduction and Related Work 

2. Problem Formulation and its NP-hardness 

3. AVARDO: An Approximation Algorithm 

4. Illustrative Trace-driven Experimental Results 

5. Conclusion 



Symbol Used in Formulation 

12 

𝒖 
The streaming capacity of a 

server (bits/s) 
𝒑𝒎 

Access probability of video 

block 𝑚 

𝒄 
The storage capacity of a 

server (bits)  
𝑳𝒎 

Average holding time of video 

block 𝑚 (in seconds) 

𝒇 The file size of block (bits)  𝒃𝒎 
Video streaming rate of video 

block 𝑚 (bits/s) 

𝑽 
The set of all standby 

servers in data center 
𝑹𝒎 𝝀  

Traffic of block 𝑚 (bits/s) at 

request rate 𝜆 

𝑽𝒊 
The set of active servers at 

auto-scaling level 𝑖 
𝑰𝒗
𝒎 

Binary variable indicating 

server 𝑣 stores block 𝑚 

𝑴 The set of  all blocks 

𝒓𝒗
𝒎(𝒊) 

Probability of streaming a 

request of block 𝑚 from 

server 𝑣 at auto-scaling level 𝑖 𝑴𝒗 
The set of video blocks 

stored in server 𝑣 

𝝀 
Total block request rate 

(requests per second) 
𝝁 

Server utilization limit to 

ensure quality-of-service 



Problem Formulation of AVARD: 

Auto-scaling Video Allocation and Request Dispatching 

13 

Objective max(𝜆0, 𝜆1, … 𝜆𝑛) User request rate threshold 

Subject to 

Storage 

Streaming 

QoS 

𝑅𝑚 𝜆 = 𝜆𝑝𝑚𝐿𝑚𝑏𝑚, ∀𝑚 ∈ 𝑀 
Traffic of video block 𝑚 (bits/s) at 

request rate 𝜆 

 𝐼𝑣
𝑚

𝑚∈𝑀(𝑣)

𝑓 ≤ 𝑐, ∀𝑣 ∈ 𝑉 Server cannot store video blocks 

beyond its storage 

𝑟𝑣
𝑚 𝑖 ≤ 𝐼𝑣

𝑚, ∀𝑣 ∈ 𝑉𝑖 , 𝑚 ∈ 𝑀 
Server can serve the traffic of a 

block only if it has this block 

 𝑟𝑣
𝑚

𝑣∈𝑉𝑖

(𝑖) ≥ 1, ∀𝑚 ∈ 𝑀 All the user request for each video 

block shall be served 

 𝑟𝑣
𝑚(𝑖)

𝑚∈𝑀

𝑅𝑚 𝜆𝑖 ≤ 𝜇𝑢, ∀𝑣 ∈ 𝑉𝑖 
The utilization of the streaming 

capacity of every server should not 

exceed a certain limit 𝜇 



NP-Hardness of AVARD Problem 

14 

The Partition Problem: (NP-complete) 

Whether a given multiset 𝑆 =  {𝑠1, 𝑠2, … , 𝑠𝑛} of 𝑛 positive integers can be 

divided into two subsets 𝑆1 and 𝑆2 such that the sums of the numbers in 𝑆1 
and 𝑆2 are the same. 

The AVARD problem is NP-hard 

• The Partition Problem is reducible to our AVARD optimization problem. 

• Considering that: 

‒ The Auto-scaling VoD system has only auto-scaling level 0. 

‒ We have 2 servers with storage 𝑛 and streaming capacity 𝑠/2 + 𝑛. 
‒ We have 2n videos with 𝑓 = 1. 
‒ Half of videos have 𝑅𝑚 = 𝑠𝑚 + 1; the other half videos have 𝑅𝑚 =1. 



Contents 

15 

1. Introduction and Related Work 

2. Problem Formulation and its NP-hardness 

3. AVARDO: An Approximation Algorithm 

4. Illustrative Trace-driven Experimental Results 

5. Conclusion 



Additional Symbol Used in Algorithm 

16 

𝒗𝒊 
The server to activate when 

auto-scaling level goes from 

𝑖 − 1 to 𝑖 (i.e., 𝑉𝑖 = 𝑉𝑖−1 ⋃ 𝑣𝑖 ) 

𝑮 The set of video clusters 

𝑮(𝒗) 
The set of video clusters on 

server 𝑣 

𝑷𝒎 
Streaming ratio of video 

block 𝑚 
𝑮𝒌 

The set of video clusters that 

have 𝑘 replicas 

𝑵𝒎 
Number of replicas for block 

𝑚 stored in 𝑉0 
𝑷 𝒈  

Total streaming ratio of 

replicas in cluster 𝑔 

𝑵𝐓 
Number of replicas can be 

stored in 𝑉0 
𝑪 𝒈  

Storage capacity used for 

cluster 𝑔 

𝑵𝐀 
Number of surplus replicas in 

𝑉0 (i.e., 𝑁𝑇 − |𝑀|) 
𝒒𝒈
𝒎 

Probability of streaming a 

request of block 𝑚 from 

cluster 𝑔 at auto-scaling level 

0 𝝈𝒎 
Average replica streaming 

ratio of block 𝑚 

𝝈 
Average replica streaming 

ratio threshold  
𝝀𝐨𝐩 

Theoretical upper limit of 𝜆 
threshold 



AVARDO: Approximation Algorithm for an  

Auto-scaling Video-on-Demand System 

17 

Preprocessing: Block Replication and Clustering 

• Simplify the algorithm by putting the video blocks into clusters. 

• Each cluster has the same file size and generates same user traffic. Thus, 

it can be treated as a mega video file.  

1. The block replication step decides how many replicas are required for a 

video block (i.e., 𝑁𝑚). 

2. The replica clustering step decides which replicas are in a cluster (i.e., 𝑔). 

Block Allocation and Request Dispatching 

1. Consider cluster allocation for servers in 𝑉0. 
2. Consider server 𝑣𝑖 incrementally. 

3. Given request dispatching at auto-scaling level 𝑖. 

• Auto-scaling Video Allocation and Request Dispatching Optimization 

• Jointly optimize Video Allocation, Server Selection, and Request Dispatching 

AVARDO has a stack-based server selection scheme 

• Consider the set of active servers as a stack 

• Push (activate) or pop (deactivate) a server in an orderly sequence 



Preprocessing Stage: Block Replication 

18 

fully replicated blocks 
𝑁𝑚 =  

𝜈,
𝑃𝑚/𝜎
1,
,    
if 𝑃𝑚 > 𝜈𝜎,
if 𝜎 < 𝑃𝑚 ≤ 𝜈𝜎,
if 𝑃𝑚 ≤ 𝜎.

 

𝑃𝑚 =
𝑝𝑚𝐿𝑚𝑏𝑚

 𝑝𝑚𝐿𝑚𝑏𝑚𝑚∈𝑀

, ∀𝑚 ∈ 𝑀 
Streaming Ratio 𝑃𝑚 is proportional 

to the traffic of video block 𝑚 

partially replicated blocks 

The Block replication is a popularity-based scheme (in terms of 𝑃𝑚)  

1. The least popular block has at least one replica in 𝑉0 (i.e., 𝑁𝑚 ≥ 1). 

2. For the most popular block 𝑚, each server has at most one replica (i.e., 

𝑁𝑚 ≤ ν). 

3. For the other blocks, 𝑁𝑚 is proportional to 𝑃𝑚 . 

Average replica streaming ratio threshold 𝜎 

• A smaller 𝜎 will increase the number of video replicas. 

• We find the smallest possible 𝜎 through binary search. 



Preprocessing Stage: Replica Clustering 

19 

Algorithm 1: AVARDO replica clustering 

Initialization: 𝑃(𝑔) = 0, 𝐶(𝑔) = 0, ∀𝑔 ∈ 𝐺; 
Put all partially replicated replicas into priority queue ℚ; 

while ℚ ≠ ∅ do  

Pop top 𝜈2 replicas with max 𝜎𝑚 from ℚ; 

Put these 𝜈2 replicas into priority queue ℚ𝑚; 

while ℚ𝑚 ≠ ∅ do 

Pop the replica 𝑚 with max 𝜎𝑚 from ℚ𝑚; 

Pop the cluster 𝑔 with min 𝑃(𝑔) from ℚ𝑔; 

Store a replica 𝑚 in 𝑔: 𝑔 ← 𝑚; 

Update parameters: 𝑃(𝑔) += 𝜎𝑚, 𝐶(𝑔) += 𝑓; 
end 

end 

Objective: Each cluster has the same file size 

and generates similar user traffic. 

A 

B C 

E 

D 

F G 
H 

I J K L 

A 

B C D 

E F G 

H 

I J 
K 

L 



Block Allocation and Request Dispatching 

20 

Block Allocation 

1. All the servers shall store fully 

replicated blocks. 

2. For 𝑣 ∈ 𝑉0, we distribute the 𝜈2 
clusters into 𝜈 servers such that 

each server 𝑣 ∈ 𝑉0 stores 𝜈 
unique clusters. 

3. For server 𝑣𝑖 such that 𝑖 ≤ 𝜈, it 
shall pick one unique cluster from 

every server 𝑣 ∈ 𝑉0 where the 

cluster has not been picked by 

the other server 𝑣𝑙  such that 𝑙 ≤ 𝜈. 
4. For server 𝑣𝑖 such that 𝑖 = 𝑘𝜈 +
𝑗 with 𝑘 ≥ 1, we let 𝐺(𝑖)  =  𝐺(𝑗) 
(i.e., server 𝑣𝑖 and 𝑣𝑗 have the 

same block replication). 

Traffic Dispatching 

We first consider the 𝑖 = 0 case: 

𝑞𝑔
𝑚 =  
1 𝑁𝑚 , if 𝑚 ∈ 𝑔,
 0, otherwise.

 

𝑟𝑣
𝑚 0 =  𝑞𝑔

𝑚

𝑔∈𝐺(𝑣)

, ∀𝑚 ∈ 𝑀, 𝑣 ∈ 𝑉0. 

We then consider the 𝑖 > 0 case: 

• For the servers 𝑣 ∈ 𝑣1, … , 𝑣𝑖, we have 

𝑟𝑣
𝑚 𝑖 =

𝜈

𝜈 + 𝑖
 𝑞𝑔

𝑚

𝑔∈𝐺(𝑣)

, ∀𝑚 ∈ 𝑀. 

• For the servers in 𝑣 ∈ 𝑉0, denoting 

𝐺𝑥 = 𝐺(𝑣) ∩ 𝐺𝑘+2 and 𝐺𝑦 = 𝐺(𝑣) ∩ 𝐺𝑘+1, for 

all 𝑚 ∈ 𝑀 we have 

𝑟𝑣
𝑚 𝑖 =

𝑗

𝜈 + 𝑖
 𝑞𝑔

𝑚

𝑔∈𝐺𝑥

+
𝜈 + 𝑗

𝜈 + 𝑖
 𝑞𝑔

𝑚

𝑔∈𝐺𝑥

. 

For auto scaling level 𝑖 > 0, we write 𝑖 = 𝑘𝜈 + 𝑗 such that 𝑘 ≥ 0 and 1 ≤ 𝑗 ≤ 𝜈. 



Optimality and Time Complexity 

21 

Time Complexity: 𝑶( 𝑴 𝐥𝐨𝐠 𝑴 + |𝑴||𝑽|𝟐) 

• Searching for 𝜎 can be done in 𝑂(|𝑀|). 
• The major component of clustering is to get the replicas from the priority 

queue. The time complexity is thus 𝑂(|𝑀| log |𝑀|). 
• Computing each 𝑟𝑣

𝑚(𝑖) requires constant time. Total time is 𝑂(|𝑀||𝑉|2). 

Theoretical Optimality Gap of AVARDO: 𝝂𝟐𝝈 

• Lemma 1: 𝜎 is less than 1 𝑁A . 

• Lemma 2: For every video cluster 𝑔 ∈ 𝐺, its streaming ratio 𝑃(𝑔) is no 

more that 1 𝜈2 + 𝜎. 
• The optimality gap, given by 𝜆op 𝜆 − 1, is no more than 𝜈2𝜎. 

• 𝜈 is proportional to video number, and 𝜎 is proportional to block size 𝑓. 

Upper bound of optimality gap in real-world setting: less than 𝟏% 

• A nowadays video server can store more than 105 videos (𝜎 < 10−5). 
• For auto-scaling level 0, 30 servers are more than enough (𝜈 ≤ 30). 
• We can further reduce 𝜎 by partitioning the video files into smaller blocks. 



Contents 

22 

1. Introduction and Related Work 

2. Problem Formulation and its NP-hardness 

3. AVARDO: An Approximation Algorithm 

4. Illustrative Trace-driven Experimental Results 

5. Conclusion 



Simulation Environment 

Parameter Baseline value 

• Number of blocks |𝑀| around 3×106 

• block request rate 𝜆 (requests/s) 2,000 

• Number of blocks in a server 𝑐/𝑓 6×105 

• Server streaming capacity 𝑢 (Gbps) 25 

• Server utilization limit 𝜇 0.9 

23 

• The real-world data trace is from a leading video service website in 

China over 2 weeks. 

• We partition the videos into the blocks of the same size of 100MB. 

• When a video has multiple resolutions and bit rates, we treat them as 

multiple video files. 



Performance Metrics  

24 

Performance Metrics 

• Request rate threshold 𝜆𝑛 Optimization objective of AVARDO 

• Optimality gap of 𝜆𝑛 
Difference between scheme performance and the 

theoretical performance bound 

• Number of active servers Operation cost over a given time period 

• Fairness of active server 

utilization 

Jain’s Fairness Index, which is between 0 and 1 (a higher 

index indicates a fairer load sharing) 

Comparison Schemes 

• Uniform replication 
Every video has the same number of replicas. The videos 

are randomly stored in the servers. 

• Hierarchical popularity 

replication 

2 types of server: repository and cache. Repository 

servers collaboratively store all. Caches only store popular 

videos. 

• Super optimum 
Serves as the theoretical performance bound. We assume 

that a video can be partitioned infinitesimally (i.e., 𝑓 → 0).  



Asymptotic Optimality 

25 



Outperform State-of-the-art Schemes 

26 



Closely Optimal Over a Typical Day 

27 



Contents 

28 

1. Introduction and Related Work 

2. Problem Formulation and its NP-hardness 

3. AVARDO: An Approximation Algorithm 

4. Illustrative Trace-driven Experimental Results 

5. Conclusion 



Conclusion 

29 

Problem Formulation  

and NP-hard analysis 

• Formulation the problems as multi-objective 

mixed-integer linear programming  

• Prove that AVARD problem is NP-hard 

Stack-based approximation 

algorithm with provable 

performance 

• AVARDO: Auto-scaling Video Allocation and 

Request Dispatching Optimization 

• A novel and closely-optimal approximation 

algorithm with proven optimality gap 

• Stack-based approach to minimize overhead 

Extensive trace-driven  

experimental results 

• Real-world VoD data traces 

• Outperform the state-of-the-art schemes  

• Significantly lower optimality gap (often 1/20) 



Selected References 

[1] J. Yang, Z. Yao, B. Yang, X. Tan, Z. Wang, and Q. Zheng, “Software-defined multimedia streaming system aided by variable-
length interval in-network caching,” IEEE Transactions on Multimedia, vol. 21, no. 2, pp. 494–509, Feb 2019.  

[2] E. Bourtsoulatze, N. Thomos, J. Saltarin, and T. Braun, “Content-aware delivery of scalable video in network coding enabled 
named data networks,” IEEE Transactions on Multimedia, vol. 20, no. 6, pp. 1561– 1575, June 2018. 

[3] J. Tang, X. Tang, and J. Yuan, “Traffic-optimized data placement for social media,” IEEE Transactions on Multimedia, vol. 20, no. 
4, pp. 1008–1023, April 2018. 

[4] H. Zhao, Q. Zheng, W. Zhang, B. Du, and H. Li, “A segment-based storage and transcoding trade-off strategy for multi-version 
VoD systems in the cloud,” IEEE Transactions on Multimedia, vol. 19, no. 1, pp. 149–159, Jan 2017.  

[5] G. Gao, Y. Wen, W. Zhang, and H. Hu, “Cost-efficient and QoS-aware content management in media cloud: Implementation and 
evaluation,” in Proc. International Conference On Communications (ICC). IEEE, 2015, pp. 6880–6886. 

[6] L. De Cicco, S. Mascolo, and V. Palmisano, “QoE-driven resource allocation for massive video distribution,” Ad Hoc Networks, 
2019. 

[7] W. Iqbal, A. Erradi, and A. Mahmood, “Dynamic workload patterns prediction for proactive auto-scaling of web applications,” 
Journal of Network and Computer Applications, vol. 124, pp. 94 – 107, 2018. 

[8] C. Valliyammai and R. Mythreyi, “A dynamic resource allocation strategy to minimize the operational cost in cloud,” in Emerging 
Technologies in Data Mining and Information Security, A. Abraham, P. Dutta, J. K. Mandal, A. Bhattacharya, and S. Dutta, Eds. 
Springer Singapore, 2019, pp. 309–317. 

[9] J. Nino-Mora, “Resource allocation and routing in parallel multi-server  ̃queues with abandonments for cloud profit maximization,” 
Computers and Operations Research, vol. 103, pp. 221 – 236, 2019. 

[10] H. Zhao, J. Wang, Q. Wang, and F. Liu, “Queue-based and learning-based dynamic resources allocation for virtual streaming 
media server cluster of multi-version VoD system,” Multimedia Tools and Applications, Apr 2019. 

 

 

 

30 



Thank You! 

31 

Any Questions? 


