
Vol.:(0123456789)

World Wide Web
https://doi.org/10.1007/s11280-022-01112-4

1 3

Profit‑based deep architecture with integration of reinforced
data selector to enhance trend‑following strategy

Yang Li1 · Zibin Zheng1,2 · Hong‑Ning Dai3 · Raymond Chi‑Wing Wong4 ·
Haoran Xie5

Received: 10 January 2022 / Revised: 19 June 2022 / Accepted: 27 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Despite the popularity of trend-following strategies in financial markets, they often lack
adaptability to the emerging varied markets. Recently, deep learning (DL) methods dem-
onstrate the effectiveness in stock-market analysis. Thus, the application of DL methods to
enhance trend-following strategies has received substantial attention. However, there are
two key challenges to be solved before the adoption of DL methods in enhancing trend-fol-
lowing strategies: (1) how to design an effective data selector to include more related data?
(2) how to design a profit-based model to enhance strategies? To address these two chal-
lenges, this paper contributes to a new framework, namely profit-based deep architecture
with the integration of reinforced data selector (PDA-RDS) to improve the effectiveness
of DL methods. In particular, profit-based deep architecture (PDA) integrates a dynamic
profit weight and a focal loss function to obtain high profits. In addition, reinforced data
selector (RDS) is constructed to select high-quality training samples and a training-aware
immediate reward is designated to improve the effectiveness of RDS. Extensive experi-
ments on both U.S. and China stock-market datasets demonstrate that PDA-RDS outper-
forms the state-of-the-art baseline methods in terms of higher cumulative percentage rate
and average percentage rate, both of which are crucial to investment strategies.

Keywords Deep learning · Transfer learning · Reinforcement learning · Trend-following
strategy · Data selection

1 Introduction

Trend-Following Strategy (TFS) [1] is one of the most typical investment strategies and
may be one of the most popular strategies in financial markets. TFS attempts to obtain
gains through analyzing the momentum of a stock (or stocks) in an up trend or a down

This article belongs to the Topical Collection: Web-based Intelligent Financial Services
Guest Editors: Hong-Ning Dai, Xiaohui Tao, Haoran Xie, and Miguel Martinez.

 * Yang Li
 liyang99@mail2.sysu.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5653-1829
http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01112-4&domain=pdf

 World Wide Web

1 3

trend in terms of stock prices and then making decisions (i.e., purchasing or selling stocks).
However, conventional TFS techniques, such as the moving average TFS [2], momentum
indicator TFS [3], and trendlines & chart patterns [4] can only capture certain features
from historical stock data while cannot adapt to the emerging varied stock markets.

Deep learning (DL) technologies have achieved tremendous success in many fields
in the past few years including natural language processing [5], image classification [6],
financial time-series data analysis [7], and other fields [8–10]. Recently, DL approaches
have also been adopted in the stock-market analysis [11, 12]. Particularly, Recurrent Neural
Network (RNN) and its variations show superior performance than conventional financial
analytical methods, e.g., Autoregressive Integrated Moving Average (ARIMA) and Gen-
eralized Auto Regressive Conditional Heteroskedasticity (GARCH) [12]. Meanwhile, DL
methods have also been used in data analysis of financial text data such as economic news
[13] and social media [14] to enhance the stock prediction when integrating with the stock
data analysis. Despite the above research advances, the application of DL techniques to
enhance TFS in stock markets still faces two key challenges.

Challenge 1. How to design an effective data selector to include more related TFS
data? DL methods achieve the outstanding performance through learning (or extracting)
features from massive data. However, it is difficult to obtain enough TFS data for training
DL models so as to improve TFS. Figure 1 shows an example of using a moving-average
TFS on the stock NYSE:WMB, which is a stock in the New York Stock Exchange (NYSE).
The moving average essentially calculates the average of prices over a period time to deter-
mine the trend of a stock (e.g., we consider 20-day moving average for the period). Gener-
ally speaking, we buy the stock if the price P��� is greater than the moving average; we sell
the stock if the price P���� is lower than the moving average. After a moving-average TFS

Fig. 1 Stock NYSE:WMB with a moving average TFS. It contains 1,045 days and 181 transactions when
applying a moving-average TFS. Moreover, positive R represents positive profit and negative R represents
negative profit

World Wide Web

1 3

is applied to original 1,045 price samples as shown in Figure 1(a), only 181 data samples
(i.e., transactions) are left (i.e., 17.2% of total 1,045 samples), as shown in Figure 1(b).
Different from price-prediction tasks which can use all price samples for training, it is
challenging to DL methods for TFS-enhancing tasks due to insufficient TFS samples. The
solution to this problem is to introduce more relevant data samples to the dataset so as to
improve the training effect of DL methods [7, 15, 16]. However, most existing studies sepa-
rate the data selection from model training processes, thereby irrelevant data samples being
used to train DL models. Consequently, the separation of data selection and model training
processes leads to the poor performance.

Challenge 2. How to design a profit-based model for TFS? There is also an unbal-
anced-sample problem when calculating the profits after executing a TFS. The profit rate Ri
for transaction i is defined as follows:

where �� represents the transaction cost including transaction fee and transaction slip-
page. Figure 1(b) shows that there is an unbalance between negative profit values and
positive profit values, e.g., there are 132 negative profit values far greater than 49 posi-
tive profit values while 49 positive profits lead to a cumulative positive profit rate
R = 3.986 − 2.715 = 1.271 . Conventional DL methods often consider the stock prediction
as a classification problem [11, 12] or a regression problem [7, 17]. However, the better
performance (such as higher accuracy and smaller error) of DL methods does not necessar-
ily bring the higher profits obtained for the real stock in contrast to the common sense. Take
Figure 1(c) as an example, where we consider prices of a real stock from NYSE:WMB
with different transactions, i.e., 1, 2, ..., 11. As shown in Figure 1(c), Classifier1 gains the
lower profit than Classifier2 due to different profit values in each prediction although it
obtains higher accuracy (Acc) than Classifier2, where the profit is the total balance of the
selling price minus the buying price. This example implies that the higher accuracy of a
DL model may not lead to higher profits. Thus, it is a necessity to design a profit-based
model for DL methods.

To address the above challenges, we propose a Profit-based Deep Architecture with
integration of Reinforced Data Selector (namely PDA-RDS) to enhance TFS in stock
investment. To address the first challenge, we construct a reinforced data selector (RDS) to
select high-quality training samples from source stocks. This data selector is jointly trained
with profit-based deep architecture (PDA). To address the second challenge, we establish
a PDA, which contains a sequential embedding layer, a historical attention layer, and a
predictive layer. Meanwhile, instead of applying a simple cross-entropy loss in the predic-
tive layer, we introduce a dynamic profit weight and a focal loss. Moreover, we devise a
training-aware immediate reward function to mitigate the overfitting problem in the rein-
forcement learning. In this way, the proposed data selector method not only can select use-
ful training samples for the target stock but also can improve the generalization of PDA.

The main contributions are highlighted as follows.

• We are the first to identify two key challenges in applying DL methods to enhance TFS
in stock investment, including the challenge of designing an effective data selector and
the challenge of designing the profit-based DL model.

• We propose a profit-based deep neural network with integration of a dynamic profit
weight and a focal loss function to address the challenge of the profit-based DL model.

(1)Ri =
p���� − p���

p���
− ��,

 World Wide Web

1 3

• To address the challenge of designing an effective data selector, we devise a reinforced
data selector, which integrates a training-aware immediate reward function into the
actor-critic reinforcement learning.

• Extensive experiments on both U.S. and China stock-market datasets demonstrate that
our framework achieves the superior performance than the state-of-the-art baseline
methods.

The rest of the article is organized as follows. Section 2 presents a brief literature survey on
related work. Section 3 gives preliminaries on the task definitions and evaluation metrics.
We then elaborate the main approach in Section 4. Section 5 next presents experimental
results. We finally conclude the paper in Section 6.

2 Related work

We present an overview on related work to our study as follows.

2.1 Transfer learning

The most relevant studies to this paper belong to supervised transfer learning (STL), which
is different from the partial transfer learning (PTL). PTL [18, 19] approaches are designed
for the scenario, in which the number of target-domain classes are smaller than that in the
source domain. It is a critical issue to identify and partially transfer the useful information
from the labeled source-domain instances. Different from STL, the labels in target-domain
and source-domain are the same in this paper. STL methods can be divided into two cat-
egories: feature-based STL methods and instance-based STL methods. Feature-based STL
methods such as [20, 21] attempt to project both the source training data and target training
data into a common feature space. However, this process may transfer negative training
samples from the source domain to the target domain, thereby degrading the predictive
performance. Instance-based STL methods [22] avoid transferring negative training sam-
ples through selecting or re-weighting the source training samples. However, this process
is extremely time-consuming since the sub-model in the transfer learning (TL) framework
may execute multiple times to find a valid weight vector. Although reinforcement learning
(RL) used in TL has been evidenced effectively in studies [23, 24], it can easily get into
overfitting, consequently suffering from the weak generalization, especially when the target
validation data is limited. In this paper, we use a training-aware immediate reward based
on reinforced transfer learning (RTL) to select useful training samples. Thus, the proposed
method not only can be beneficial to the predictive target task but also improve the gener-
alization of the predictive model.

2.2 Reinforcement learning

Another group of studies related to this paper are RL methods, which can be divided into
two categories: value-based RL approaches and policy-based RL approaches. The value-
based RL approaches [25–28] are based on the value function that is usually constructed by
a deep neural network and trained through maximizing the total discounted reward. How-
ever, the value-based RL methods have the difficulty to handle the complex environment
(e.g., continuous action space). Instead of learning a value indirectly, the policy-based RL

World Wide Web

1 3

approaches [29] can learn the policy directly, thereby learning various complex strate-
gies and achieving better performance than the value-based RL methods. However, pol-
icy-based RL methods often have a high variance caused by the Monte Carlo process.
Actor-critic [30] RL approaches integrate the advantages of value-based RL approaches
and policy-based RL approaches, consequently reducing the variance. In this paper, our
RDS belongs to the category of actor-critic RL approaches. Other advanced actor-critic
RL approaches include deep deterministic policy gradient [31], asynchronous advantage
actor-critic [32], and proximal policy optimization [33]. Data selection based on RL has
been applied in many fields such as active learning [34] , co-training [35], and text-match-
ing [36]. To the best of our knowledge, this is the first work applying reinforced data selec-
tor to enhance the trend-following strategy in stock market investment.

3 Preliminaries

In this section, we first give the task definition of enhancing TFS and then introduce evalu-
ation metrics.

3.1 Task definition

TFS1 [2, 37] is one of the more popular investment strategies in the hedge fund industry.
TFS considers both long positions in assets that have historically positive returns, and short
positions in assets that have historically negative returns. Following either of them can earn
or lose money in the market [38]. Our task is to judge whether to execute the signal gener-
ated by TFS. To the best of our knowledge, our TFS is first proposed in this paper and aims
to execute the signals that lead to profits rather than those signals that lead to losses. More
details are described as follows.

First , we give a general description of TFS as follows. For a stock i, pt represents the
close price at time t. Then, the upper-bound function and the lower-bound function of the
close price p within a time range [t − n, t] are defined as u(pt−n,t) , l(pt−n,t) , respectively. In
TFS, if pt ≥ u(pt−n,t) (i.e., no less than the upper bound within a time range [t − n, t]), stock
i should be bought or long positioned (named “long” in short). Otherwise, if pt ≤ l(pt−n,t)
(i.e., no greater than the lower bound), stock i should be sold or short positioned (named
“short” in short). Note that both upper bound and lower bound u and l are the functions of
the price.

Second, the task of enhancing TFS is to learn a prediction function denoted by
f (X;�) with parameters � , which maps the sequential features X to the label space ŷ , i.e.,
ŷ = f (X;𝜃) . In other words, the function aims to predict whether to execute the trading
signals generated by TFS. For instance, TFS generates a signal S at time t, the sequen-
tial features X is composed of the technical indicators (i.e., some analysis tools to help
investors better understand price movement) computed through pt−n,t . We learn the pre-
diction function f by fitting their ground-truth labels y ∈ {−1, 1} , where y = 1 represents
S is the positive signal (R > 0 from S to next signal), implying to execute S and the
corresponding (X, y) is a positive sample; y = −1 represents S is the negative signal
(R ≤ 0), implying not to execute S and the corresponding (X, y) is a negative sample.

1 https:// www. inves toped ia. com/ terms/t/ trend tradi ng. asp

https://www.investopedia.com/terms/t/trendtrading.asp

 World Wide Web

1 3

Moreover, we call a transaction as the executed transaction when the predictive value
ŷ = 1 . Therefore, the main goal of this paper is to enhance TFS rather than creating new
TFS.

In summary, a task of enhancing TFS has the input and output: 1) Input: sequential fea-
tures X; 2) Output: classification result ŷ.

3.2 Evaluation metrics

We adopt Cumulative Percentage Rate (���), which is the most standard evaluation metric
to evaluate investment strategies [39]. ��� is defined as ��� =

∑N

i=1
Ri , where Ri can be

obtained by (1) and N is the number of executed transactions. In addition, we also con-
sider a traditional measure, Sharp Ratio (��) [40] to evaluate the effectiveness of a strat-
egy. SR is formulated as follows:

where A is the average profit rate of all executed transactions, � is a risk-free profit rate
(e.g., a bank’s profit rate), and V is the volatility to measure the risk of a strategy.

The average profit rate of all executed transactions A can be calculated as follows,

where Kt = d × (pt∕pt−1 − 1) , d = 1 represents “long” holding and d = −1 represents
“short” holding of transaction i within Ti holding periods.

The volatility V is given by

where K̄t =
∑N

i=1

∑Ti
t=1

Kt
∑N

i=1
Ti

.
On the one hand, �� is determined by A and V . The larger A or smaller V may cause

the increment of �� . On the other hand, ��� represents how much profit rate that a method
can make for all executed transactions. The higher ��� implies the better performance of
an investment strategy. It is worth mentioning that a larger ��� also implies a larger ��
while a larger �� may not lead to a larger ��� . This is because a larger ��� means a TFS
not executing some signals whose ��� is less than zero, consequently increasing the A and
decreasing V . As a result, �� is increased. However, a larger �� may not lead to a larger
��� since no execution of some signals whose ��� is greater than zero may also decrease
the volatility V , thereby increasing �� while CPR is not increased.

Meanwhile, we also introduce Average Percentage Rate (���), which is defined as
��� =

���

N
 . ��� represents how much profit rate a method can make for each executed

transaction. Both ��� and ��� are main metrics in our paper. The higher ��� means that
each executed transaction can be tolerant to the uncertain �� which may fluctuate due to
the uncertainty of financial markets. Thus, ��� can better measure the performance of two
investment strategies when both of them have a close ��� value [39].

(2)�� =
A − �

V
,

(3)A =

N∑

i=1

(
1

Ti

Ti∑

t=1

Kt − ��

)
,

(4)V =

����
∑N

i=1

∑Ti

t=1
(Kt − K̄t)

2

∑N

i=1
Ti

,

World Wide Web

1 3

4 Our approach

4.1 PDA module

Figure 2 depicts the PDA-RDS framework, which consists of (a) PDA module and (b) RDS
module, to be illustrated as follows. As shown in Figure 2(a), PDA consists of three layers:
a sequential embedding layer, a historical attention layer, and a predictive layer.

4.1.1 Sequential embedding layer

Long Short-Term Memory (LSTM) [41] has been widely used to analyze time-series data,
such as natural language processing [5], video processing [42], and stock price prediction
[43]. In PDA, at each time-step, LSTM learns the hidden representation ht by jointly con-
sidering the input xt ∈ ℝ

D with dimension D and the hidden representation ht−1 (at the pre-
vious time t − 1) to capture long sequential dependency and temporal patterns. Formally,
an LSTM layer is applied to map X = [x1,⋯ , xT] ∈ ℝ

D×T into hidden representations
H = [h1,⋯ , hT] ∈ ℝ

U×T with the new dimension U.

4.1.2 Historical attention layer

The attention mechanism [44] has been widely used in LSTM-based solutions for sequen-
tial-learning problems [11]. The attention scheme aims to model the effect that the data
at different time-steps can contribute differently to the representation of the whole time-
series data. Specifically, the historical attention [45] is described as z =

∑T

i=1
�ihi , where �i

is computed by an attention function defined as follows

where W1 , b, v⊤ are parameters to be learned, and z is obtained through all previous hidden
representations. Instead of directly applying z, we construct a final hidden representation

(5)�i =
���(gi)

∑T

j=1
���(gj)

,

(6)g =v⊤����(W1ht + b),

RDS modulePDA module
Trend-following strategy

Policy
Network

Value
Network

Sequen�al
Embedding

Layer

Historical
A�en�on

Layer

Buys here

Sells here

Training Val_s
Training Val_s

… …

Training Val_t

Target stock

Source stocks

State

loss

Ac�on

PDA-Minimize
Val_s

Val_t

Reward

loss
RDS-Minimize

Predic�ve
Layer

Features

Fig. 2 PDA-RDS framework

 World Wide Web

1 3

e, which contains an attention representation z and the last hidden representation hT of
LSTM. We have e = [z⊤, h⊤

T
]⊤.

4.1.3 Predictive layer

As shown in Figure 1, there is an unbalance between the negative profit values and positive
profit values. The solutions to the unbalanced classification problem can be divided into i)
sampling-based approaches and ii) cost-sensitive approaches. Sampling-based approaches
[46] address the imbalance of the input data by adjusting the minority class or the major-
ity class in the input dataset so as to construct the balanced training dataset. Cost-sensi-
tive approaches [47] penalize the mis-classification in the training phase via the fixed-cost
matrix. However, cost-sensitive approaches do not consider the profit difference of each
prediction. To solve this problem, we devise a dynamic profit weight loss function, which
is defined as follows:

where ŷ = �������(e) and y is a one-hot 2-dimensional vector. One dimension denotes this
vector corresponding to a positive sample and another dimension denotes this vector cor-
responding to a negative sample. Commonly, wk is set to q

Qk

 [12], where Qk is the number of
samples that are labelled as an integer k and q is a constant parameter. In the proposed
PDA, wk can be dynamically adjusted for each training sample i. The weight for each sam-
ple i is denoted by wi

k
 , which can be calculated as follows:

where Ri is the profit rate as defined in (1). We use a fixed value ws
k
 to smooth Ri to nor-

malize the profits of different stocks with highly-varied prices, which are hard to measure
together.

Furthermore, we introduce a focal loss (FL) [48] to learn the positive samples with
profits less than ws

k
 , which are difficult to be identified. The focal loss is defined as

FL = (1 − ŷ)𝛾 log[ŷ] , where � is a tunable focusing-parameter. Since the mis-classification
of negative samples does not have significant impacts as the positive samples and negative
samples contain substantial noises, we only introduce a parameter c to the negative sam-
ples instead of the focal loss [49]. Finally, the profit-based loss function is formulated as
follows:

4.2 RDS module

As is shown in Figure 1, applying TFS to the original price sequence will reduce the num-
ber of training samples since each transaction contains a time range of the original price
sequence. Thus, it is very important to introduce other stocks into training samples. On
the one hand, it can increase the number of training samples. On the other hand, it can

(7)L1 = −

2∑

k=1

|wk| ⋅ 1⊤yk ⋅ log[ŷk],

(8)wi
k
=

� ‖Ri‖
ws
k

if��Ri
�� > ws

k

ws
k

if��Ri
�� ≤ ws

k

,

(9)L2 = −|wi
1
| ⋅ 1⊤

y1
⋅ (1 − ŷ1)

𝛾
⋅ log[ŷ1] − |wi

2
| ⋅ 1

c
⋅ 1⊤

y2
⋅ log[ŷ2].

World Wide Web

1 3

improve the generality of the model. However, not all the training samples are beneficial
to the target stock. Therefore, we propose a reinforced data selector (RDS) to select high
quality training samples as illustrated in Figure 2(b). In particular, we consider the process
of data selection as a Markov decision process, which consists of state, action, reward, and
optimization described as follows.

4.2.1 State

A set Sb of states is obtained from the environment (i.e., PDA) where b is the batch number.
Each state Si ∈ Sb consists of three features. The first feature is a high-level signal represen-
tation learned by the PDA module while [36] has proved that the high-level (hidden) signal
representation can achieve relatively excellent performance. The second feature is the pre-
dicted probability of the PDA module on training sample Xi ∈ Xb . The third feature is the
training loss of the PDA module on training sample Xi . A combination of the second and
the third features can measure the performance of the current PDA module on Xi.

4.2.2 Action

An action is denoted by ai ∈ Ab , where Ab is the action set containing m actions
(i = 1, 2, ...,m). Each action ai is essentially a probability of a training sample Xi being
selected, thereby ai ∈ [0, 1] . Instead of applying the selection in Xb , we conduct a selection
step in the calculation of the batch loss, which is the weighted average of all the loss values
of all the actions. For instance, when action ai is chosen, its loss value is included in the
batch loss; otherwise its loss value will not be included. The PDA module is then updated
by minimizing the batch loss.

4.2.3 Reward

After updating the PDA module, we can obtain a delay reward rb on the target validation
samples X� . ��� and ��� are two important metrics to measure the strategy described in
Section 3.2. Here, we define a conjoint reward CR to combine the ��� and ��� , which is
shown as follows:

where � is the parameter to balance the weight of ��� and ��� . The value of � is choosen
from zero to the number of the validating samples in our experiments. Formally, rb is
defined as follows:

where C is the number of X� , ��−
i
 and ��+

i
 represents the conjoint rewards before updating

the PDA module and after updating the PDA module, respectively. Thus, the future total
reward r′

b
 for each batch in an episode can be formalized as r�

b
=
∑N−b

j=0
�jrb+j , where N is

the number of batches in an episode and � is the reward discount factor.
The delay reward is only calculated from the target validation samples with the rela-

tively small volume. the maximization of the total delay reward may lead to the overfit-
ting of PDA module on the target validation samples, consequently suffering from weak

(10)�� = ��� + � × ���,

(11)rb =
1

C

C∑

i=1

(��+
i
− ��−

i
),

 World Wide Web

1 3

generalization and poor performance. To address this issue, we introduce three methods to
combine the performance in the validation samples from all the source stocks.

(1) Uniform integration (UI). UI calculates the delay reward of validation sam-
ples from all the source stocks as reward rui . Thus, the total reward is calculated as
R

UI
b

=
∑N−b

j=0
�j(rb+j + � ⋅ rui

b+j
).

(2) Weighted integration (WI). UI may introduce the negative validation samples
since not all source stocks can equally contribute to the target stock. Thus, we apply
WI method, which is to select a subset from source stocks based on the historical
cosine similarity. The term rwi is the reward on the validation samples from the sub-
set of source stocks, which contains ten stocks. The total reward is calculated by
R

WI
b

=
∑N−b

j=0
�j(rb+j + � ⋅ rwi

b+j
).

(3) Immediate reward (IR). However, the aforementioned two methods are not
training aware methods. We propose an immediate reward, IR, which is obtained on
the validation samples of a specific stock, whose training samples are used to update
the PDA module at the current training time. It’s reasonable that more training sam-
ples are selected to update the PDA module from a specific stock, its validation sam-
ples Xv should have a larger IR. Therefore, IR is given as follows:

where E represents the number of training samples, Ẽ represents the number of selected
training samples, and G is the number of Xv . Finally, the total reward of each batch is for-
mulated as follows:

where � is the parameter used to control the importance of the immediate reward and delay
reward. Note that, PDA-RDS uses RIR

b
 as the reward function.

4.2.4 Optimization

We then apply the actor-critic algorithm [30] to optimize RDS. The main process of
actor-critic algorithm is as follows. First, the policy � (i.e., two fully-connected lay-
ers) is paramterized by � and an action Ab is obtained through �(⋅‖Sb) for a given Sb .
After that, PDA is updated by Sb and Ab once receiving the reward Rb , which contains
a delay reward rb and an immediate reward rir

b
 . For each episode, � is updated via

� ← � + ��▿� log��(Sb)� , where �� is the learning rate, and � is the total reward in the
whole episode. To reduce the variance and update through steps, we introduce the
advantage function network to estimate � , which is considered to have smaller vari-
ance and faster convergence. Therefore, �b = Q(Sb,Ab) − V�(Sb) , where the value esti-
mator V� is a network consisting of two fully-connected layers parameterized by � and
Q(Sb,Ab) and can be calculated by (13). Finally, � is updated as follows:

The parameter � in value function V� is updated through minimizing the mean squared
error between the future reward and the estimate reward,

(12)rir
b
=

Ẽ

E

1

G

G∑

i=1

(��+
i
− ��−

i
),

(13)R
IR
b
= r�

b
+ � ⋅ rir

b
,

(14)� ← � + ��▿� log��(Sb)�b.

World Wide Web

1 3

where �� is the learning rate.

4.2.5 Fine‑tuning

Fine-tuning [50] is a process to make small modifications of the pre-training model.
In particular, we transfer the parameters of PDA module from pre-training process
and freeze the parameters in the sequential embedding layer and historical attention
layer. In this way, we only tune the parameters in the predictive layer with the target
training data. Finally, the detailed learning process is described in Algorithm 1.

(15)� ← � + ��▿�||RIR
b
− V�(Sb)||22,

Algorithm 1 Learning process of Reinforced data selector

 World Wide Web

1 3

5 Experiments

5.1 Datasets

We conduct experiments on both U.S. and China stock-market datasets. In particular, we
consider S &P 5002 constituents containing 500 stocks in U.S. stock markets and HS 3003
constituents containing 300 stocks in China stock markets (Chinese mainland). For S &P
500 dataset, we collect price-volume data (open, close, high, low, and volume) of each
stock from 2013/02/08 to 2019/06/17, which spans more than six years and contains 1,174
trading days. For HS 300 dataset, we collect price-volume data (open, close, high, low, and
volume) of each stock from 2013/10/08 to 2020/06/08, which spans more than six years
and contains 1,628 trading days. In the preprocessing stage, price data samples are aug-
mented through the back-rehabilitation called price data adjustment. The adjusted price
data can exactly reflect the stock’s values accounting for some corporate actions, such as
stock splits and stock dividends.

We then let the upper bound function u(⋅) and the lower bound function l(⋅) of TFS be
u(pt−n,t) = l(pt−n,t) =

∑t

i=t−n
pi

n
 , where pt represents the close price and n is set to 20. Thus,

the new time-series data is calculated by pt − u(pt−n,t) . Meanwhile, we apply TFS and con-
struct the feature matrix X and label y of each transaction. xt ∈ X represents the feature
vector at time t obtained from Table 1, which contains 24 features. Finally, the dataset of
each stock is divided into three sets: training set (S &P 500: 2013/02/08-2017/02/08; HS
300: 2013/10/08-2017/10/08), validation set (S &P 500: 2017/03/01-2018/03/01; HS 300:
2017/10/08-2018/10/08), and testing set (S &P 500: 2018/03/01-2019/06/17; HS 300:
2018/10/08-2020/06/08). The transaction cost �� of a complete transaction is set to 0.1%
of transaction amount as in [39]. Therefore, the ratio of the number of positive and nega-
tive samples of HS 300 and S &P 500 is 39:61 and 29:71, respectively.

5.2 Evaluation metrics

Following previous studies on stock prediction [11, 12], we also adopt two standard met-
rics: accuracy (Acc) and F1 score (F1) to evaluate the prediction accuracy. In Section 3.2,
we also introduce three metrics: ��� , ��� , ��� . ��� is the annualized �� , which is

Table 1 Features in vector vt

rma: rate of moving average; roc: rate of change; price: pt or
pt − u(pt−n,t)

Features Calculation

5-rma, 10-rma, 15-rma
n-rma =

n×�����t−
∑n

i=1
�����i∑n

i=1
�����i

20-rma, 25-rma, 30-rma
1-roc, 3-roc, 5-roc n-roc = �����t−�����t−n

�����t−n

7-roc, 9-roc, 11-roc

2 https:// drive. google. com/ file/d/ 1Iowk- 9946O 53Okk 6vDPn fgRDC Ga5sJ ng/ view? usp= shari ng
3 https:// drive. google. com/ file/d/ 1InH3 nnNEE 2lFbW nrrT_ 67jZB jiH2H fb5/ view? usp= shari ng

https://drive.google.com/file/d/1Iowk-9946O53Okk6vDPnfgRDCGa5sJng/view?usp=sharing
https://drive.google.com/file/d/1InH3nnNEE2lFbWnrrT_67jZBjiH2Hfb5/view?usp=sharing

World Wide Web

1 3

computed as ��� = �� ×
√
M , where M is the number of holding periods in a year. Mean-

while, we use the average ��� of all stocks in the testing dataset. We next evaluate the
performance of our proposed PDA-RDS method with comparison of other state-of-the-art
(SOA) baseline methods. The higher ��� , ��� , and ��� mean the better performance of
an investment strategy.

5.3 Experimental details

All the experiments were conducted on a workstation consisting of 32-Core CPU and
two Nvidia GPUs (Tesla P100) with 12 GB RAM (OS is Ubuntu 18.04 LTS). We imple-
mented the framework on top of TensorFlow 2.0 with Python 3.7 and adopt the Adam opti-
mizer [51]. The parameters of the Adam optimizer are fixed to a range from 0.9 to 0.999.
Besides, we conduct a grid search over all hyperparameters for each method and dataset.
Regarding the actor-critic method, we adopt two fully-connected networks for the policy
network and the value network, respectively. We vary the number of hidden state size in
{16, 32, 64, 128} and choose � from [0, 20]. For PDA module, the number of LSTM hidden
units is chosen from set {16, 32, 64, 128} . Following [48], we tune the focusing parameter
� via grid-search of [0, 5]. Moreover, we tune parameter c, and ws

k
 from {1, 3, 5, 10} and

{0, 0.01, 0.015, 0.02} . The dropout rate of our model is chosen from {0.2, 0.3, 0.5} . During
the training phase, the batch size is chosen from {32, 64, 128} and the learning rate is set
from {0.005, 0.01, 0.05} . We test different hyperparameters and find the best settings for
each method according to the performance on the validation dataset. Table 3 lists configu-
rations of the main parameters in our model.

5.4 Baselines

We evaluate and compare the proposed PDA-RDS with the following baseline methods
and their variants:

• TFS is a naive baseline method considering the moving average TFS.
• LSTM has an LSTM layer and a prediction layer.
• Gated recurrent units (GRU) has an GRU layer and a prediction layer.
• ALSTM is an attentive LSTM [52], which is the same as our PDA except for the loss

function. ALSTM only adopts the simple cross-entropy loss function.
• RAND is a randomized method that randomly selects the training data from 100 source

stocks to train them together for the target stock set.
• Full Transfer Learning (TL) is a TL method, which transfers the training data of source

stocks without data selection (only PDA module is used). The PDA module is then
fine-tuned by the target training data.

• Similarity TL [15] transfers the training data of source stocks according to the similar-
ity to the target stock set. Particularly, the cosine similarity between the close price of
the source stock and that of the target stock is calculated. Meanwhile, we select the top-
100 stocks for similarity TL.

• Ruder and Plank [22] proposes an instance selection method with Bayesian optimiza-
tion.

• Reinforced Transfer Learning (RTL) [36] proposes an instance selection method with
reinforcement learning for transfer learning. RTL has the designated reward while our
RDS has different rewards (as follows).

 World Wide Web

1 3

Note that methods TFS, LSTM, GRU, ALSTM, and PDA incorporate the training sam-
ples (also validating samples and testing samples) of all stocks into one training set
(also validating set and testing set). Other data-selection methods divide all stocks into
source stocks and target stocks. Target stocks essentially consists of a stock set with 10
stocks in order to avoid the insufficiency of training and validating samples (if a target
stock only contains a stock). There are 50 sets on S &P 500 dataset and 30 sets on HS
300 dataset, each of which contains 10 stocks selected from the training samples sorted
according to the ��� values. In order to achieve a fair comparison, the hidden layers
and other parameters in LSTM, GRU, ALSTM and PDA models are the same as those
in our model as given in Table 3. Moreover, parameters in Full TL, Similarity TL, and
RTL are also the same as those in our PDA-RDS. Furthermore, we follow [22] to tune
the parameters in Ruder and Plank.

Table 2 Results of PDA-RDS with other baselines

S &P 500 HS 300

Acc F1 ��� ��� ��� Acc F1 ��� ��� ���

TFS / / 15.05 0.0013 0.5228 / / 18.12 0.0032 0.3348
LSTM 0.7461 0.4367 2.32 0.0044 0.3016 0.6932 0.3618 4.33 0.0044 0.2644
GRU 0.7353 0.4351 2.12 0.0043 0.3244 0.6872 0.3815 5.14 0.0046 0.2863
ALSTM 0.7472 0.4369 6.98 0.0054 0.5316 0.6674 0.3988 5.76 0.0048 0.2843
PDA (ours) 0.6632 0.5332 18.08 0.0065 0.7400 0.6321 0.4432 20.48 0.0057 0.5276
RAND 0.6692 0.5367 18.46 0.0068 0.7761 0.6647 0.4266 20.14 0.0055 0.5081
Full TL 0.6710 0.5388 18.66 0.0069 0.8002 0.6288 0.4654 20.88 0.0060 0.5443
Similarity TL [15] 0.6820 0.5460 19.55 0.0072 0.8455 0.6344 0.4699 20.96 0.0062 0.5686
Ruder and Plank [22] 0.6457 0.5206 16.32 0.0069 0.6300 0.5264 0.4322 19.43 0.0042 0.4442
RTL [36] 0.6763 0.5430 20.44 0.0070 0.9100 0.5944 0.4653 21.56 0.0066 0.6058
PDA − RDS (ours) 0.6932 0.5844 23.10 0.0080 1.0131 0.6122 0.4876 23.96 0.0075 0.6641

Table 3 Parameters in PDA-RDS

Parameters Configurations

tensorflow random seed 123456
ALSTM lstm(64)-lstm(64)-attention(64)-dense(2)
actor-critic dense(64)-dense(64)
gamma in Adam optimize 0.95
dropout of lstm layer 0.5
smooth value ws

k
 in Eq. (8) 0.01

� in (9) 2
c in (9) 2
� in (13) 7
train batchsize 64
train learning rate 0.01 for actor critic and 0.015 for pda model
training episodes 150

World Wide Web

1 3

5.5 Results

Table 2 compares our PDA-RDS with other baselines. We have the following observations
from Table 2: i) PDA-RDS outperforms all the baselines in terms of ��� and ��� (i.e.,
making more profits). Particularly, ��� , ��� and ��� of PDA-RDS are 13.0%, 14.29%,
11.32% higher than those of RTL [36], respectively. ii) Among all the conventional base-
lines, data-selection schemes such as RAND, Full TL, Similarity TL, Ruder and Plank, and
RTL outperform TFS, LSTM, GRU, and ALSTM, implying that not all source stocks con-
tribute to the performance improvement. Although Full TL also transfers all the training
data of source stocks, it performs slightly better than RAND due the fine-tuning process.
RTL performs much better than other data-selection methods (except for our PDA-RDS)
due to the introduction of RL in data selection. Our PDA-RDS has superior performance
than other baselines mainly due to the profit-based model and the data-selection based on
IR. iii) ALSTM has a higher ��� than TFS in S &P 500 dataset but the corresponding ���
is much lower than TFS. It implies that ��� may not be a good metrics in evaluating the
enhanced TFS model. iv) The models incorporating the profit-based loss function (PDA,
RAND, Full TL, Similarity TL, Ruder and Plank, RTL, PDA-RDS) show a better F1 score
than the model without profit-based loss function (LSTM, FRU, ALSTM), which demon-
strates that the proposed loss function can handle the label unbalance problem and produce
a larger ���.

5.6 Ablation studies

5.6.1 Effectiveness of PDA module

We compare PDA with ALSTM-based methods as well as variants of our PDA on S &P
500 dataset.

• ALSTM w/ us is a variant of ALSTM and is trained by data samples which are preproc-
essed via under-sampling method.

• ALSTM w/ os is a variant of ALSTM and is trained by data samples which are preproc-
essed by over-sampling method.

• ALSTM w/ w is a variant of ALSTM which consists of a fixed positive weight w to the
cross-entropy loss function, where w is the ratio of negative samples to positive sam-
ples.

• PDA w/o FL is a variant of the PDA module variant without the FL loss.
• PDA w/ FL is a variant of the PDA module variant with the FL loss for both positive

and negative samples.
• PDA w/o SM is a variant of the PDA module variant without the smoothing process as

defined in (8).

Table 4 presents performance comparison of our PDA with other methods. We have
the following observations from the experimental results: i) Regarding the unbalanced
data problem, our PDA obtains the largest F1 score, which demonstrates the effective-
ness of the profit-based loss function. In addition, the under-sampling method (ALSTM
w /us) performs better than ALSTM w/ os and ALSTM w/ w. Moreover, ALSTM w/ w

 World Wide Web

1 3

mainly focuses on prediction instead of the profit-making strategy, thereby the ��� value
of ALSTM w/ w is the lowest (i.e., 0.0584). ii) Compared with the ablation variants of our
PDA, such as PDA w/o FL, PDA w/ FL, and PDA w/o SM, PDA can learn more informa-
tion when the focal loss is introduced to the positive training samples. For example, PDA
achieves the best ��� 0.0065, which is 28% improvement over PDA w/FL though PDA w/
FL has slightly higher ��� than PDA (i.e., 0.6% higher) while ��� plays a more important
role in profit-making when the ��� is close to same (detailed in Section 5.7.4). Further-
more, the smooth function plays an important role in our PDA. In summary, PDA demon-
strates its advantages in making profits.

5.6.2 Effectiveness of IR in RDS module

To evaluate the effectiveness of IR in RDS module, we compare variants of different
reward schemes on S &P 500 dataset. Table 5 presents the results. PDA-RDS has two
variants: PDA-RDS-UI and PDA-RDS-WI, which also perform excellently (aligning with
Table 2). They all improve the generalization of reinforced data selector avoiding overfit-
ting the validation dataset. We observe from Table 5 that PDA-RDS outperforms PDA-
RDS-UI and PDA-RDS-WI due to the introduction of IR to the training process, thereby
improving the learning effect.

5.7 Parameters analysis

The analysis of all parameters is based on S &P 500 dataset.

5.7.1 Impact of n

In our experimental setting, all stocks share the same value n (i.e., n = 20 in this paper).
However, it is reasonable to choose different values of n for each stock. Therefore, we

Table 4 Performance comparison
of PDA with ALSTM-based
methods as well as variants of
PDA

Acc F1 CPR APR

ALSTM w/ us 0.5081 0.4768 17.02 0.0033
ALSTM w/ os 0.2715 0.2350 13.42 0.0012
ALSTM w/ w 0.7466 0.4376 0.0584 0.0047
PDA (ours) 0.6632 0.5332 18.08 0.0065
PDA w/o FL 0.5541 0.5098 17.11 0.0035
PDA w/ FL 0.5928 0.5234 18.19 0.0047
PDA w/o SM 0.5347 0.4876 13.19 0.0027

Table 5 Performance comparison
of PDA-RDS with different
reward schemes

Acc F1 CPR APR

PDA-RDS-UI 0.6684 0.5390 19.28 0.0066
PDA-RDS-WI 0.6844 0.5531 21.08 0.0073
PDA-RDS 0.6932 0.5844 23.10 0.0080

World Wide Web

1 3

design a strategy, named the best-n TFS, in which n can be obtained through calculating
the best ��� value from the historical training data of each stock of S &P 500. The best-
n TFS has obtained ��� = 5.90 and ��� = 0.0003, which are much lower than those of
TFS (fixed n = 20) in Table 2. The main reason lies in the possible overfitting of different
values of n of each stock in the best-n TFS in the historical training data. Meanwhile, we
also apply PDA to enhance the best-n TFS and achieve ��� = 10.39 and ��� = 0.0028,
outperforming the best-n TFS; this result implies that the introduction of PDA can greatly
improve the best-n TFS.

5.7.2 Impact of

The focusing-parameter � defined in (9) is tunable. We investigate the impact of � on the
performance (��� and ���) of our PDA-RDS via varying � within range [0, 5]. Fig-
ure 3(a) illustrates the results. We observe from Figure 3(a) that ��� fluctuates not signifi-
cantly when � falls into range [0, 2] while it decreases rapidly when � falls into range [2, 5].
Differently, ��� swells significantly when � falls into range [0, 5]. The main reason lies in
the fact that PDA learns more information from positive samples with the increment of � in
range [0, 2]. However, the excessive attention to positive samples decreases the number of
positive samples in prediction, especially when 𝛾 > 2 . The fewer positive samples in pre-
diction consequently lead to the decreased ��� value and the increased ��� value.

Fig. 3 The impact of parameters

 World Wide Web

1 3

5.7.3 Impact of �

We investigate the impact of � on ��� and ��� of our PDA-RDS as shown in Fig-
ure 3(b). We vary � with [0, 20] since the immediate reward (IR) is calculated by one
source stock and the delay reward is calculated by ten target stocks. We observe from
Figure 3(b) that both ��� and ��� achieve the best values when � = 7 . The further
increment of � does not lead to a better performance when 𝜆 > 7 because IR contributes
more to the total reward while failing to consider the delay reward. Moreover, a smaller
IR (i.e., 𝜆 < 7) also leads to a worse performance since smaller IR contributes as a noise
to the delay reward.

5.7.4 Impact of ��

We vary different values of �� to explain the importance between ��� and ��� with
PDA and PDA w/FL because they have approximate ��� but different ��� . As shown
in Figure 3(c) and (d), the horizontal axis represents the transaction cost (��), which
gradually increases from 0.001 to 0.01 while the vertical-axis represents the varied ���
and ��� . It can be observed that PDA w/ FL loses more than PDA and turns into nega-
tive ��� quickly with the increment of transaction costs. More specifically, PDA takes a
long time to turn into negative ��� as the red line of PDA goes obviously behind the red
line of PDA w/ FL (i.e., �� = �.���� vs �� = �.����). Therefore, in the case of similar
to ��� , the higher ��� leads to the stronger the model’s ability to tolerate uncertainty
in the future trading. The uncertain may be caused by the uncertain transaction slippage.

5.7.5 Impacts of RL algorithms

We use other RL algorithms, such as Policy Gradient (PG) [29], Proximal Policy Optimiza-
tion (PPO) [33], Deep Q-Network (DQN) [25, 53], and Deep Deterministic Policy Gradi-
ent (DDPG) [31] to substitute the actor-critic (AC) scheme in the RDS module to evaluate
the impacts of different RL algorithms in our framework. The results are shown in Table 6.

It can be observed from Table 6 that all RL algorithms used in the RDS framework
are better than the pure PDA. More specifically, ��� of DDPG achieves slightly higher
��� than AC while PPO achieves slightly higher ��� than AC though AC achieves
relatively more balanced results (i.e., relatively high values in both ��� and ���). In
addition, AC outperforms DQN and PG methods.

Table 6 Comparison of different
RL algorithms

Methods Acc F1 CPR APR

(only) 0.6632 0.5332 18.08 0.0065
PG 0.6344 0.5417 18.68 0.0066
DQN 0.6482 0.5467 19.46 0.0068
DDPG 0.7110 0.5476 24.86 0.0079
PPO 0.6810 0.5460 21.43 0.0085
AC 0.6932 0.5844 23.10 0.0080

World Wide Web

1 3

6 Conclusion

In this paper, we propose to apply deep learning methods to enhance traditional trad-
ing strategies, that is trend-following strategy. However, the enhancing task creates two
challenges. To address these two challenges, we propose a profit-based deep architec-
ture with integration of reinforced data selector (PDA-RDS) to enhance trend-following
strategies in stock investment. PDA consists of a composite deep network, a dynamic
profit weight and a focal loss function, thereby well quantifying profits during the train-
ing process. RDS integrates a training-aware immediate reward function into the actor-
critic reinforcement learning model to select relevant stock data so as to improve the
learning effectiveness of the entire structure. Extensive experiments on realistic stock
data demonstrates the superior performance of our proposed model than the state-of-
the-art methods.

Funding The research is supported by the Key-Area Research and Development Program of Guangdong
Province (2020B010165003), the National Natural Science Foundation of China under project (62032025),
and the Technology Program of Guangzhou, China (202103050004), Faculty Research Grants (DB22A5
and DB22B7) of Lingnan University, Hong Kong.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

References

 1. Brock, W., Lakonishok, J., LeBaron, B.: Simple technical trading rules and the stochastic properties of
stock returns. J. Financ. 47(5), 1731–1764 (1992)

 2. James, J., et al.: Simple trend-following strategies in currency trading. Quantitative Finance 3(4),
75–77 (2003)

 3. Jegadeesh, N., Titman, S.: Returns to buying winners and selling losers: Implications for stock market
efficiency. J. Financ. 48(1), 65–91 (1993)

 4. Fong, S., Si, Y.-W., Tai, J.: Trend following algorithms in automated derivatives market trading. Expert
Syst. Appl. 39(13), 11378–11390 (2012)

 5. Zheng, W., Zheng, Z., Wan, H., Chen, C.: Dynamically route hierarchical structure representation to
attentive capsule for text classification. In: IJCAI’19, pp. 5464–5470. AAAI Press, (2019)

 6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural net-
works. In: NIPS’12, vol. 60, pp. 1097–1105. MIT Press, (2012)

 7. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.-S.: Temporal relational ranking for stock predic-
tion. ACM Transactions on Information Systems (TOIS) 37(2), 1–30 (2019)

 8. Wang, H., Wu, Y., Min, G., Miao, W.: A graph neural network-based digital twin for network slicing
management. IEEE Trans. Industr. Inf. 18(2), 1367–1376 (2020)

 9. Wu, Y., Wang, Z., Ma, Y., Leung, V.C.: Deep reinforcement learning for blockchain in industrial iot: A
survey. Comput. Netw. 191,(2021)

 10. Liang, W., Xie, S., Cai, J., Xu, J., Hu, Y., Xu, Y., Qiu, M.: Deep neural network security collaborative
filtering scheme for service recommendation in intelligent cyber-physical systems. IEEE Internet of
Things Journal, 1–1 (2021)

 11. Feng, F., Chen, H., He, X., Ding, J., Chua, T.-S.: Enhancing stock movement prediction with adver-
sarial training. In: IJCAI‘19, pp. 5843–5849. AAAI Press, (2019)

 12. Tran, D.T., Iosifidis, A., Kanniainen, J., Gabbouj, M.: Temporal attention-augmented bilinear network
for financial time-series data analysis. IEEE Transactions on Neural Networks and Learning Systems
30(5), 1407–1418 (2018)

 World Wide Web

1 3

 13. Hu, Z., Liu, W., Bian, J., Liu, X., Liu, T.-Y.: Listening to chaotic whispers: A deep learning frame-
work for news-oriented stock trend prediction. In: ICDM’18, pp. 261–269. Association for Computing
Machinery, (2018)

 14. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Sci-
ence 2(1), 1–8 (2011)

 15. He, Q.-Q., Pang, P.C.-I., Si, Y.-W.: Transfer learning for financial time series forecasting. In: PRIJ-
CAI’19, vol. 11671, pp. 24–36 (2019). Springer

 16. Nguyen, T.-T., Yoon, S.: A novel approach to short-term stock price movement prediction using
transfer learning. Appl. Sci. 9(22), 4745 (2019)

 17. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market
predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)

 18. Cao, Z., Long, M., Wang, J., Jordan, M.I.: Partial transfer learning with selective adversarial net-
works. In: CVPR’18, pp. 2724–2732 (2018)

 19. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A comprehensive survey
on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

 20. Wang, C., Mahadevan, S.: Heterogeneous domain adaptation using manifold alignment. In:
IJCAI’11, pp. 1541–1546 (2011)

 21. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain
adaptation. In: ICML’18, vol. 80, pp. 5423–5432. Cambridge MA: JMLR, (2018)

 22. Ruder, S., Plank, B.: Learning to select data for transfer learning with Bayesian optimization. In:
EMNLP’17, pp. 372–382. Association for Computational Linguistics (2017)

 23. Ye, R., Dai, Q.: A novel transfer learning framework for time series forecasting. Knowl.-Based
Syst. 156, 74–99 (2018)

 24. Wang, B., Qiu, M., Wang, X., Li, Y., Gong, Y., Zeng, X., Huang, J., Zheng, B., Cai, D., Zhou, J.: A
minimax game for instance based selective transfer learning. In: KDD’19, pp. 34–43. Association
for Computing Machinery (2019)

 25. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Ried-
miller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement
learning. Nature 518(7540), 529 (2015)

 26. VanHasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In:
AAAI’16, pp. 2094–2100 (2016)

 27. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.: Dueling network
architectures for deep reinforcement learning. In: ICML’16, pp. 1995–2003. JMLR.org (2016)

 28. Yan, Z., Ge, J., Wu, Y., Li, L., Li, T.: Automatic virtual network embedding: A deep reinforce-
ment learning approach with graph convolutional networks. IEEE J. Sel. Areas Commun. 38(6),
1040–1057 (2020)

 29. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforce-
ment learning with function approximation. In: NIPS’00, pp. 1057–1063. MIT Press (2000)

 30. Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. In: NIPS’00, pp. 1008–1014. MIT Press
(2000)

 31. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Con-
tinuous control with deep reinforcement learning. arXiv: 1509. 02971 (2015)

 32. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.:
Asynchronous methods for deep reinforcement learning. In: ICML’16, vol. 48, pp. 1928–1937 (2016)

 33. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization
Algorithms. https:// arxiv. org/ pdf/ 1707. 06347. pdf (2017)

 34. Fang, M., Li, Y., Cohn, T.: Learning how to active learn: A deep reinforcement learning approach.
In: EMNLP’17, pp. 595–605. Association for Computational Linguistics (2017)

 35. Wu, J., Li, L., Wang, W.Y.: Reinforced co-training. In: ACL’18, pp. 1252–1262 (2018)
 36. Qu, C., Ji, F., Qiu, M., Yang, L., Min, Z., Chen, H., Huang, J., Croft, W.B.: Learning to selectively

transfer: Reinforced transfer learning for deep text matching. In: ICDM’19, pp. 699–707. Associa-
tion for Computing Machinery (2019)

 37. Hurst, B., Ooi, Y.H., Pedersen, L.H.: A century of evidence on trend-following investing. The Jour-
nal of Portfolio Management 44(1), 15–29 (2017)

 38. Baltas, N.: Trend-following, risk-parity and the influence of correlations. In: Risk-Based and Factor
Investing, pp. 65–95. Elsevier (2015)

 39. Wang, J., Zhang, Y., Tang, K., Wu, J., Xiong, Z.: Alphastock: A buying-winners-and-selling-losers
investment strategy using interpretable deep reinforcement attention networks. In: KDD’19, pp.
1900–1908. Association for Computing Machinery (2019)

 40. Sharpe, W.F.: The sharpe ratio. J. Portf. Manag. 21(1), 49–58 (1994)

http://arxiv.org/abs/1509.02971
https://arxiv.org/pdf/1707.06347.pdf

World Wide Web

1 3

 41. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
 42. Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based lstm and

semantic consistency. IEEE Trans. Multimedia 19(9), 2045–2055 (2017)
 43. Li, Y., Zheng, W., Zheng, Z.: Deep robust reinforcement learning for practical algorithmic trading.

IEEE Access 7, 1–1 (2019)
 44. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, U., Polosukhin,

I.: Attention is all you need. In: NIPS’17, Red Hook, NY, USA, pp. 6000–6010 (2017)
 45. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and trans-

late. arXiv: 1409. 0473 (2014)
 46. Nguyen, G.H., Bouzerdoum, A., Phung, S.L.: Learning pattern classification tasks with imbalanced

data sets. Pattern Recognition, 193–208 (2009)
 47. Wang, X., Matwin, S., Japkowicz, N., Liu, X.: Cost-sensitive boosting algorithms for imbalanced

multi-instance datasets. In: AAI’13, pp. 174–186. Springer (2013)
 48. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In:

ICCV’17, pp. 2980–2988 (2017)
 49. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Object Detection. In: ICCV’17,

pp. 2999–3007 (2017)
 50. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers

for language understanding. In: ACL’19, pp. 4171–4186 (2019)
 51. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR’15. OpenReview.net

(2015)
 52. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage attention-based recur-

rent neural network for time series prediction. In: IJCAI’17, pp. 2627–2633. AAAI Press (2017)
 53. Chen, W., Qiu, X., Cai, T., Dai, H.-N., Zheng, Z., Zhang, Y.: Deep reinforcement learning for internet

of things: A comprehensive survey. IEEE Communications Surveys Tutorials 23(3), 1659–1692 (2021)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Yang Li1 · Zibin Zheng1,2 · Hong‑Ning Dai3 · Raymond Chi‑Wing Wong4 ·
Haoran Xie5

 Zibin Zheng
 zhzibin@mail.sysu.edu.cn

 Hong-Ning Dai
 hndai@ieee.org

 Raymond Chi-Wing Wong
 raywong@cse.ust.hk

 Haoran Xie
 hrxie2@gmail.com

1 School of Data and Computer Science, Sun Yat-sen University, 510275 Guangdong, Guangzhou,
China

2 National Engineering Research Center of Digital Life, Sun Yat-sen University, 510275 Guangdong,
Guangzhou, China

3 Department of Computer Science, Baptist University, Hong Kong, China
4 Department of Computer Science and Engineering, Hong Kong University of Science

and Technology, Hong Kong, China
5 Department of Computing and Decision Sciences, Lingnan University, Hong Kong, China

http://arxiv.org/abs/1409.0473
http://orcid.org/0000-0001-5653-1829

	Profit-based deep architecture with integration of reinforced data selector to enhance trend-following strategy
	Abstract
	1 Introduction
	2 Related work
	2.1 Transfer learning
	2.2 Reinforcement learning

	3 Preliminaries
	3.1 Task definition
	3.2 Evaluation metrics

	4 Our approach
	4.1 PDA module
	4.1.1 Sequential embedding layer
	4.1.2 Historical attention layer
	4.1.3 Predictive layer

	4.2 RDS module
	4.2.1 State
	4.2.2 Action
	4.2.3 Reward
	4.2.4 Optimization
	4.2.5 Fine-tuning

	5 Experiments
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 Experimental details
	5.4 Baselines
	5.5 Results
	5.6 Ablation studies
	5.6.1 Effectiveness of PDA module
	5.6.2 Effectiveness of IR in RDS module

	5.7 Parameters analysis
	5.7.1 Impact of n
	5.7.2 Impact of
	5.7.3 Impact of
	5.7.4 Impact of
	5.7.5 Impacts of RL algorithms

	6 Conclusion
	References

