
// part III: the module

module LapackNetlib = begin
 provider-name dlls-list the implementation
let NetlibProvider = new Microsoft.FSharp.Math.Experimental.Provider<_>("Netlib",[|"blas.dll";"lapack.dll"|],fun () -> new LapackNetlibService() :> ILapack)

end

The structure of F# PowerPack Math Providers.

The interface is defined in lapack_base.fs:
type ILapack = interface
 //Matrix-Matrix Multiplication
 abstract dgemm_ : Math.matrix * Math.matrix -> Math.matrix
 //Matrix-Vector Multiplication
 abstract dgemv_ : Math.matrix * Math.vector -> Math.vector

 .. more methods

The source files. The two actual implementations are done in lapack_service_mkl.fs&

lapack_service_netlib.fs by calling native functions in MKL or Netlib-Lapack math

libraries separately.

As the netlib implementation is freely available online. Let's see the design in

lapack_service_netlib.fs:

// part I: the dll imports
module LapackNetlibStubs = begin
 [<System.Runtime.InteropServices.DllImport(@"blas.dll",EntryPoint="dgemm_")>]
 extern void dgemm_(char *transa, char *transb, int *m, int *n, int *k, double
*alpha, double *a, int *lda, double *b, int *ldb, double *beta, double *c, int
*ldc);
 .. More dll imports

// part II: the implementation calling the foreign functions
type LapackNetlibService() = class
interface ILapack with

///Matrix-Matrix Multiplication
member this.dgemm_((a:matrix),(b:matrix)) =

 // input copies
 let a = Matrix.copy a

 .. The pattern of each function is

 1) do some variable copying

 2) lock the copied variables into native pointers

 3) call the native function

 4) unlock the pointers

Side note 1:
The detailed implementation of a function:

member this.dgemm_((a:matrix),(b:matrix)) =
 // input copies
 let a = Matrix.copy a
 let b = Matrix.copy b
 // dimensions
 let m = NativeUtilities.matrixDim1 a in
 let k = NativeUtilities.matrixDim2 a in
 NativeUtilities.assertDimensions "dgemm_" ("k","Dim1(b)")
(k,NativeUtilities.matrixDim1 b);
 let n = NativeUtilities.matrixDim2 b in
 // allocate results
 let c = Matrix.zero (m) (n)
 // transpose
 let c = Matrix.transpose c
 // setup actuals
 let mutable arg_transa = 't'
 let mutable arg_transb = 't'
 let mutable arg_m = m
 let mutable arg_n = n
 let mutable arg_k = k
 let mutable arg_alpha = 1.0
 let arg_a = NativeUtilities.pinM a
 let mutable arg_ldk = k
 let arg_b = NativeUtilities.pinM b
 let mutable arg_ldn = n
 let mutable arg_beta = 1.0
 let arg_c = NativeUtilities.pinM c
 let mutable arg_ldm = m
 // call function
 try
 LapackNetlibStubs.dgemm_(&&arg_transa,&&arg_transb,&&arg_m,&&arg_n,
&&arg_k,&&arg_alpha,arg_a.Ptr,&&arg_ldk,arg_b.Ptr,&&arg_ldn,
&&arg_beta,arg_c.Ptr,&&arg_ldm)
 finally
 NativeUtilities.freeM arg_a
 NativeUtilities.freeM arg_b
 NativeUtilities.freeM arg_c
 // INFO
 // fixups
 let c = Matrix.transpose c
 // result tuple
 c

linear_algebra_service.fs

Each linear algebra function calls one of the providers to perform calculations. This file is like the

wrapper for the service providers.

 let MKLProvider = LapackMKL.MKLProvider
 let NetlibProvider = LapackNetlib.NetlibProvider
 let LAPACKService = new Service<ILapack>([MKLProvider;NetlibProvider])

 let Service() =
 match LAPACKService.Service() with
 | Some svc -> svc
 | None -> failwith "LAPACK service either not available, or not started"

two exemplar functions:

 let SVD a =
 let vs,u,w = Service().dgesvd_ a
 u,vs,w
 /// Given A[n,n] find it's inverse.
 /// This call may fail.
 let inverse a =
 let n,m = matrixDims a
 NativeUtilities.assertDimensions "inverse" ("rows","columns") (n,m)
 let _,_,x = Service().dgesv_(a,Matrix.identity n)
 x

Side note 2:
the service<_> module (service.fs)

As said in the source file, this is a general DLL service
module. The Service<'a> object contains a set of providers, each
of which is a native DLL function provider.

Service<'a> is defined as:
type Service<'a>(providers:Provider<'a> seq) =
 let mutable providers = Seq.toArray providers // possible providers
configuration state
 let mutable state = ServiceEnabledUninitialised // service state

Thus a service has a set of Provider<_>s:

/// Generic provider with unmanaged DLL dependencies.
type Provider<'a>(name:string,requiredDLLs:string[],provide:unit -> 'a) =
 // NOTE: The dependencies could be extended to include architecture.
 member this.Name = name
 member this.RequiredDLLs = requiredDLLs
 member this.Provide() = provide()

linear_algebra.fs:
the actual exposed linear algebra interface to the end user

 let Lapack = LinearAlgebraService.LAPACKService // The service/provider object

Notice the variable Lapack here. the type of it is Service<Ilapack>.

 module Locals =
 let HaveService() = Lapack.Available()
 open Locals

a typical linear algebra function is implemented as:

 let QR a =
 if HaveService() then LinearAlgebraService.QR a
 else LinearAlgebraManaged.QR a

the LinearAlgebraManaged module contains an incomplete list of linear algebra functions
written in F#.

Side note 3:

the linear_algebra_managed.fs contains the managed F# implementation
of the common linear algebra functions. Should be noted that
not all the functions are implemented yet.

module LinearAlgebraManaged =

 let NYI () = failwith "Not yet implemented, managed fallback linear
algebra ops coming soon"

 type Permutation = Permutation of int * (int -> int)

 // some are not implemented

 let SVD A = NYI()
 let EigenSpectrum A = NYI()
 let Condition A = NYI()

 // some are implemented

 let QR (A:matrix) =
 let (n,m) = matrixDims A
 let mutable Q = Matrix.identity n //
Keeps track of the orthogonal matrix.
 let R = Matrix.copy A

 // This method will update the orhogonal transformation fast when
given a reflection vector.
 let UpdateQ (Q:matrix) (v:vector) =
 let n = Vector.length v
 let (nQ,mQ) = matrixDims Q

From a user's perspective: how to use Math Providers?

let isSucc = Experimental.LinearAlgebra.Lapack.Start()

Pasted from <http://fdatamining.blogspot.com/2010/03/matrix-and-linear-algebra-in-f-part-ii.html>

F#: The Design of Math Providers
Tuesday, August 10, 2010

3:39 PM

 Quick Notes Page 1

 // This method will update the orhogonal transformation fast when
given a reflection vector.
 let UpdateQ (Q:matrix) (v:vector) =
 let n = Vector.length v
 let (nQ,mQ) = matrixDims Q

 // Cache the computation of Q*v.
 let Qv = Vector.init nQ (fun i -> (Q.[i..i,nQ-n..].Row 0) * v)

 // Update the orthogonal transformation.
 for i=0 to nQ-1 do
 for j=nQ-n to nQ-1 do
 Q.[i,j] <- Q.[i,j] - 2.0 * Qv.[i] * v.[j-nQ+n]
 ()

 // This QR implementation keeps the unreduced part of A in R. It
computes reflectors one at a time
 // and reduces R column by column. In the process it keeps track of
the Q matrix.
 for i=0 to (min n m)-1 do
 let v = HouseholderTransform R i
 UpdateQ Q v
 Q,R

From a user's perspective: how to use Math Providers?

let isSucc = Experimental.LinearAlgebra.Lapack.Start()

Pasted from <http://fdatamining.blogspot.com/2010/03/matrix-and-linear-algebra-in-f-part-ii.html>

 Quick Notes Page 2

