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User Request Pattern for Blockbuster Videos: 

Stable Popularity, Volatile Traffic 
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Blockbuster video service (e.g., 

Netflix) to a large group of audience 

• Video access popularity: rather 

stable and predictable over days or 

weeks 

• User request traffic: may vary by 

an order of magnitude in hours 

• Statically allocates a fixed number 

of servers is not efficient. 

• Auto-scaling can meet the 

demand in a timely and cost-

effective manner. 



Request Rate Over a Typical Day 

• Blockbuster videos have rather 
stable and predictable over 
days or weeks (cf. UGC). 

• Popularity remains quite stable 
(varies less than 10%) over a 
day. 

• Request traffic may vary by an 
order of magnitude over merely 
hours. 

• Auto-scaling is a solution to 
meet demand in a timely and 
cost-effective manner.  
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User request of a leading video service 

website in China over a day 



A Typical Auto-scaling VoD Cloud  

Auto-scaling Server 

• Server has a certain storage 

and streaming capacity 

• Server can be activated or 

deactivated in a short time 

• Homogeneous servers 

• Activating server according to 

incoming traffic 

Traffic Dispatcher 

• Distribute request to an active 

server with the video 

• Otherwise to core network 

Video Block 

• Blocks have the same size 

• Partition large video into blocks 

• Video block is only for 

management purpose (cf. 

DASH segments) 
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A video cloud consisting of 

auto-scaling VoD data centers. 



Maximizing the User Request Rate Threshold 

• The total block request rate 𝜆 
(requests/second) is mapped to an 

auto-scaling level 𝑖 (𝑖=0, 1, 2,…). 

• Auto-scaling level 𝑖 has a request 

rate threshold 𝜆𝑖 with a predefined 

set of active server 𝑉𝑖. 𝑉𝑖 contains all 

the video blocks (at least one 

replica for each block). 

• When 𝜆𝑖 < 𝜆 ≤ 𝜆𝑖+1, servers in 𝑉𝑖+1 
are activated. 

• Let |𝑉0| =  𝜈, we have |𝑉𝑖| =  𝜈 + 𝑖. 

• To minimize the deployment cost, 

we seek to maximize the user 

capacity supported by the active 

servers, which is proportional to 𝜆𝑖. 
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Request rate  Increase  Decrease 

Auto-scaling level  Increase Decrease 

Active servers More Less 



Optimizing Following Inter-dependent Dimensions 
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Block Allocation (BA) 

• A server has limited storage and cannot store all the video blocks. 

• Which blocks should be allocated (or replicated) in each server? 

• Servers in 𝑉𝑖 shall store at least one replica of each video block. 

Server Selection (SS) 

• Which servers should be activated (i.e., in 𝑉𝑖) for auto-scaling level 𝑖? 

• Servers in 𝑉𝑖 shall have enough replicas for each video block. 

Request Dispatching (RD) 

• Some video blocks may be stored on multiple active servers. 

• Which server to cater a video block request? 

• The dispatcher has to balance the load of each active server. 



Challenges: Timescale and Interdependence  
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Block Allocation (BA) 

• Timescale: in day or week 

• Videos are pre-allocated (preloaded) in all the servers for SS and RD 

• On-the-fly BA is not necessary due to the relatively stable popularity 

Server Selection (SS) 

• Timescale: in hour 

• SS decision should be based on a given BA 

Request Dispatching (RD) 

• Timescale: in second 

• RD decision should be based on a given BA and SS 

• We shall jointly optimize these 3 interdependent dimensions. 
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Contributions 

Problem formulation and its NP-hardness 

• Study the novel problem: maximize 𝜆𝑖 for each auto-scaling level 

• A multi-objective mixed-integer linear programming problem 

• We prove the problem is NP-hard 

• Traditional static provisioning is a special case of our problem 

Stack-based algorithm with proven approximation ratio 

• AVARDO: Auto-scaling Video Allocation and Request Dispatching 

Optimization 

• Efficient and closely optimal algorithm with proven approximation ratio 

• Stack-based approach with minimum overhead: servers are activated 

(deactivated) due to the increment (decrement) of auto-scaling level 

Extensive trace-driven experimental study based on real-world data 

• Trace-driven experiments with real-world VoD data 

• Achieve significantly lower optimality gap in active server number (by 

multiple times) compared with other state-of-the-art schemes 



Related Work 
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Cloud-based VoD architecture resource provisioning 

• Yet to consider some important features inside the data center due to model 

abstraction [1], [2], [3] 

• AVARDO complements to these studies by investigating from a more detailed point 

of view 

Content replication in traditional and cloud-based VoD data centers 

• Assumes no dynamics within the data center: the server configurations and 

bandwidth reservation are rarely changed [4] 

• Not considered the change of storage and video replication of the auto-scaling 

servers [5] 

• AVARDO optimize for every possible auto-scaling levels 

Cloud resources auto-scaling mechanism 

• Predict the user demand and improves the performance in the online phase [6], [7] 

• Each request or task considered in the problems is served by only one server [8]-

[10] 

• AVARDO considers BA and RD as some videos are too popular to be served by 

one server 
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Symbol Used in Formulation 
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𝒖 
The streaming capacity of a 

server (bits/s) 
𝒑𝒎 

Access probability of video 

block 𝑚 

𝒄 
The storage capacity of a 

server (bits)  
𝑳𝒎 

Average holding time of video 

block 𝑚 (in seconds) 

𝒇 The file size of block (bits)  𝒃𝒎 
Video streaming rate of video 

block 𝑚 (bits/s) 

𝑽 
The set of all standby 

servers in data center 
𝑹𝒎 𝝀  

Traffic of block 𝑚 (bits/s) at 

request rate 𝜆 

𝑽𝒊 
The set of active servers at 

auto-scaling level 𝑖 
𝑰𝒗
𝒎 

Binary variable indicating 

server 𝑣 stores block 𝑚 

𝑴 The set of  all blocks 

𝒓𝒗
𝒎(𝒊) 

Probability of streaming a 

request of block 𝑚 from 

server 𝑣 at auto-scaling level 𝑖 𝑴𝒗 
The set of video blocks 

stored in server 𝑣 

𝝀 
Total block request rate 

(requests per second) 
𝝁 

Server utilization limit to 

ensure quality-of-service 



Problem Formulation of AVARD: 

Auto-scaling Video Allocation and Request Dispatching 
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Objective max(𝜆0, 𝜆1, … 𝜆𝑛) User request rate threshold 

Subject to 

Storage 

Streaming 

QoS 

𝑅𝑚 𝜆 = 𝜆𝑝𝑚𝐿𝑚𝑏𝑚, ∀𝑚 ∈ 𝑀 
Traffic of video block 𝑚 (bits/s) at 

request rate 𝜆 

 𝐼𝑣
𝑚

𝑚∈𝑀(𝑣)

𝑓 ≤ 𝑐, ∀𝑣 ∈ 𝑉 Server cannot store video blocks 

beyond its storage 

𝑟𝑣
𝑚 𝑖 ≤ 𝐼𝑣

𝑚, ∀𝑣 ∈ 𝑉𝑖 , 𝑚 ∈ 𝑀 
Server can serve the traffic of a 

block only if it has this block 

 𝑟𝑣
𝑚

𝑣∈𝑉𝑖

(𝑖) ≥ 1, ∀𝑚 ∈ 𝑀 All the user request for each video 

block shall be served 

 𝑟𝑣
𝑚(𝑖)

𝑚∈𝑀

𝑅𝑚 𝜆𝑖 ≤ 𝜇𝑢, ∀𝑣 ∈ 𝑉𝑖 
The utilization of the streaming 

capacity of every server should not 

exceed a certain limit 𝜇 



NP-Hardness of AVARD Problem 
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The Partition Problem: (NP-complete) 

Whether a given multiset 𝑆 =  {𝑠1, 𝑠2, … , 𝑠𝑛} of 𝑛 positive integers can be 

divided into two subsets 𝑆1 and 𝑆2 such that the sums of the numbers in 𝑆1 
and 𝑆2 are the same. 

The AVARD problem is NP-hard 

• The Partition Problem is reducible to our AVARD optimization problem. 

• Considering that: 

‒ The Auto-scaling VoD system has only auto-scaling level 0. 

‒ We have 2 servers with storage 𝑛 and streaming capacity 𝑠/2 + 𝑛. 
‒ We have 2n videos with 𝑓 = 1. 
‒ Half of videos have 𝑅𝑚 = 𝑠𝑚 + 1; the other half videos have 𝑅𝑚 =1. 
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Additional Symbol Used in Algorithm 
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𝒗𝒊 
The server to activate when 

auto-scaling level goes from 

𝑖 − 1 to 𝑖 (i.e., 𝑉𝑖 = 𝑉𝑖−1 ⋃ 𝑣𝑖 ) 

𝑮 The set of video clusters 

𝑮(𝒗) 
The set of video clusters on 

server 𝑣 

𝑷𝒎 
Streaming ratio of video 

block 𝑚 
𝑮𝒌 

The set of video clusters that 

have 𝑘 replicas 

𝑵𝒎 
Number of replicas for block 

𝑚 stored in 𝑉0 
𝑷 𝒈  

Total streaming ratio of 

replicas in cluster 𝑔 

𝑵𝐓 
Number of replicas can be 

stored in 𝑉0 
𝑪 𝒈  

Storage capacity used for 

cluster 𝑔 

𝑵𝐀 
Number of surplus replicas in 

𝑉0 (i.e., 𝑁𝑇 − |𝑀|) 
𝒒𝒈
𝒎 

Probability of streaming a 

request of block 𝑚 from 

cluster 𝑔 at auto-scaling level 

0 𝝈𝒎 
Average replica streaming 

ratio of block 𝑚 

𝝈 
Average replica streaming 

ratio threshold  
𝝀𝐨𝐩 

Theoretical upper limit of 𝜆 
threshold 



AVARDO: Approximation Algorithm for an  

Auto-scaling Video-on-Demand System 
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Preprocessing: Block Replication and Clustering 

• Simplify the algorithm by putting the video blocks into clusters. 

• Each cluster has the same file size and generates same user traffic. Thus, 

it can be treated as a mega video file.  

1. The block replication step decides how many replicas are required for a 

video block (i.e., 𝑁𝑚). 

2. The replica clustering step decides which replicas are in a cluster (i.e., 𝑔). 

Block Allocation and Request Dispatching 

1. Consider cluster allocation for servers in 𝑉0. 
2. Consider server 𝑣𝑖 incrementally. 

3. Given request dispatching at auto-scaling level 𝑖. 

• Auto-scaling Video Allocation and Request Dispatching Optimization 

• Jointly optimize Video Allocation, Server Selection, and Request Dispatching 

AVARDO has a stack-based server selection scheme 

• Consider the set of active servers as a stack 

• Push (activate) or pop (deactivate) a server in an orderly sequence 



Preprocessing Stage: Block Replication 
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fully replicated blocks 
𝑁𝑚 =  

𝜈,
𝑃𝑚/𝜎
1,
,    
if 𝑃𝑚 > 𝜈𝜎,
if 𝜎 < 𝑃𝑚 ≤ 𝜈𝜎,
if 𝑃𝑚 ≤ 𝜎.

 

𝑃𝑚 =
𝑝𝑚𝐿𝑚𝑏𝑚

 𝑝𝑚𝐿𝑚𝑏𝑚𝑚∈𝑀

, ∀𝑚 ∈ 𝑀 
Streaming Ratio 𝑃𝑚 is proportional 

to the traffic of video block 𝑚 

partially replicated blocks 

The Block replication is a popularity-based scheme (in terms of 𝑃𝑚)  

1. The least popular block has at least one replica in 𝑉0 (i.e., 𝑁𝑚 ≥ 1). 

2. For the most popular block 𝑚, each server has at most one replica (i.e., 

𝑁𝑚 ≤ ν). 

3. For the other blocks, 𝑁𝑚 is proportional to 𝑃𝑚 . 

Average replica streaming ratio threshold 𝜎 

• A smaller 𝜎 will increase the number of video replicas. 

• We find the smallest possible 𝜎 through binary search. 



Preprocessing Stage: Replica Clustering 

19 

Algorithm 1: AVARDO replica clustering 

Initialization: 𝑃(𝑔) = 0, 𝐶(𝑔) = 0, ∀𝑔 ∈ 𝐺; 
Put all partially replicated replicas into priority queue ℚ; 

while ℚ ≠ ∅ do  

Pop top 𝜈2 replicas with max 𝜎𝑚 from ℚ; 

Put these 𝜈2 replicas into priority queue ℚ𝑚; 

while ℚ𝑚 ≠ ∅ do 

Pop the replica 𝑚 with max 𝜎𝑚 from ℚ𝑚; 

Pop the cluster 𝑔 with min 𝑃(𝑔) from ℚ𝑔; 

Store a replica 𝑚 in 𝑔: 𝑔 ← 𝑚; 

Update parameters: 𝑃(𝑔) += 𝜎𝑚, 𝐶(𝑔) += 𝑓; 
end 

end 

Objective: Each cluster has the same file size 

and generates similar user traffic. 

A 

B C 
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D 
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I J K L 

A 

B C D 

E F G 

H 

I J 
K 
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Block Allocation and Request Dispatching 
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Block Allocation 

1. All the servers shall store fully 

replicated blocks. 

2. For 𝑣 ∈ 𝑉0, we distribute the 𝜈2 
clusters into 𝜈 servers such that 

each server 𝑣 ∈ 𝑉0 stores 𝜈 
unique clusters. 

3. For server 𝑣𝑖 such that 𝑖 ≤ 𝜈, it 
shall pick one unique cluster from 

every server 𝑣 ∈ 𝑉0 where the 

cluster has not been picked by 

the other server 𝑣𝑙  such that 𝑙 ≤ 𝜈. 
4. For server 𝑣𝑖 such that 𝑖 = 𝑘𝜈 +
𝑗 with 𝑘 ≥ 1, we let 𝐺(𝑖)  =  𝐺(𝑗) 
(i.e., server 𝑣𝑖 and 𝑣𝑗 have the 

same block replication). 

Traffic Dispatching 

We first consider the 𝑖 = 0 case: 

𝑞𝑔
𝑚 =  
1 𝑁𝑚 , if 𝑚 ∈ 𝑔,
 0, otherwise.

 

𝑟𝑣
𝑚 0 =  𝑞𝑔

𝑚

𝑔∈𝐺(𝑣)

, ∀𝑚 ∈ 𝑀, 𝑣 ∈ 𝑉0. 

We then consider the 𝑖 > 0 case: 

• For the servers 𝑣 ∈ 𝑣1, … , 𝑣𝑖, we have 

𝑟𝑣
𝑚 𝑖 =

𝜈

𝜈 + 𝑖
 𝑞𝑔

𝑚

𝑔∈𝐺(𝑣)

, ∀𝑚 ∈ 𝑀. 

• For the servers in 𝑣 ∈ 𝑉0, denoting 

𝐺𝑥 = 𝐺(𝑣) ∩ 𝐺𝑘+2 and 𝐺𝑦 = 𝐺(𝑣) ∩ 𝐺𝑘+1, for 

all 𝑚 ∈ 𝑀 we have 

𝑟𝑣
𝑚 𝑖 =

𝑗

𝜈 + 𝑖
 𝑞𝑔

𝑚

𝑔∈𝐺𝑥

+
𝜈 + 𝑗

𝜈 + 𝑖
 𝑞𝑔

𝑚

𝑔∈𝐺𝑥

. 

For auto scaling level 𝑖 > 0, we write 𝑖 = 𝑘𝜈 + 𝑗 such that 𝑘 ≥ 0 and 1 ≤ 𝑗 ≤ 𝜈. 



Optimality and Time Complexity 
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Time Complexity: 𝑶( 𝑴 𝐥𝐨𝐠 𝑴 + |𝑴||𝑽|𝟐) 

• Searching for 𝜎 can be done in 𝑂(|𝑀|). 
• The major component of clustering is to get the replicas from the priority 

queue. The time complexity is thus 𝑂(|𝑀| log |𝑀|). 
• Computing each 𝑟𝑣

𝑚(𝑖) requires constant time. Total time is 𝑂(|𝑀||𝑉|2). 

Theoretical Optimality Gap of AVARDO: 𝝂𝟐𝝈 

• Lemma 1: 𝜎 is less than 1 𝑁A . 

• Lemma 2: For every video cluster 𝑔 ∈ 𝐺, its streaming ratio 𝑃(𝑔) is no 

more that 1 𝜈2 + 𝜎. 
• The optimality gap, given by 𝜆op 𝜆 − 1, is no more than 𝜈2𝜎. 

• 𝜈 is proportional to video number, and 𝜎 is proportional to block size 𝑓. 

Upper bound of optimality gap in real-world setting: less than 𝟏% 

• A nowadays video server can store more than 105 videos (𝜎 < 10−5). 
• For auto-scaling level 0, 30 servers are more than enough (𝜈 ≤ 30). 
• We can further reduce 𝜎 by partitioning the video files into smaller blocks. 
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Simulation Environment 

Parameter Baseline value 

• Number of blocks |𝑀| around 3×106 

• block request rate 𝜆 (requests/s) 2,000 

• Number of blocks in a server 𝑐/𝑓 6×105 

• Server streaming capacity 𝑢 (Gbps) 25 

• Server utilization limit 𝜇 0.9 
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• The real-world data trace is from a leading video service website in 

China over 2 weeks. 

• We partition the videos into the blocks of the same size of 100MB. 

• When a video has multiple resolutions and bit rates, we treat them as 

multiple video files. 



Performance Metrics  
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Performance Metrics 

• Request rate threshold 𝜆𝑛 Optimization objective of AVARDO 

• Optimality gap of 𝜆𝑛 
Difference between scheme performance and the 

theoretical performance bound 

• Number of active servers Operation cost over a given time period 

• Fairness of active server 

utilization 

Jain’s Fairness Index, which is between 0 and 1 (a higher 

index indicates a fairer load sharing) 

Comparison Schemes 

• Uniform replication 
Every video has the same number of replicas. The videos 

are randomly stored in the servers. 

• Hierarchical popularity 

replication 

2 types of server: repository and cache. Repository 

servers collaboratively store all. Caches only store popular 

videos. 

• Super optimum 
Serves as the theoretical performance bound. We assume 

that a video can be partitioned infinitesimally (i.e., 𝑓 → 0).  



Asymptotic Optimality 
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Outperform State-of-the-art Schemes 
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Closely Optimal Over a Typical Day 
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Problem Formulation  

and NP-hard analysis 

• Formulation the problems as multi-objective 

mixed-integer linear programming  

• Prove that AVARD problem is NP-hard 

Stack-based approximation 

algorithm with provable 

performance 

• AVARDO: Auto-scaling Video Allocation and 

Request Dispatching Optimization 

• A novel and closely-optimal approximation 

algorithm with proven optimality gap 

• Stack-based approach to minimize overhead 

Extensive trace-driven  

experimental results 

• Real-world VoD data traces 

• Outperform the state-of-the-art schemes  

• Significantly lower optimality gap (often 1/20) 
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Thank You! 
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Any Questions? 


