Low Complexity Multi-Resource Fair Queueing with Bounded Delay

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto
May 1, 2014
Background

- Middleboxes are widely deployed in today’s network
 - IPsec, Monitoring, Firewalls, WAN optimization, etc
Background

- Performing complex network functions requires **multiple** middlebox resources

- CPU, memory b/w, link b/w

Ghodsi SIGCOMM’12
How to **fairly** share multiple resources among flows?
Desired Fair Queueing Algorithm

- **Fairness**
- Bounded scheduling delay
- Low complexity
Dominant Resource Fairness (DRF)

- **Dominant resource**: The resource that requires the most **processing time**
 - A packet p requires 1 ms of CPU processing, and 3 ms of link transmission
 - Link bandwidth is its dominant resource
Dominant Resource Fairness (DRF)

- Max-min fairness on flow’s processing time of the dominant resource

- Flows receive the same processing time on their respective dominant resources
Desired Fair Queueing Algorithm

- Fairness
- **Bounded scheduling delay**
- Low complexity
Scheduling Delay

- Scheduling delay of packet p
 - $D(p) = t_2 - t_1$
 - t_1: time when p reaches the head of its queue
 - t_2: time when p finishes service on all resources
Bounded Scheduling Delay

- Scheduling delay is bounded by a small constant factor
 - Inversely proportional to a flow’s weight

\[D_i(p) \leq \frac{C}{w_i} \]
Desired Fair Queueing Algorithm

- Fairness
- Bounded scheduling delay
- Low complexity
Low Complexity

- Make scheduling decisions at $O(1)$ time
 - Independent of the number of flows
- Easy to implement
The State-of-the-art

- Dominant Resource Fair Queueing (DRFQ) [Ghodsi12]
 - High complexity $O(\log n)$

- Multi-resource round robin (MR3) [ICNP13]
 - $O(1)$ time
 - May incur unbounded delay for weighted flows
We propose Group Multi-Resource Round Robin (GMR3)
GMR3

- $O(1)$ time
- Bounded scheduling delay
- Near-perfect fairness
Delay Problem of Multi-Resource Round Robin

- Flow 1 weighs 1/2, while flow 2 to 6 each weighs 1/10

- Flows with large weights are served in a “burst” mode

- Some packets have to wait for an entire round to be scheduled
An Improvement

- Spread the scheduling opportunities over time, in proportion to flows’ respective weights

- Packets do not need to wait for a long round to get scheduled
Flow Grouping

- Normalized flow weights \(\sum_{i=1}^{n} w_i = 1 \).

- Flow group \(k \)

\[
G_k = \{ i : 2^{-k} \leq w_i < 2^{-k+1} \}, \quad k = 1, 2, \ldots
\]

- Flows with approximately the same weights

- A small number of flow groups \(n_g \leq \log_2 W \)

\[
W = \max_i w_i / \min_j w_j
\]
Distributing Scheduling Opportunities

- Virtual slot 0, 1, 2, …, each representing a scheduling opportunity of a flow

- Each flow \(i \) of flow group \(G_k \) is assigned to exactly one slot every \(2^k \) slots, roughly matching its weight

\[
G_k = \{ i : 2^{-k} \leq w_i < 2^{-k+1} \}, \quad k = 1, 2, \ldots
\]
An example

- Flow group G1 — flow 1 (weight = 1/2)
- Flow group G4 — flow 2 to 6 (weight = 1/10)
Fine tune the dominant service a flow receives at each scheduling opportunity
Credit System

- Each flow maintains a credit account
 - Credit balance represents the deserved dominant service in the current round
 - Deposit credits upon a scheduling opportunity
 - Withdraw credits at the end of a scheduling opportunity
 - credits = the dominant services received due to this scheduling opportunity
Depositing Credits

- Flow i belonging to flow group G_k: $2^{-k} \leq w_i < 2^{-k+1}$,

- Credits deposited upon a scheduling opportunity

$$c_i = 2^k L w_i,$$

- L — Maximum packet processing time

- Roughly the same amount of credits $L \leq c_i < 2L$
Potential Progress Gap

- A flow may not receive dominant services in the assigned virtual slot

- Potential progress gap may lead to arbitrary unfairness
Progress Control Mechanism

- Enforce roughly consistent progress across all resources

- Upon the k^{th} scheduling opportunity, defer flow i’s service until it has already received service on the last resource due to the previous opportunity ($k-1$)

 - Work progress on any two resources will not differ too much
Two-Level Hierarchical Scheduling

- Combine flows with similar weights into a flow group
- Inter-group scheduling — determine which flow group to choose
- Intra-group scheduling — determine which flow to choose from the selected flow group
 - Round robin
 - Credit system + Progress control mechanism
Performance Analysis

- n — # of flows
- m — # of resources
- $W = \max_i w_i / \min_j w_j$ — Max pkt proc time

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Complexity</th>
<th>Fairness1</th>
<th>Scheduling Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRFQ [10]</td>
<td>$O(\log n)$</td>
<td>$L(1/w_i + 1/w_j)$</td>
<td>Unknown</td>
</tr>
<tr>
<td>MR3 [17]</td>
<td>$O(1)$</td>
<td>$2L(1/w_i + 1/w_j)$</td>
<td>$4(m + W)^2 L/w_i$</td>
</tr>
<tr>
<td>GMR3</td>
<td>$O(1)$</td>
<td>$9L(1/w_i + 1/w_j)$</td>
<td>$24mL/w_i$</td>
</tr>
</tbody>
</table>
Simulation Results
(a) Normalized dominant service.
(b) CDF of the scheduling delay.
Conclusions

- GMR3, a two-level hierarchical scheduling algorithm
- The first multi-resource fair queueing of
 - $O(1)$ complexity
 - near-perfect fairness
 - bounded scheduling delay