
Range Searching on Uncertain Data∗

Pankaj K. Agarwal
Duke University

Durham, NC, USA
pankaj@cs.duke.edu

Siu-Wing Cheng
HKUST

Hong Kong, China
scheng@cse.ust.hk

Yufei Tao
CUHK

Hong Kong, China
taoyf@cse.cuhk.edu.hk

Ke Yi
HKUST

Hong Kong, China
yike@cse.ust.hk

Abstract

Querying uncertain data has emerged as an important problem in data management due to the im-
precise nature of many measurement data. In this paper we study answering range queries over un-
certain data. Specifically, we are given a collection P of n uncertain points in R, each represented by
its one-dimensional probability density function (pdf). The goal is to build a data structure on P such
that given a query interval I and a probability threshold τ , we can quickly report all points of P that
lie in I with probability at least τ . We present various structures with linear or near-linear space and
(poly)logarithmic query time. Our structures support pdf’s that are either histograms or more complex
ones such as Gaussian or piecewise algebraic.

1 Introduction

Range searching, namely preprocessing a set of points into a data structure so that all points within a given
query range can be reported efficiently, is one of the most widely studied topics in computational geometry
and database systems [2], with a wide range of applications. Most of the works to date deal with certain
data, that is, the points are given their precise locations in R

d. Recent years, however, have witnessed a
dramatically increasing amount of attention devoted to managing uncertain data because many real-world
measurements are inherently accompanied with uncertainty. Besides the recent efforts in the data manage-
ment community (see the survey [15]), various issues related with data uncertainty have also been studied
in artificial intelligence [20], machine learning [5], statistics [18], and many other areas.

A popular approach to model data uncertainty [13, 25] is to consider each uncertain point p as a prob-
ability distribution over space. It is usually assumed that the points are independent but it is not necessary.
The generally agreed semantics for querying uncertain data is the thresholding approach [13, 16], i.e., for a

∗A preliminary version of this paper appeared as “Indexing uncertain data” in ACM Symposium on Principles of Database
Systems (PODS), 2009. P. K. Agawal is supported by NSF under grants CNS-05-40347, CCF-06 -35000, IIS-07-13498, and CCF-
09-40671, by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452, by an NIH grant 1P50-GM-08183-01, by a DOE grant
OEG-P200A070505, and by a grant from the U.S.–Israel Binational Science Foundation. S.-W. Cheng is supported by HKRGC
under grant GRF 612107; Y. Tao is supported by HKRGC under grants GRF 1202/06, GRF 4161/07, and GRF 4173/08; and K. Yi
is supported by Hong Kong Direct Allocation Grant (DAG07/08).

1

particular threshold τ , retrieve all the tuples that appear in the query range with probability at least τ . This
problem turns out to be nontrivial even in one dimension. The naı̈ve approach of examining each point one
by one and computing its probability of being inside the query is obviously very expensive. Note that the
independence assumption among the uncertain points is irrelevant as far as range queries are concerned.

Problem definition. We now define our problem more formally. Let P = {p1, . . . , pn} be a set of n
uncertain points in R, where each pi is specified by its probability density function (pdf) fi : R → R

+∪{0}.
We assume that each fi is a piecewise-uniform function, i.e., a histogram, consisting of at most s pieces for
some integer s ≥ 1. In practice, such a histogram can be used to approximate any pdf with arbitrary
precision. In some applications each point pi has a discrete pdf, namely, it could appear at one of a few
locations, each with a certain probability. This case can also be represented by the histogram model using
infinitesimal pieces around these locations, so the histogram model also incorporates the discrete pdf case.
We will adopt the histogram model by default throughout the paper. For simplicity, we assume s to be a
constant for most of the discussion. Some of our structures also support more complicated pdf’s (such as
Gaussian or piecewise algebraic), and we will explicitly say so for these structures.

Given the set P and the associated pdf’s, the goal is to build a data structure on them so that for a query
interval I and a threshold τ , all points p such that Pr[p ∈ I] ≥ τ are reported efficiently. We also consider
the version where τ is fixed in advance. We refer to the former as the variable threshold version and the
latter as the fixed threshold version of the problem. The latter version is useful since in many applications the
threshold is always fixed at, say, 0.5. Moreover, the user can often tolerate some error ε in the probability.
In this case we can build 1/ε fixed-threshold structures with τ = ε, 2ε, . . . , 1, so that a query with any
threshold can be answered with error at most ε.

Applications. The problem of range searching over uncertain data was first introduced by Cheng et al. [13]
and has numerous applications in practice. For example, a certain measurement, say temperature, may be
taken by multiple sensors in a sensor network. Due to various imprecision factors, the readings of these
sensors may not be identical, in which case the temperature of a location can be conveniently modeled as a
pdf. In this context, a query in our problem would retrieve “all the locations whose temperatures are between
100 and 120 degrees with probability at least 50%”. It is not hard to see that there are many similar scenarios
involving uncertain data. In fact, our problem is also important even in several traditional applications where
no uncertainty seems to exist. For instance, consider a movie rating system (such as the one at Amazon)
where each reviewer can give a rating from 1 to 10. A query of our problem would find “all the movies such
that at least 90% of the ratings it receives are at least 8”.

Previous results. The problem of range searching on uncertain data has received much attention in the
database community over the last few years. The earliest work [13] considered the above problem in a
simpler form, namely, where each fi(x) is a uniform distribution — a special case of our definition in
which the histogram consists of only one piece. For the fixed-threshold version with threshold 0 < τ ≤ 1,
they proposed a structure of O(nτ−1) size with O(τ−1 log n + k) query time, where k is the output size.
These bounds depend on τ−1, which can be arbitrarily large. This structure does not extend to histograms
consisting of two or more pieces. They presented heuristics for the variable threshold version without any
performance guarantees. Tao et al. [25] considered the problem in two and higher dimensions, and presented
some data structures based on space partitioning heuristics. They prune points whose probability of being
inside the query range is either too low or too high, but the query procedure visits all points of P in the
worst case. Finally, yet another heuristic is presented in [22], but it is still the same as a sequential scan in
the worst case.

2

Cheng et al. [13] also showed that the fixed-threshold version of the problem is at least as difficult as
2D halfplane range-reporting (i.e., report all points lying in a query halfplane), and that it can be reduced
to 2D simplex queries (report all points lying in a query triangle). However the complexities of these two
problems differ significantly: With linear space, a halfplane range-reporting query can be answered in time
Θ(log n+ k) [11], while the latter takes Ω(

√
n) time [12]. So there is a significant gap between the current

upper and lower bounds for range searching over uncertain data.
Also related is the work by Singh et al. [24], who considered the problem of querying uncertain data that

are categorical, namely, each random object takes a value from a discrete, unordered domain. The structures
presented there are again heuristic solutions.

Our results. In this paper, we make a significant theoretical step towards understanding the complexity of
range searching on uncertain data. We present linear or near-linear size data structures for both the fixed and
variable threshold versions of the problem, with logarithmic or polylogarithmic query times. Specifically,
we obtain the following results.

For the fixed-threshold version, we present a linear-size structure that answers a query in O(log n + k)
time (Section 2). These bounds are clearly optimal (in the comparison model of computation). We first show
that this problem can be reduced to a so-called segments-below-point problem: storing a set of segments in
R
2 so that all segments lying below a query point can be reported quickly. Then we present an optimal

structure for the segments-below-point problem — a linear-size structure with O(log n + k) query time.
This result shows that the fixed-threshold version has exactly the same complexity as the halfplane range-
reporting problem, closing the large gap left in [13]. In Section 3 we present a simpler structure of size
O(nα(n) log n) and query time O(log n+k). This structure extends to more general pdf’s, such as Gaussian
distributions or other piecewise algebraic pdf’s.

For the variable-threshold version, we use a different reduction and show that it can be solved by care-
fully storing a number of points in R

3 in a structure for answering halfspace range queries. Combining
with the recent result of Afshani and Chan [1] for 3D halfspace range reporting, we obtain a structure for
the variable-threshold version of our problem with O(n log2 n) space and O(log3 n + k) query time (Sec-
tion 4). Although the bounds have extra log factors in this case, our result shows that this problem is still
significantly easier than 2D simplex queries.

Finally, we show that our structures can be dynamized, supporting insertions and deletions of (uncertain)
points with a slight increase in the query time.

2 Fixed-Threshold Range Queries

We present an optimal structure for answering range queries on uncertain data where the probability thresh-
old τ is fixed. Our structure uses linear space and answers a query in the optimal O(log n+ k) time. These
bounds do not depend on the particular value of τ . We first describe in Section 2.1 the reduction to the
segments-below-point problem. Next we describe a segment-tree based data structure that uses linear space
and answers a query in O(

√
n + k) time or uses O(n log n) space and answers a query in O(log n + k)

time (Section 2.3). We then improve this structure to achieve linear size and O(log n + k) query time
simultaneously (Section 2.4). We conclude this section by describing how we make the structure dynamic.

3

x x x

f (x) F (x)

g(x)

a b c d e a b c d e a b c d e

b

c

d

e

(i)
xl xr (ii) (iii)

(xl, xr)

Figure 1: Reduction to the segments-below-point problem: (i) pdf, (ii) cdf, and (iii) threshold function.

2.1 A geometric reduction

Let p be an uncertain point in R, and let f : R → R be its pdf.1 Suppose the histogram of f consists of s
pieces, and let

f(x) = yi, for xi−1 ≤ x < xi, i = 1, . . . , s.

We set x0 = −∞, xs = ∞, and y1 = ys = 0; see Figure 1 (i). The cumulative distribution function (cdf)
F (x) =

∫ x
−∞ f(t)dt is a monotone piecewise-linear function consisting of s pieces; see Figure 1 (ii). Let the

query range be [xl, xr]. The probability of p falling inside [xl, xr] is F (xr) − F (xl). We define a function
g : R → R, which we refer to as the threshold function. For a given a ∈ R, let g(a) be the minimum value
b such that F (b)− F (a) ≥ τ . If no such b exists, g(a) is set to ∞; see Figure 1 (iii).

Lemma 2.1 The function g(x) is non-decreasing and piecewise linear consisting of at most 2s pieces.

Proof : Suppose we continuously vary x from −∞ to ∞. For x = −∞, g(x) = min{y | F (y) = τ};
g(x) stays the same until x reaches x1. As we increase x further, g(x) increases linearly, with the slope
depending on the pieces of the histogram f that contain x and g(x). When either x or g(x) passes through
one of the xi’s, the slope changes. There are at most 2(s − 1) such changes; see Figure 1. �

Given the description of the pdf f , the function g can be constructed easily. Once we have the threshold
function g, the condition Pr[p ∈ [xl, xr]] ≥ τ simply becomes checking whether xr ≥ g(xl). Geometrically,
this is equivalent to testing whether the point (xl, xr) ∈ R

2 lies above the polygonal line representing the
graph of g (see Figure 1). We construct the threshold function gp for each point p in P . Let S be the set of
at most 2ns segments in R

2 that form the pieces of these n functions; S can be constructed in O(n) time.
We label each segment of gp with p. The problem of reporting the points of P that lie in the interval [xl, xr]
with probability at least τ becomes reporting the segments of S that lie below the point (xl, xr) ∈ R

2: If the
procedure returns a segment labeled with p, we return the point p. Each polygonal line being x-monotone,
no point is reported more than once.

We thus have the following problem at hand: Let S be a set of n segments in R
2. Build a data structure

on S so that for a query point q ∈ R
2, the set of segments in S lying directly below q, denoted by S[q],

can be reported efficiently. For simplicity, we assume the coordinates of the endpoints of S to be distinct;
this assumption can be removed using standard techniques. We call this problem the segments-below-point
problem.

1Through this paper we do not distinguish between a function and its graph.

4

1

2

3

4

5
6 7

Figure 2: The data structure for a set of lines: thick polygonal chain is the lower envelope of S; L1(S) =
{1, 2, 6}, L2(S) = {3, 7}, L3(S) = {4, 5}.

2.2 Half-plane range reporting

We begin by describing a structure for the special case when all segments in S are full lines and we want
to report the lines of S lying below a query point. This problem is dual to the well-known half-plane
range reporting problem, for which there is an O(n)-size structure with O(log n+ k)-time [11]. We briefly
describe a variant of this structure (in the dual setting), denoted by H(S), which we will use as a building
block.

If we view each line � in S as a linear function � : R → R, then the lower envelope of S is the
graph of the function ES(x) = min�∈S �(x), i.e., it is the boundary of the unbounded region in the planar
map induced by S that lies below all the lines of S (see Figure 2). We represent the lower envelope as a
sequence x0 = −∞, �1, x1, �2, . . . , �r, xr = +∞, where the xi’s are the x-coordinates of the vertices of
the lower envelope, and �i is the line that appears on the lower envelope in the interval [xi−1, xi]. Note
that the lines appear along the envelope in decreasing order of their slopes. We partition S into a sequence
L1(S), L2(S), . . ., of subsets, called layers. L1(S) ⊆ S consists of the lines that appear on the lower
envelope of S. For i > 1, Li(S) is the set of lines that appear on the lower envelope of S \⋃i−1

j=1 Lj(S); see
Figure 2. For each i, we store the aforementioned representation of layer Li(S) in a list. To answer a query
q = (qx, qy), we start from L1(S) and locate the interval [xi−1, xi] that contains qx, using binary search.
Next we walk along the envelope of L1(S) in both directions, starting from �i, to report the lines lying below
q, in time linear to the output size. Then we query the rest of the layers L2(S), L3(S), . . . in order until
no lines have been reported at a certain layer. By using fractional cascading [10] on the x-coordinates of
the envelopes of these layers, the total query time can be improved to O(k) plus the initial binary search in
L1(S). Fractional cascading augments these lists with copies of elements from other lists, but the size of
the structure remains linear, and it can be constructed in O(n log n) time [10, 11]. The following statement
is slightly more general than what appeared in [11].

Lemma 2.2 Let S be a set of n lines in the plane. S can be preprocessed in O(n log n) time into a data
structure of linear size, so that given a query point q ∈ R

2 and any line in L1(S) below q, all k lines of S
lying below q can be reported in O(k) time.

2.3 Segment-tree based structure

This subsection describes a structure for the segments-below-point problem, based on the segment tree,
that uses linear space and answers a query in O(

√
n + k) time, or O(n log n) space and answers a query

in O(log n + k) time. We later (cf. Section 2.4) bootstrap this structure to improve the query time to
O(log n+ k) while keeping the size linear.

5

v

v1 v2 v3 v4 v5

σ2 σ4 σ5σ1 σ3

1� 1r

2m

3m

2� 3r

2r

σv

Figure 3: A segment tree node with fanout r = 5.

We fix a parameter r and construct a segment tree T of fanout r — an r-ary tree that defines an r-way
hierarchical decomposition of the plane into vertical slabs, each associated with a node of T. Let σv denote
the slab corresponding to a node v. The slabs associated with the children of v are defined as follows. We
partition σv into r vertical sub-slabs σ1, . . . , σr, each containing roughly the same number of endpoints of
segments in S. We create r children v1, . . . , vr of v and associate σi with vi; see Figure 3. A node v is a
leaf if σv does not contain any endpoint of S in its interior.

We call any number of contiguous sub-slabs a multi-slab at v. Let σv[i : j] = σi ∪ · · · ∪ σj denote
the multi-slab at v spanned by sub-slabs σi, . . . , σj . Obviously there are O(r2) multi-slabs at any v. For
any segment s, consider the highest node v where it intersects two or more sub-slabs; i.e., s intersects the
boundary of a slab. Let Sv ⊆ S be the set of segments for which v is the highest node at which they are
split. At v we partition s ∈ Sv into up to three pieces: a middle piece sm that spans the maximal multi-slab
at v, a left piece sl, and a right piece sr. More precisely, if s spans slabs σi, . . . , σj , then sm = s∩ σv[i : j],
and it is associated with the multi-slab σv[i : j]. If the left endpoint of s lies in the interior of σi−1, then
sl = s ∩ σvi−1 , and if the right endpoint of s lies in the interior of σvj+1 , then we set sr = s ∩ σvj+1 . See
Figure 3. Next, we recursively partition the left and right pieces of s following the r-ary tree. A segment
is thus partitioned into at most three pieces at any level of the tree, resulting in a total of O(logr n) pieces.
Note that each piece with spans a multi-slab at some node.

Let Si:j
v denote the set of segments associated with the multi-slab σv[i : j] at v, and let Hi:j

v denote
the full lines containing these segments. For a point q ∈ σv[i : j], a segment s ∈ Si:j

v lies below q if and
only if the line containing s lies below q. We therefore build the halfplane structure on Hi:j

v described in
Section 2.2. Since

∑ |Si:j
v | = O(n logr n) and the structure built for each multi-slab has linear size, the size

of the overall structure is also O(n logr n), and it can be constructed in O(n logr n log n) time.
To report the segments of S lying below a query point q, we visit all the nodes v of T such that q ∈ σv.

At each v, we query the halfplane structures corresponding to all the multi-slabs that contain q. Overall
we query a total of O(r2 logr n) multi-slabs, so the total query time is O(r2 logr n log n + k). Choosing
r = n1/4/

√
log n gives us the following.

Lemma 2.3 Let S be a set of n segments in the plane. S can be preprocessed in O(n log n) time into a
linear-size structure so that all segments of S lying below a query point can be reported in O(

√
n+ k) time.

Remarks. The query time of the above scheme can be improved to O(nε + k) for any small constant ε, but

6

a query time of O(
√
n+ k) is all we need for the bootstrapping later.

If we choose r = 2, we can construct a standard binary segment tree. At each node σv is split into two
slabs by a vertical line x = xv. We no longer need multislabs — each of the two subslabs of σv is associated
with a child of v and the only multislab is σv itself. The size of the data structure is now O(n log n), and the
query time is O(log2 n+k). The query time can be improved to O(log n+k) by using fractional cascading:
We need to query O(log n) halfplane structures associated with the nodes along a root-to-leaf path of the
segment tree with the same query point q = (qx, qy). By the discussion in Section 2.2, it is sufficient to
locate the interval [xi−1, xi] containing qx in the first layer of each of these structures, and the rest of the
cost will be linear in the output size. Since the first layer of each halfplane structure is a linear list, this is
exactly the standard situation where fractional cascading [10] can be applied. Again, fractional cascading
augments each list with auxiliary information, which increases the size of the structure by a constant factor.
The time of locating all these intervals will be the time to search in the first list, plus O(1) per succeeding
list, i.e., O(log n+ log n) = O(log n). We thus obtain the following.

Lemma 2.4 Let S be a set of n segments in the plane. S can be preprocessed in O(n log2 n) time into a
structure of O(n log n) size so that all segments of S lying below a query point can be reported in O(log n+
k) time.

2.4 Optimal structure

We now describe an optimal structure for answering segments-below-point queries. We start with the binary
segment-tree structure from the previous subsection. We stop the top-down construction of the segment tree
T as soon as there are Θ(log2 n) endpoints of S left in the slab, that is, the “atomic slab” σz for each leaf z of
T contains Θ(log2 n) endpoints of S. Since we have “fat” leaves, not all segments will be split — those with
both endpoints lying in the same atomic slab will not be split. For an internal node v, let Sv be the subset
of segments for which v is the highest node at which they are split, as in the previous data structure. For a
leaf z, let Sz be the set of segments that lie completely in σz . We build a segment tree with large fan-out
(Lemma 2.3) on Sz . Since |Sz| = O(log2 n) and

∑
z |Sz| ≤ n, a segments-below-point query on Sz can be

answered in O(log n+ |Sz[q]|) time and the total size and construction time of the structure, summed over
all leaves, are linear and O(n log n), respectively.

Next we describe the structure for the segments that are split at an internal node of T. At each node u, the
segment s ∈ Su is split by x = xu into a left segment s− and a right segment s+. Let S−

u = {s− | s ∈ Su},
S+
u = {s+ | s ∈ Su}, S− =

⋃
u S

−
u , and S+ =

⋃
u S

+
u . Note that for any segment s ∈ Su and for any

point q �= xu lying above s, either s− or s+ lies below q, but not both. Therefore it suffices to build separate
structures for S− and S+ and report S−[q] and S+[q] for a query point q. We describe the structure for S−;
a similar scheme works for S+.

We now introduce some notation. Let V denote the set of nodes v ∈ T such that v is the right child of
p(v), where p(v) denotes the parent of v. Let Λ be the set of pairs (u, z) such that z is a leaf and u is a
proper ancestor of z;

|Λ| = O

(
log n

n

log2 n

)
= O

(
n

log n

)
.

For a node v ∈ V, let Λ(v) ⊆ Λ be the set of pairs (u, z) such that z is a descendant leaf of the left sibling
of v and u is a proper ancestor of p(v). For a pair (u, z) ∈ Λ, let Suz ⊆ S−

u be the set of segments whose left
endpoints lie in σz; set nuz = |Suz|. For two different pairs (u, z), (u′, z′) ∈ Λ, Suz and Su′z′ are disjoint
because the left endpoints of all segments in Suz lie in σz and the right endpoints lie on the splitting line
x = xu. Hence,

∑
(u,z)∈Λ nuz ≤ n. Set Lz =

⋃
u Suz, where the union is taken over all proper ancestors of

7

z; it is clear that
∑

z |Lz| ≤ n. Next, for a node v ∈ T, let Φv ⊆ S− be the set of segments that completely
span σv but their left endpoints lie in σp(v). In particular, if v is the left child of p(v), i.e., v �∈ V, then
Φv = ∅; otherwise (i.e., v ∈ V), each segment s ∈ Φv belongs to some Suz where u is a proper ancestor of
p(v) and z is a descendant of the left sibling of v, that is,

Φv =
⋃

(u,z)∈Λ(v)
Suz. (1)

Therefore a set Suz is included in Φv at all nodes v ∈ V such that p(v) lies on the path from z to the left
child of u; see Figure 4.

Let q be a query point, let z be the leaf of T such that q ∈ σz , and let Πq be the path in T from the
root to z. If a segment s ∈ S− lies below q, then either (i) s ∈ Lz, or (ii) s− ∈ Φv for some v ∈ Πq and
the line containing s− lies below q. To handle (i), using Lemma 2.3, we build in O(|Lz | log n) time a data
structure of linear size that returns Lz[q] in time O(log n + |Lz[q]|), as |Lz| = O(log2 n). It thus suffices
to describe how we handle case (ii). The binary-segment-tree data structure in the previous subsection
basically preprocesses each Φv separately, leading to an O(n log n) size data structure. We build a more
global structure to reduce the size to linear.

For a pair (u, z) ∈ Λ, let Huz be the set of lines containing the segments in Suz. We preprocess Huz

into a linear-size halfplane range reporting data structure using Lemma 2.2. To report Φv[q] for a point
q ∈ σv, we need a structure that returns one representative line of L1(Huz) lying below q (if there exists
one), for each pair (u, z) ∈ Λ(v). We can then use the structure built on Huz to report the remaining lines in
Huz[q] (see Lemma 2.2). One possibility is to build a structure on the set

⋃
(u,z)∈Λ(v) L1(Huz) at each node

v to find such a line, but |L1(Huz)| = |Huz| in the worst case, so this will again lead to a structure of size
O(n log n). The following observation will help us in reducing the size.

xbxc

1

2

3

4

5
a

c

d

b

e

f

xa

σc

σe σd σf

σb

Figure 4: Set Sae = {1, 2, 3, 4, 5} and the strip Σae (shaded); Sae is included in Φe (queried in slab σd) and
Φc (queried in slab σf); He

ae = {1, 2, 3} and Hc
ae = {3, 4, 5}.

Fix a pair (u, z) ∈ Λ. Let Σuz be the strip formed by the splitting line at u and the right boundary of σz;
see Figure 4. The right endpoint of each segment in Suz lies on the right edge of Σuz and the left endpoint
lies to the left of Σuz, so each segment of Suz spans Σuz. Let w1, w2, . . . , wr be the nodes such that each
wi is the right child of p(wi) and p(wi) lies on the path from the left child of u to z; the (left) sibling of each
wi also lies on this path. For the example in Figure 4, if u = a, z = e, then these wi’s are d and f . The
slabs σw1 , . . . , σwr induce a partitioning of Σuz. Moreover (u, z) ∈ Λ(v) if and only if v = wi for some
1 ≤ i ≤ r. For such a node v, let Hv

uz ⊆ L1(Huz) be the set of lines that appear on the lower envelope of
Huz within σv; set nv

uz = |Hv
uz|. At most one line of Hv

uz will appear on the lower envelope of Huz to the
right of σv (for example, only line 3 of He

ae may appear on the lower envelope of Hae to the right of σd).

8

Since r = O(log n), we have ∑
v∈V:(u,z)∈Λ(v)

nv
uz = nuz +O(log n).

For a pair (u, z), the sets Hv
uz can be computed in O(nuz log n) time by constructing the lower envelope of

Huz. The total time spent over all pairs in Λ is O(n log n).
For a node v ∈ V, let Γv =

⋃
(u,z)∈Λ(v) H

v
uz; Γv is the set of representative lines stored at v. We build

in O(|Γv| log n) time the halfplane-range-reporting structure of linear size on Γv. For each line � in Γv, we
store a pointer to its copy in Huz. Finally, as in the structure of Lemma 2.4, we also use fractional cascading
on these half-plane range-reporting structures. This completes the description of the structure we build. To
analyze the size of the data structure and its preprocessing time, we note that∑

v∈V
|Γv| =

∑
v∈V

∑
(u,z)∈Λ(v)

nv
uz

=
∑

(u,z)∈Λ

∑
v∈V:(u,z)∈Λ(v)

nv
uz

=
∑

(u,z)∈Λ
(nuz +O(log n))

= O(n) +O

(
n

log n
log n

)
= O(n).

Hence, the total size of the structure is O(n), and it can be constructed in O(n log n) time.
For a query point q, the set S[q] is reported as follows. We first find in O(log n) time the leaf z whose

slab contains q. Next, we report in O(log n+|Sz[q]|) time the set Sz[q]. Then, we report in O(log n+|Lz[q]|)
time the set Lz[q]. Next, for each node v ∈ Πq, if v is the right child of p(v), we report the set Φv[q]. More
precisely, we visit the nodes of Πq in a top-down manner. For each node v ∈ Πq ∩ V, we first query the
structure on Γv and report the set Γv[q], i.e., the set of representative lines of Hv that lie below q. This takes
time O(log n+ |Γv[q]|) time for the first node v; for each successive node, the time spent is only linear in the
number of representative lines we return by fractional cascading. Consider each � ∈ Γv[q] in turn. Suppose
� is a representative line from some Huz′ . We then report the set Huz′ [q] in time proportional to its size by
querying the structure built on Huz′ . Thus the total time spent at all the nodes on Πq is O(log n) plus a term
linear to the output size. Finally, we report S+[q] in a similar manner. Putting everything together, the total
query time is O(log n+ |S[q]|).

Theorem 2.5 Let S be a set of n segments in R
2. S can be preprocessed in O(n log n) time into a linear-size

structure so that all k segments of S lying below a query point can be reported in O(log n+ k) time.

Since each uncertain point produces O(s) segments in the segments-below-point problem, we immedi-
ately have the following.

Corollary 2.6 Let P be a set of n uncertain points in R, each associated with a histogram having s pieces,
and let 0 < τ ≤ 1 be a threshold parameter. P can be preprocessed in O(n log n) time into a linear-size
structure so that a range query on P with probability threshold τ can be answered in O(log n + k) time,
where k is the output size.

9

2.5 Dynamization

Finally we briefly discuss how to make our structure dynamic, i.e., supporting insertions and deletions of
uncertain points in the uncertain data set. When an uncertain point is being inserted or deleted, we need
to insert or delete the 2s segments in the graph of its threshold function (cf. Section 2.1) in our segments-
below-point structure. If only insertions are to be supported, we can apply the logarithmic method [6] to
Theorem 2.5. Then standard analysis gives us a linear-size semi-dynamic structure that answers a query in
O(log2 n + k) time and supports insertion of a point in amortized O(log2 n) time. Unfortunately, it is hard
to support deletions in our optimal structure, since it crucially relies on the halfplane searching structure
of [11], which is inherently static. The best known dynamic structure for halfplane range reporting uses
O(n log n) space, supports insertions and deletions in O(polylog n) time amortized, and answers queries
in O(log n + k) time [8, 9]. Currently, it is unknown if one can obtain a linear-size dynamic structure
with O(polylog n) update times. Since super-linear space is unavoidable, we can simply plug this dynamic
halfplane structure into the segment-tree based structure with fanout 2 (see the remark following Lemma 2.3)
and obtain the following.

Theorem 2.7 Given a set P of n uncertain points in R and their pdf’s, each of which is a histogram of
constant size, and a parameter 0 < τ ≤ 1, P can be maintained in a dynamic structure of size O(n log2 n)
that answers a range query with probability threshold τ in O(log2 n+ k) time, and supports insertions and
deletions of an uncertain point in O(polylog n) amortized time.

Remark. If s is not a constant, all our space and query bounds in this section still hold by simply replacing
n by sn. Note that since the input has size Θ(sn), a structure with size O(sn) is still linear in the input. The
update time in Theorem 2.7 becomes O(s polylog n) since s segments need to be inserted or deleted.

3 Handling More General Pdf’s

In Section 2.1, we converted the uncertain range searching problem to the problem of storing a set of x-
monotone polygonal chains in a data structure so that all the chains below a query point can be reported
efficiently. In this section, we follow a more direct approach to solve this problem. It results in a structure
with O(nα(n) log n) size and O(log n + k) query time, where α(n) is the inverse Ackermann function, an
extremely slow-growing function. Although the space bound is not as good as the structure in Theorem 2.5,
the new structure we present below is simpler and easily extends to the case where the polygonal chains are
replaced by more general curves, such as piecewise-algebraic curves. This will allow us to handle pdf’s that
are more general than histograms, which we will elaborate later.

The framework of our structure is similar to that of the 3D halfspace searching structure of Chan [7].
Let C be the set of n polygonal chains representing the n threshold functions; each of them consists of at
most 2s segments. We first randomly sample a subset R1 of n/2 chains from C . Then for i = 2, . . . , log n,
we randomly sample a subset Ri of n/2i chains from Ri−1. For each i, we compute its lower envelope Ei

of Ri. According to [19], Ei consists of at most O(|Ri| · α(|Ri|)) segments. From the boundary points of
these segments we shoot a ray downwards, yielding a set Ξi of trapezoids (see Figure 5). For each trapezoid
t ∈ Ξi, we find the set of all chains in C that intersect the trapezoid, denoted Ct. We store Ct simply as a list
associated with t, and call Ct the conflict list of t. Following the random-sampling framework of Clarkson

10

�

q

p�

t

1

2
3

4
5

6

Figure 5: The thick chains are in the random sample Ri. The dashed lines divide the lower envelope of Ri

into trapezoids. For the trapezoid t, its conflict list Ct consists of chains 4 and 6.

and Shor [14], the expected size of Ct is at most O(2i). Therefore, the expected total size of our structure is

O

(
logn∑
i

2i · |Ri|α(|Ri|)
)

= O

(
logn∑
i

nα(|Ri|)
)

= O(nα(n) log n).

For each Ri, we can compute its lower envelope and all the conflict lists in expected O(n log n) time, so we
can build the structure in a total of O(n log2 n) time in expectation.

Finally, we add a fractional cascading structure on the Ei’s, so that given a vertical line �, we can find
all the trapezoids intersected by �, one from each Ei, in O(log n) time. The size of this structure is only
O(nα(n)), and it can be built in the same amount of time.

Now we describe how a query for a point q is answered. First, we find all the log n trapezoids in O(log n)
time that intersect the vertical line � passing through q, one from each Ei; let ti ∈ Ξi be the trapezoid that
intersects �. We describe a procedure below that for a given r, finds in O(r) expected time the r lowest
chains of C along �, i.e., those chains whose intersections with � have the r smallest y-coordinates. Then
we can try successively larger and larger values of r = 1, 2, 4, 8, . . . , and halt as soon as at least one of the
r lowest chains is above q. When we stop we have r/2 ≤ k < r, and we just report the k chains that are
actually below q. The total time spent will be O(log n+ 1 + 2 + 4 + · · · + r) = O(log n+ k).

Let 0 < δ < 1 be a parameter. We first give a Monte Carlo algorithm with running time O(r/δ2) that
fails with probability O(δ3); then we show how to convert it to a Las Vegas algorithm that never fails and
runs in expected time O(r). We will only consider the case r/δ < n; otherwise the problem is trivial since
we can simply scan all the n chains. Set ρ = �log2(r/δ)� and let tρ be the trapezoid of Ξρ that intersects
�. We first check whether |Ctρ | > r/δ2. If so the algorithm immediately aborts with a failure. Otherwise
we scan the entire list Ctρ . Let p� be the intersection point of � and the upper boundary of the trapezoid tρ
(Figure 5). While scanning Ctρ we check whether there are at least r chains below p�. If so the algorithm
succeeds in finding the r lowest chains along �; else the algorithm fails.

This Monte Carlo algorithm clearly runs in time O(r/δ2). Now we analyze its failure probability. There
are two cases that the algorithm may fail: (a) |Ctρ | > r/δ2; or (b) there are fewer than r chains in Ctρ below
p�. Since E[|Ctρ |] = O(2ρ) = O(r/δ), by Markov inequality,

Pr[|Ctρ | > r/δ2] = O(δ).

For (b) to happen, the chain corresponding to the upper boundary of tρ must be one of the r lowest chains
along �. Since Rρ is a random sample of size n/2ρ, this occurs with probability O(r/2ρ) = O(δ). The
algorithm thus fails with probability O(δ). Finally, keeping three independent data structures will bring
down the failure probability to O(δ3), with only a constant-factor blowup in the space and query costs.

11

Finally, we show how to convert the Monte Carlo algorithm into a Las Vegas algorithm with expected
running time O(r), which will complete the description of the query algorithm. We invoke the algorithm
above with δ = 2−1, 2−2, 2−3,. . . , stopping as soon as some invocation succeeds. Let Xi be the indicator
random variable whose value is 1 if the algorithm is invoked with δ = 2−i, and 0 otherwise. Note that

E[Xi] = Pr[Xi = 1] = Pr[all first i− 1 invocations fail]

≤ Pr[the (i− 1)-th invocation fails]

= O(1/23(i−1)).

Then the total expected running time is

∑
i≥1

E[Xi] ·O(r · 22i) =
∑
i≥1

O

(
1

23(i−1)

)
·O(r · 22i) = O(r).

Theorem 3.1 Given a set P of n uncertain points in R, their pdf’s, each of which is a histogram of constant
size, and a parameter 0 < τ ≤ 1, P can be preprocessed in O(n log2 n) time into a structure of size
O(nα(n) log n), where α(n) is the inverse Ackermann function, so that a range query with probability
threshold τ can be answered in expected O(log n+ k) time.

As commented earlier, this structure easily extends to more general pdf’s. The algorithm remains the
same, except that the complexity of Ei depends on the input pdf’s. In the analysis above, the threshold
functions are a collection of piecewise linear functions, and the complexity of the lower envelope of any n
such functions is O(nα(n)) [19]. With other families of pdf’s, the threshold functions will have different
forms. Note that Lemma 2.1 easily extends to other piecewise functions. Recall that the threshold function
g(x) satisfies F (g(x)) − F (x) = τ (unless g(x) = ∞), where F (x) is the cdf. For instance, if the pdf is
a piecewise linear function, then the F (x) will be piecewise quadratic, and the threshold function will have
the form g(x) = −c1 +

√
c2x2 + c3x+ c4 with different constants c1, c2, c3, c4 in each of the at most 2s

pieces, by solving F (g(x)) − F (x) = τ .
Interestingly, the complexity of the lower envelope of these threshold functions only depends on how

many times two pieces from two different threshold functions could intersect. If two pieces intersect at
no more than c points, then the complexity of the lower envelope of n such functions is λc+2(n), the
maximum length of any (n, c + 2) Davenport-Schinzel sequence [17]. If each threshold function consists
of a single unbounded curve (e.g., when the pdf’s are Gaussian distributions), then the complexity of the
envelope is λc(n). Thus Theorem 3.1 still holds, with the space bound changing to O(λc+2(n) log n) and
O(λc(n) log n), respectively.

Theorem 3.2 Let P be a set of n uncertain points in R. Suppose the threshold function of each p ∈ P
has s pieces and any two pieces from two different threshold functions intersect at no more than c points.
P can be preprocessed in O(λc+2(n) log

2 n) time into a structure of size O(λc+2(n) log n), where λt(n)
is the maximum length of an (n, t) Davenport-Schinzel sequence, so that a range query with a fixed proba-
bility threshold τ can be answered in expected O(log n + k) time. If each threshold function consists of a
single unbounded curve, and any two such functions intersect at no more than c points, then the space and
preprocessing time become O(λc(n) log n) and O(λc(n) log

2 n), respectively.

Sharp bounds for λc(n) are known for any fixed c: λ1(n) = n, λ2(n) = 2n − 1, λ3(n) = Θ(nα(n)),
λ4(n) = Θ(n2α(n)) and λ2t+2(n) = n2(1/t!)α

t(n)+Θ(αt−1(n)). These bounds are very close to linear due

12

to the extremely slow growth of α(n); see the survey by Agarwal and Sharir [4] for a complete treatment
of Davenport-Schinzel sequences and their applications, and the recent paper [23] for slightly improved
bounds.

For most common pdf’s, c is a small constant. For instance if the pdf’s are histograms, then c = 1 as
obtained in Theorem 3.1. If the pdf’s are piecewise linear, then the threshold functions are piecewise with
each piece having the form g(x) = −c1 +

√
c2x2 + c3x+ c4. Two such functions intersect at no more than

two points, so the size of our structure is O(λ4(n) log n). Note that for some pdf’s, such as Gaussian, the
threshold function may not have a closed form, so we will have to use numerical methods to compute their
intersections. Nevertheless, even when the g(x)’s do not have closed forms, we can often show that they do
not intersect too many times.

Lemma 3.3 For two Gaussian distributions, their threshold functions intersect at most twice.

Proof : Let the pdf’s of the two Gaussians be f1(x) and f2(x). Let their cdf’s be F1(x) and F2(x), respec-
tively. The threshold function is gi(x) = F−1

i (Fi(x) + τ), i = 1, 2. We only need to consider the domain
in which Fi(x) + τ < 1. Let (a, b) be an intersection point of g1 and g2, i.e., g1(a) = g2(a) = b. Then we
have Fi(b) = Fi(a) + τ, i = 1, 2. Subtracting the two equations, we have

F1(b)− F2(b) = F1(a)− F2(a).

ϕ(x)

x

a1 b1

a2 b2

ξ

Figure 6: The function ϕ(x) admits at most 2 intersections of g1(x) and g2(x).

Define the function ϕ(x) = F1(x)− F2(x). Consider its derivative

ϕ′(x) = f1(x)− f2(x) =
1√
2πσ1

exp

(
−(x− μ1)

2

2σ2
1

)
− 1√

2πσ2
exp

(
−(x− μ2)

2

2σ2
2

)

for some μ1, μ2, σ1, σ2. We observe that ϕ′(x) has at most two roots. If ϕ′(x) has one root, ϕ(x) is unimodal
or inverse-unimodal; if ϕ′(x) has two roots, by combining with the fact that ϕ(−∞) = ϕ(+∞) = 0, we
can conclude that ϕ(x) must have exactly one root, and that ϕ(x) is unimodal before the root and inverse-
unimodal after it, or vice-versa; see Figure 6.

On the other hand, the intersection points of g1 and g2 satisfy the following two conditions:

(C1) For any intersection point (a, b), ϕ(a) = ϕ(b).

(C2) For any two different intersection points (a1, b1), (a2, b2), we must have b1 < b2 if a1 < a2 since
gi(x) is non-decreasing.

13

If ϕ′(x) has only one root, i.e., ϕ(x) is unimodal (or inverse-unimodal), then there is at most one
intersection point of g1 and g2 that satisfies both (C1) and (C2), so let us assume that ϕ′(x) has two roots
and ϕ(x) has one root, say, ξ. Let (a1, b1) be an intersection point of g1, g2. Since ϕ(x) > 0 for x ∈ (−∞, ξ)
and ϕ(x) < 0 for x ∈ (ξ,∞), ξ �∈ [a1, b1]. Suppose a1 < b1 < ξ. Let (a2, b2) be another intersection point,
with a2 > a1. We claim that a2 > ξ. Indeed, if a2 < ξ, then the unimodality of ϕ in the range [−∞, ξ]
implies that b2 < b1. But by (C2), b2 > b1, a contradiction. Hence, a2 > ξ. The same argument implies
that there is at most one intersection point of g1 and g2 that lies after ξ, implying that they have at most two
intersection points. �

Invoking Theorem 3.2, our structure for Gaussian distributions has size O(λ2(n) log n) = O(n log n).

Remark. If s is not a constant, all our space and query bounds in this section still hold by simply replacing
n by sn.

4 Variable-Threshold Queries

The geometric reduction in Section 2.1 does not work if τ , the probability threshold parameter, is part of
a query. This section shows how to decompose the variable-threshold version of the problem into answer-
ing a few 3D halfspace range-reporting queries, which yields a structure of O(n · polylog(n)) size with
O(polylog(n) + k) query time.

In the 3D halfspace searching problem, we want to store a set of points in R
3 in a data structure such that

all points below a given a query plane can be reported efficiently. By duality, this is equivalent to storing a
set of planes in R

3 in a structure such that for a query point p, all planes below p are reported. As in the 2D
case, this problem can also be solved in linear space and O(log n+ k) query time [1].

Consider a particular point p and its pdf fp(x). As in Section 2 suppose that the histogram fp(x) consists
of s pieces:

fp(x) = yi, for xi−1 ≤ x < xi, i = 1, . . . , s,

where x0 = −∞, xs = ∞ and y1 = ys = 0. For a query range I = [xl, xr], let us consider Pr[p ∈ [xl, xr]]
as a threshold function of xl and xr, denoted by gp(xl, xr). If xl ∈ [xi−1, xi] and xr ∈ [xj−1, xj] for some
i ≤ j, then gp(xl, xr) increases linearly in xl, with yi as the slope, and also increases linearly in xr, with
yj as the slope, implying that gp(xl, xr) is a bivariate linear function in the rectangle [xi−1, xi]× [xj−1, xj].
Thus gp(xl, xr) is a bivariate piecewise-linear function consisting of s2 pieces; each piece spans a rectangle
of the form [xi−1, xi] × [xj−1, xj], for some i ≤ j, in the xlxr-plane; see Figure 7. Given the function fp,
the threshold function gp can be computed easily. Given a query [xl, xr] and a threshold parameter τ > 0, a
point p is reported, i.e., p lies in [xl, xr] with probability at least τ , if gp(xl, xr) ≥ τ .

Let U = 〈b1 < . . . < bu〉, u ≤ sn, be the set of breakpoints in the pdf’s of the point set P . Let
R = {r1, . . . , rt}, t = O(s2n), be the set of rectangles in the xy-projections of the threshold functions gp,
for p ∈ P ; vertices of R belong to the set U × U . For each rectangle ri ∈ R, which is the projection of a
rectangular piece of gp, let ϕi be the plane that contains that rectangular piece of gp; we associate the point
p with the rectangle ri and the plane ϕi. Given a query interval [xl, xr] and a probability τ , among all the
rectangles ri of R that contain the point (xl, xr), we wish to report those for which the plane ϕi lies above
the point (xl, xr, τ) ∈ R

3. If a rectangle ri is reported, then the point of P associated with ri is returned.
We build a structure on R as follows.

We cover the interval [b1, bu] by a family I of O(n) canonical intervals, by building a minimum-height
binary search tree on U , so that any interval [bi, bj] can be partitioned in O(log n) canonical intervals; a

14

xl

xr

0

1

gp

Figure 7: Pr[p ∈ [xl, xr]] is a bivariate piecewise linear function in xl and xr. It consists of s2 pieces and
each piece covers a rectangular region in the xlxr-plane.

point b ∈ R lies in O(log n) canonical intervals. Set C = I × I to be a set of O(n2) canonical rectangles
in the xlxr-plane; C is not constructed explicitly. A rectangle ri ∈ R can be partitioned into a set C[ri]
of O(log2 n) canonical rectangles. For each rectangle C ∈ C, let ΦC = {ϕi | C ∈ C[ri], ri ∈ R}. By
construction,

∑
C |ΦC | = O(n log2 n). For each C ∈ C such that ΦC �= ∅, we build the structure by

Afshani and Chan [1] on ΦC for answering halfspace range-reporting queries. Since this structure has linear
size, the total size over all of the canonical rectangles is O(n log2 n), and it takes O(n log3 n) expected time
to build them.

Given a query interval [a, b] and a probability threshold τ , we first find the sets Ia, Ib ⊂ I, O(log n)
canonical intervals each, that contain a, b, respectively. Ia × Ib ⊂ C is the set of canonical rectangles that
contain the point (a, b) ∈ R

2. For each such canonical rectangle C , we query the structure built on C to
report all planes of ΦC that lies above the point (a, b, τ). If a plane is reported, then we return the point of
P associated with it. By construction, each point is reported only once. The total time spent in reporting all
k points is O(log3 n+ k). Hence, we conclude the following.

Theorem 4.1 Given a set P of n uncertain points in R, each associated with a histogram having at most s
pieces, P can be preprocess in expected O(n log3 n) time into a structure of size O(n log2 n), so that for a
query interval I and a probability τ , it can report in O(log3 n + k) time all k points of P that lie in I with
probability at least τ .

Dynamization. To make our structure dynamic, we replace the static 3D halfspace searching structure of
[1] with the dynamic version [8, 9], which uses O(n log n) space, supports updates in O(polylog n) time
amortized, and answers queries in O(log2 n+ k) time. By using this structure for each nonempty canonical
rectangle, we obtain the following:

Theorem 4.2 Given a set P of n uncertain points in R, each associated with a histogram having at most
s pieces, P can be maintained in a fully dynamic data structure of size O(n polylog n) such that a range
query with any probability threshold can be answered in O(polylog n + k) time. This structure supports
insertions and deletions of uncertain points in O(polylog n) time amortized.

15

Remark. If s is not a constant, all our space and query bounds in this section still hold by simply replacing
n by s2n, since each uncertain point generates a piecewise linear function with s2 pieces. The update time
of Theorem 4.2 becomes O(s2 polylog n).

5 Conclusion

In this paper we have studied the problem of range searching on uncertain data. Our data structures have
linear or near-linear sizes and support range queries in logarithmic (or polylogarithmic) time. These results
significantly improve upon the previous ones on this problem. Although our results are mostly theoretical
in nature, we believe that some of the structures, such as the one in Section 3, are simple enough to be of
practical interests. For the other more complicated ones, some of the ideas (such as the geometric reductions)
could be borrowed to devise more practical data structures.

We conclude by mentioning two open problems:

(i) How fast can a range query on uncertain points in R
2 be answered? We can extend our approach in

this paper to this case but the problem reduces to the so-called semialgebraic range searching in 4D.
A query can be answered in sublinear time using linear space [3], but more efficient data structures
remain elusive.

(ii) How fast can a nearest neighbor query on uncertain points be answered? Here we may wish to report
all points whose probability of being the nearest neighbor to the query point is larger than a threshold
τ , or return the point with the largest probability of being the nearest neighbor. A few heuristics
based on R-trees have been proposed in [21], but no provably good solutions are known. Unlike range
searching, we need to consider the interplay between the uncertain points when answering a nearest
neighbor query, which seems to make the problem considerably more difficult.

References

[1] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three dimensions. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages 180–186, 2009.

[2] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 1–56. American Mathematical Society, Providence, RI, 1999.

[3] P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete and Computa-
tional Geometry, 11:393–418, 1994.

[4] P. K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric applications. In J.-
R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 1–47. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

[5] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[6] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation.
Journal of Algorithms, 1:301–358, 1980.

16

[7] T. M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-levels in three
dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

[8] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. In Proc.
ACM-SIAM Symposium on Discrete Algorithms, pages 1196–1202, 2006.

[9] T. M. Chan. Personal communication, 2009.

[10] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica,
1:133–162, 1986.

[11] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1):76–90, 1985.

[12] B. Chazelle and B. Rosenberg. Simplex range reporting on a pointer machine. Computational Geom-
etry: Theory and Applications, 5:237–247, 1996.

[13] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods for probabilistic
threshold queries over uncertain data. In Proc. International Conference on Very Large Data Bases,
pages 876–887, 2004.

[14] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.
Discrete Computational Geometry, 4:387–421, 1989.

[15] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: Diamonds in the dirt. Communications of the
ACM, 52(7):86–96, 2009.

[16] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In Proc. International
Conference on Very Large Data Bases, pages 864–875, 2004.

[17] H. Davenport and A. Schinzel. A combinatorial problem connected with differential equations. Amer-
ican Journal of Mathematics, 87:684–689, 1965.

[18] J. Y. Halpern. Reasoning about Uncertainty. The MIT Press, 2003.

[19] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path com-
pression schemes. Combinatorica, 6:151–177, 1986.

[20] L. N. Kanal and J. F. Lemmer. Uncertainty in Artificial Intelligence. Elsevier Science Pub. Co., Inc.,
New York, 1986.

[21] X. Lian and L. Chen. Probabilistic ranked queries in uncertain databases. In Proc. Conference on
Extending Database Technology, 2008.

[22] V. Ljosa and A. K. Singh. APLA: Indexing arbitrary probability distributions. In Proc. IEEE Interna-
tional Conference on Data Engineering, pages 946–955, 2007.

[23] G. Nivasch. Improved bounds and new techniques for Davenport-Schinzel sequences and their gener-
alizations. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 1–10, 2009.

[24] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch. Indexing uncertain categorical data.
In Proc. IEEE International Conference on Data Engineering, pages 616–625, 2007.

17

[25] Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional uncertain data. ACM Transactions
on Database Systems, 32(3):15, 2007.

18

