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Abstract— Given a set of points P and a query point ¢, the p3 o _pz_x
reverse furthest neighbor (RFN) query fetches the set of points Do XL
p € P such that ¢ is their furthest neighbor among all points in X T - ;,f
PU{q}. This is the monochromaticRFN (MRFN) query. Another p1 -7 XDPs Ps
interesting version of RFN query is the bichromatic reverse furthest x- 7 p4>< X
neighbor (BRFN) query. Given a set of points P, a query set P={pi,....psha=m

@ and a query point ¢ € Q, a BRFN query fetches the set
of points p € P such that ¢ is the furthest neighbor of p
among all points in Q. The RFN query has many interesting
applications in spatial databases and beyond. For instancgiven . . .
a large residential database (asP) and a set of potential sites ~ Consider the data sef® in Figure 1, suppose the query
(as Q) for building a chemical plant complex, the construction Pointgq is py, then its RN includes{ps, p7, ps}. Usingp; as
site should be selected as the one that has the maximum numberan example, visually its potential furthest neighbor is amo
of reverse furthest neighbors. This is an instance of theRFN ,, ) andp;. The dotted lines indicate the distances of these

query. This paper presents the challenges associated witluch - .
queries and proposes efficient, R-tree based algorithms fdooth candidates tg; and among thenp, is the furthest. Hence,

monochromatic and bichromatic versions of theRFN queries. We P7 1S included in the RN of p;. On the other handy; is
analyze properties of theRFN query that differentiate it from the ~ not included as’s furthest neighbor becomes. This is an
widely studied reverse nearest neighbor queries and enablihe instance of the MFN query. Note that the query poigtcould
design of novel algorithms. Our approach takes advantage dhe  pe different from any existing point it.

furthest Voronoi diagrams as well as the convex hulls of eitbr

Fig. 1. An MRFN query example.

the data set P (in the MRFN case) or the query setQ (in the p7><
BRFN case). For theBRFN queries, we also extend the analysis to P2 _ 13;’2/ q‘s Ps

the situation when @ is large in size and becomes disk-resident. x=--"9 X
Experiments on both synthetic and real data sets confirm the P (3 2 xps ps
efficiency and scalability of proposed algorithms over the hute- X P4X X

force search based approach. P={pi,....ps}, Q= {q1, 2,45}

. INTRODUCTION Fig. 2. An BRFN query example.

Spatial databases have offered a large number of appli-The Brrn query takes a set of query points as the input.
cations in last decade that shape the horizon of computigih the same data se®, Figure 2 demonstrates therBN
services from people’s daily life to scientific researchr FQuery. The BFN of g3 w.r.t Q in Figure 2 is {p1,p2,pa}.
example, people rely on online map services to plan theisitri Usingp- as an illustration, its distance @, ¢-, g3 are denoted
the deployment and query processing in large sensor ne$Wogl the dotted lines ang is the furthest. Similarlyg;’s BRFN
[15] often require the design of location-aware algorithmgg {ps, ps, pe, p7, s} q2's BRFN in this case is empty. A
Driven by these increasing number of applications, efficiegareful examination will confirm that no point iR takesgs
processing of important and novel query types in spatigl its furthest neighbor from points @.
databases has always been a focal point. The motivation to study the | queries is largely inspired

In this work, we identify a query type that has widey an important query type that has been extensively studied
applications and requires novel algorithms for processtiog recently, namely, the reverse nearest neighbor queriasiR
a large data sef> and any random query point we are [29], [20], [34], [5], [1], [35], [28], [26], [23], [33], [23,
interested in retrieving the set of points in that takeq as [27]. Intuitively, an RN query finds the set of points taking
their furthest neighbors comparing to all points iy i.e., the query point as their nearest neighbors and it also exists
collecting ¢'s reverse further neighbors (R). This problem in poth the monochromatic and bichromatic versions. Many
is referred as themonochromatic reverse furthest neighbogpplications that are behind the studies of thenRyueries
(MRFN) queries. It naturally has a bichromatic version as welfaturally have the corresponding “furthest” versions. Sider

(BRFN). Specifically, the query contains a set of query poinfsext two examples for the RFEN and BRFN queries:
@ and one poiny € Q. The goal in this case is to find the

set of pointsp € P so that they all take; as their furthest Example 1 For a large collection of points of interest in a
neighborscompared to all points irQ. region, every point would like to learn the set of sites that



take itself as their furthest neighbors compared to othertpo in Section IV; In particular, we design R-tree based aldponit
of interest. This has an implication that visitors to thogess to maintain P’s convex hull dynamically so that our query
(i.e., its reverse furthest neighbors) are highly unlikelyisit algorithms work efficiently with dynamic data sets; 3) We
this point. Ideally, it should put more efforts in advenigi present a practical and efficient R-tree based algorithnthior
itself to those sites. BRFN problem in Section V; 4) We discuss the generalization
to handle query groups with large size for themi problem
Example 2 Given a database of residential sites Asand in Section V-A; 5) We report a comprehensive experimental
a collection of potential location§ for building a chemical study with both synthetic and real data sets in Section VI.
plant, due to the hazardous materials that may be produced
by such a plant, we should select the locationdnthat is ) . .
further away (compared to other choices@) from as many Let P denote the spatial database drdimensionalEu-

residential sites as possible, i.e., the pairg Q that has the clidean spaceOur techniques could be easily generalized for
largest number of reverse furthest neighborsPin any metric space where the distance between points satisfies

the triangle inequality. For simplicity, we concentrate the
The above example does not limit itself to spatial data setBuyclidean distance where the distance between any twospoint
as long as there is a similarity metric between any two objecp andq is denoted byj|p — ¢||. The furthest neighbor of any
the BRFN queries are applicable. point p w.r.t a set of pointsP is simply defined as:

Il. PROBLEM FORMULATION

Example 3 Let P be a large set of customers agibe a Definition 1 The furthest neighbor op to a data setP is
set of business competitors offering similar products ia trdefined as f(p, P) = p* s.t.p* € P, forVp’ € P andp’ # p*,
market, suppose for each customerand each competitor ||[p* — p|| > ||p’ — p||. Ties are broken arbitrarily.

q there is a distance measure reflecting the rating dd

¢’'s product. The smaller value indicates a higher preference

o ot e 1 ScowBpion 2 The e of it the cata e 5 . s
P 99 points from P that take ¢ as their furthest neighbors

competing products in the market. This company could then : : : . -
carry out specialized analysis on this group of customers i(’gr?ﬁg)rlr;gdc{)q;lllozmts inP, i.e., MREN (g, P)= {plp €

identify potential drawbacks in its marketing strategy.
The bichromatic RN query takes additionally a set of query
ints@ as the input, and is formally defined in the follows.

The monochromatic R\ query is formally defined as:

In the last example, an interesting observation is tQat
could be large and becomes disk-resident data set as V\}%ﬂ

As a result, the algorithm for the BN problem needs to Definition 3 The BRFN of ¢ € Q wort the data sef and
be extended to the case where béttand @ are in external the query set) is a set of points fromP that takeg as their

memory. furthest neighbors comparing to all other pointsgh i.e.
To the best of our knowledge, both therRWN and BRFN BuRFN (4 QI%): {plp EJ'?) fln(gp Q) = q). pointsdh l.e.,

have not been studied in the literature. The brute-forceckea
algorithms for these problems are obviously too expensiveAssume thatP| = n, |Q| = m and a page size aB, the
to be of any practical use. It is worth mentioning that thbrute-force search based approach for therM (BRFN) prob-
BRFN problem has been briefly examined from a theoreticm takesO(n?) (O(mn)) time complexity with O(n?/B)
point of view recently [10]. However, large scale spatiglO(n/B) if Q fits in memory or otherwis&(mn/B)) 1/Os.
databases are calling for a practical, efficient algoritbntliis

. : . Other Notations. We summarize some of our notations here.
problem. More importantly, by taking the furthest neighdor . ; .
. he convex hull of a point set is defined as the smallest convex
the geometric nature of theAR problems has been change

from the RYN problems. Hence, we need to design ne\;.‘\)lolygon contalmng_all points. Intumvely, the convex h'.ﬂ
. . - obtained by spanning an elastic band around the point set.
algorithms to process the AR queries more efficiently by

taking the new geometric perspectives into account The points touched by the elastic band become the vertices
’ of the convex hull. We us€p to denote both the ordered
Our Contributions. This work presents efficient algorithmsset of vertices and the convex polygon (the area enclosed by
for the MRFN and BRFN problems. We identify the importantthe elastic band) for the convex hull d?. Its meaning is
insights for the RN problems based on the convex hullglear from the context. An ordered list of pointgps - - - pip1
of either P or @ and extend the basic idea to work withrepresents a convex polygon defined by line segménitss,
dynamic data sets as well as disk resident query groups. Thes, ..., p:p1} with ¢ vertices. The concepts of convex hull
paper is organized as follows: 1) We formulate the probleand convex polygon work with any dimensieh We also
of the reverse furthest neighbors in Section Il and survey thised the furthest Voronoi diagram for a set of poitft( P))
related work in Section 1lI; 2) We propose effective pruningnd the furthest Voronoi cell for a single point w.r.t a set of
technigues based on several geometric insights to obtain tpoints (fvcp, P)). The details will be defined when the related
efficient, R-tree based exact algorithms for them problem discussion emerges.



ﬁymbo‘l‘ Eeslg(rjiptiond_ - — . PL_ P2 - ps5 The R-tree
p—q uclidean distance betwegnandq ;
: Size of a set - rglﬁnmaxdist(q,Nl) N1 N2
(C) C Both (strict) set and geometric containment P3 oL mifdist(q, N1) -
Cp (Co) Ordered set of vertices dP's (Q's) convex hull, m‘""‘dm(qz;f[’)l a, Vs [Na| | Ns [No | |

also is the convex polygon a@f’s (Q’s) convex hull TN ‘ - ‘ ‘ i 1| 4
fn(p, P) The furthest neighbor op in P g — 5 bi2 P4| Ps5| P6 pigpiyp
fve(p, P) The furthest Voronoi cell op w.r.t P o N5 N2 [p1]p2] ps3] [p7]ps]po]
FD(P), FD(Q) | The furthest Voronoi diagram aP (Q) v
n,m |P| and|Q)| respectively )
P1P2 A line segment betweep; and p2 Fig. 3. The R-tree.
pip2 - -ptpi The convex polygon by{pips,...,pip1}

TABLE | Another classical query type is the range query where the
NOTATION USED. goal is to return all points that are fully contained by thexu

range (often as a rectangle). R-tree yields good performanc
for answering range queries [8]. The basic idea is to search
all MBRs that intersect with the query range.

) . ) An interesting query type that has close relationship with
context, it further requires all points from the area enetbs N search was defined in [22], in which the goal is to

by A are inside (while not touching) the boundary edges #hd the set of points fromP that take the query point

B. Table | provides a quick reference to the main notanonsq. as their nearest neighbors among all points in the data

In this work we focuses on the two dimensional space. T8 p This is the monochromatic reverse nearest neighbor
main ideas developed could be gener.allz.ed t_o h|gher d'm?{h'ery (monochromatic ®\). Due to its wide applications,
sions and the details of such generalization is an int@®stigy\ " queries have received considerable attention since its
problem we will look at. appearance. In the monochromatic version [28], [26], [33],
[22], [29], [27], the state of the art is the TPL method from
[29]. TPL recursively filters the data by finding perpendasul

R-tree [17] and its variants (Riree as the representative [4])bisectors between the query point and its nearest object and
have been the most widely deployed indexing structure feqking the half plane that is closer to the query point.
the spatial database, or data in multi-dimensions in génera The bichromatic RN also finds many applications [20],
Intuitively, R-tree is an extension of the'Btree to higher [1], [35], [26], [22], [27]. In this case, the query takes & se
dimensions. Points are grouped into minimum bounding regf query points and a query poing € Q. The set of points
angles (MBRs) which are recursively grouped into MBRs ifeturned fromP all takeq as their nearest neighbors w.r.t other
higher levels of the tree. The grouping is based on dataitgcalpoints inQ. The basic idea here is to use the Voronoi diagram
and bounded by the page size. An example of the R-treeaisd find the region that corresponds to the query point.
illustrated in Figure 3. R-tree has facilitated processimany Most of the work for the RN queries focused on the
important query types for spatial databases and data in-mudfuclidean space. Many interesting variants have beenestudi
dimensional space. Two important classes of queries tleat ahe RuN problem in graphs and road network was studied
related to this work and have been extensively studied in the [35]. Generalization to any metric space appeared in [1].
literature are nearest neighbor (NN) queries and rangeesierContinuous RN was explored by [20], [31]. The R\ for

NN search has been thoroughly studied for the Euclideatoving objects was studied in [5]. ReverddN search
space [24], [30], [19], [32], [21], [6], [14], [25], [18], [2]. In  was examined by [29], [28]. Finally, the \&i for Ad-Hoc
the Euclidean space, R-tree demonstrates efficient atgasit subspaces was solved by [34].
using either the depth-first [25] or the best-first [18] agmte.  Our work explores the unique geometric property of the
The main idea behind these algorithms is to utilize brangbverse furthest neighbors and proposes efficient, nowsl-pr
and bound pruning techniques based on the relative distaniggy techniques that are suitable in this case. In particuer
between a query point to a given MBRN. Such distances utilize the convex hull of either the data set in the case of
include the mindist, the minmaxdist and the maxdist. Th@RrFEN or the guery set in the case ofRBN for pruning. Hence,
mindist measures the minimum possible distance for a poiptis related with the RN problem but based on significant
q to any point in an MBRN; the minmaxdist measures thedifferent insights.
lower bound on the maximum distance for a pajnto any
point in an MBRN; and finally, the maxdist simply measures V. M ONOCHROMATIC REVERSEFURTHESTNEIGHBORS
the maximum possible distance betweesind any pointin an  We search for efficient, R-tree based algorithms for the
MBR N. These distances are easy to compute arithmeticalyrRFN queries in this section. Our approaches are inspired
given ¢ and N. An example for these distances has bedsy the furthest Voronoi diagram and the convex hull.
provided in Figure 3. The principle for utilizing them to e ) _
the search space for NN search in R-tree is straightforwaft, PFC: the Progressive Furthest Cell algorithm
e.g., when an MBRN,’s mindist to g is larger than another For a set of pointsP, the furthest Voronoi diagramof
MBR N,'s minmaxdist, we can safely prung, entirely. P, denoted asFD(P), is similar to the well-known Voronoi

When A C B is used with geometric objectd and B, it
implies that all points from the area enclosedAbyre part of
the points from the area enclosed ByWhenc is used in this

I1l. BACKGROUND AND RELATED WORK
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D1
X
fve(ps) | e (p2)

b2 D3 € ps3
(w¢, ye) fve (Pl) (we,ye) f\:C(pl) (ze,ye) fvc(q)
(a) Furthest Voronoi diagram. (b) Computing fvcpi, P). (@) UpdateV. and V. (b) Prune false positive.
Fig. 4. FD(P) and its derivation. Fig. 5. PFC algorithm.

diagram [3] of P except that the space is partitioned with they the fvcg, P|J{q}) are also obtained progressively in one
furthest Voronoi cellsnstead of thenearest Voronoi cells pass.

- ; .. The progressive algorithm. The detail of the progressive
ZDDeﬁ(Z:nueor}falr:]c(;rPa épg(;fa aS,CSn\?;;qfa;;goi ?\;aqt(’cg)gogts furthest cell (PFC) algorithm is !isted in Algorithm 1. Give
is the furthest Voronoi cellof p iff: V pointp’ Cfvc(p, P), the_qut_ery poing _and the R-tree '”d?x for the data e we
fn(p/, P)= p, i.e., any point inside fvg( P) will take p as ma_mtaln_a priority queue@‘ for storing MBRS and points. _
its furthest neighbor inP. p’ is not necessarily a point i#®. Opjects n L are sorte_d n th? decreasing Qrder by their
The furthest Voronoi diagram oP (FD(P)) is simply the minmaxdist tog. The |ntg|t|on is that the_pomts that are
collection of furthest Voronoi cells for all points iR. further away fromy haye higher changes bemg the.,!NRof_ 9

hence we should consider these candidates with higheitgrior

An example of the furthest Voronoi diagram on an inpdvieanwhile, fvdq, P(J{q}) is initialized to the whole space
spaceS : (¢, y¢) x (zp,ys) is illustrated in Figure 4(a) where S and we also maintain two vectorg, stores all points that
fvc(p;, P) is marked as region fyp;). Computing theFD(P) are potentially the RN of ¢ and V), stores all objects that
can be done by modifying the algorithm for the Voronomnay disqualify false positive candidates frdr in the post-
diagram . To find the fvgy;, P), for each pointp; € P and processing step. In the sequel, when the context is clear we
j # 1, the bisector line of the line segmeptp; separates Simply use fvcg) to denoteq’s up-to-date furthest Voronoi
the space into two polygons and denote the one that does el
containp; as poly,;. Then fvcp,, P) is simply the intersection At each iteration, the head enteyof £ is popped. Ife is
of p0|yfj’S for all j's in P. The fact that polig- is the @ point, we find the bisector line for the line segmeat As
polygon that is further away from; among the two polygons Shown in Figure 4(b), the bisector line cuts the sp&cmto
(covering the whole space) partitioned by the bisector tife WO Polygons and we identify the one that is further away
pip; Straightforwardly yields the correctness of this algarith from ¢, i.e., poly;.. The fvc() is updated as the intersection
Figure 4(b) illustrates this idea for computing fwg(P). One Of the current fvef) with polyg,. Next, we determine whether
first finds poly, with pointps, followed by identifying polyf,. ¢ iS @ potential candidate. # C fvc(q), thene is pushed into
The fvc(ps, P) is simply the poly, () poly’s. V.. Otherwise, it is discarded.

An important property for thg-'D(P) is that any point from If e is an MBR, we take the current furthest Voronoi cell

the furthest Voronoi cell of; takesp; as its furthest neighbor ©f ¢ and calculate: (fvc(g). If this is empty we puste into
among all points inP. Formally, the pruning vectolV,, otherwise we retrieve each child ef

and insert intol the ones that do intersect with fivg. The

Lemma 1 Vp' C fvc(p, P), fn(p', P) = p. In addition, for rest are pushed intdj,. _ _
a random pointp’ in spaces, if fn(p', P) = p, thenp’ C There are two insights for the PFC algorithm. The(ficis
fvc(p, P). ~updated progressively and it always shrinks after eachtepda

Another critical observation (following the first obserieet) is
Proof: It is immediate by the construction ofD(P). that if an MBR or a point does not intersect with the current
B fvc(g), it has no chance to be contained by the final(fyc
By Lemma 1, for a query poing, if we can compute the Hence, we can safely claim that an enérys not a potential
fvc(q, PUJ{q}), then the RN of ¢ is simply those points in candidate as long as its intersection with the currenfgyvés
P that are contained by the fug(P J{¢}). The challenge is empty. Howevere cannot be disregarded if it is an MBR. The
how to compute fvaf, P J{q}) efficientlywhenP is large and reason is that may contain points that could update (shrink)
stored on the disk. Obviously, a very expensive approaah isfvc(q) and disqualify those potential candidates identified in
linear scan points iP and apply the algorithm above, therprevious steps. As a result, a post-processing is requiheshw
perform a range query with the discovered furthest Vorongibecomes empty, where entrieslipare checked in sequence
cell of ¢. Next, we present a progressive version of this ideand points contained by those entries will be used to update
using the help of the R-tree, where the fycP|J{q}) is fvc(g). Finally, all points inV, are filtered once more using
computed incrementally and the pointsinthat are contained the final fvdq).



Algorithm 1: PFC(Queryg; R-treeT) q2

1 Initialize two empty vectord/c andVj,; o

2 Initialize the priority queueC with T's root node; I

3 L orders entries in decreasing order of the minmaxdist; !

4 Initialize fve(g)=S; - L

5 while £ is not emptydo pe D Dr

6 Pop the head entry of £; (a) from a convex. (b) from a line.

7 if e is a pointthen Fig. 6. Furthest point te: Proof of Lemma 2

8 Identify poly;. and set fvcg)=fvc(q) (poly;,;

9 if fve(g) = 0 then return; whenever the context is clear. It also represents the @inett
10 | if e Cfve(g) then Pushe into V¢; area corresponding t8’s convex hull. SaCr also denotes the
1 else shaded polygomip2pspspsp1 in Figure 6(a). Given a point
12 if e fvc(q) is 0 then pushe to V,; q, we conjecture that the furthest point fromto ¢ must be
13 else found inCp. This is indeed the case.
14 Let uy,...,us be children MBRs of node;
15 fori=1,...,f do Lemma 2 Given P and its convex hullp, for a pointgq, let
16 if u;Nfvc(q) # 0 then p* =fn(g, P), thenp* € Cp.
o I— Insert the ch|Io.I node; |n.to £ Proof: SupposeCp = {p1,...,ps}, then the boundary
18 else Insert the child node:; into V,; edges forCp are E(Cp) = {pips, . .., psp1 }. First, we argue

I that p* must locate on one of the boundary edges. Assume

19 Update fvdq) using points contained by entries if); this is not correct, as shown in Figure 6(a), thenc Cp.
20 Filter points inV, using fvcg); For bothg C Cp (e.9.q1) andq Z Cp (e.9.¢2), the line that
21 OutputV,; return; extendsgp* from p* must intersect with an edge frofi(Cp)

asCp is a convex. In our example, it intersect withps on a
point p., then obviouslygp. > ¢p*. Next, we can show that
Consider the example in Figure 5, assumingis first the furthest poinp* to ¢ from a line segmenp,p, must be
processed and it updates fyg@s shown in Figure 5(a). Sinceeijtherp, or p,. With the help of the perpendicular line from
p2 is contained by fvef), it is added toV.. Next, the MBR ¢ to p,p,, as illustrated in Figure 6(b), this could be argued
e is processed, obviously could not offer any possible i ysing proofs by contradiction again. This concludes ifiat
of ¢ ase()fvc(q) = 0. However,e may contain points that myst belong tap. m
update fv¢g) s.t. existing candidates are disqualified. Figure Using Lemma 2 in a reverse angle, we can derive that only

5(b)) shows thaps from e could update fvaf) and pruneps.  points inCp will have reverse furthest neighbors w.r.t the data
Hence, we need to addto V,, for post-processing step. set P. In other words:

PFC algorithm could terminate as soon as the(dyde-

comes empty (Line9 in Algorithm 1). In practice, many | emma 3 For a data setP and a pointp € P, fva(p, P) = 0
points due to their geometric locations will not have a fasth if ), ¢ Cp. Furthermore, any poinp’ ¢ Cp (hereC, denotes

Voronoi cell in the space (this phenomena will be explainagle area enclosed by the convex hull),(fcP | J{p'}) = 0.
in details in the next Section). By searching the space in

the decreasing minmaxdigashion, for these points we could ~ Proof: The first claim is a special case of the second
quickly shrink their furthest Voronoi cells to empty, leadito claim, as all points fromP” — Cp are strictly (not on the
efficient early termination. In addition, when the queryrgoi edges) contained by the polygon area defined’by Hence,
does have a furthest Voronoi cell, the PFC algorithm catesla consider a random poing’ C Cp, if p' ¢ P, update P

the RFN in one pass. to P/ = PJ{p'}. By the property of the convex hull, it
. is straightforward to show thafpr = Cp asp’ is strictly
B. CHFC: the Convex Hull Furthest Cell algorithm inside Cp (see Lemma 4). This indicates that¢ Cpr. Now,

The PFC algorithm may scan a large number of points. Hafor any random query poing in the spaceS, by Lemma 2,
dling the false positives from the list of potential cand@&a fn(q, P')# p’ asp’ ¢ C. This indicates that there is not even
in the post-processing step is expensive. An important lamm single point in the space will tak# as its furthest neighbor
introduced next will significantly reduce the cost of seamgh w.r.t P’. By the definition of the furthest Voronoi diagram,
for the RFN. fvc(p’, P') = 0. [

The convex hullCp for a set of pointsP is the smallest Combining this result with Lemma 1, another way to
convex polygon defined by points iR that fully containsP. interpret Lemma 3 is that only the points frafi@ will have
We represenfp as anordered sebf points that are vertices the reverse furthest neighbors for a dataBetSiven a query
for the convex hull ofP. For example, in Figure 6(aJp = point ¢, we could view it as an insertion t& and obtain a
{p1,Dp2,p3,p4,p5}. We abuse the notation @fp a little bit new data setP* = P|J{q}. It is critical to decide whether



Algorithm 2: CHFC(Queryg; R-treeT)

1 ComputeCp with T' using either the distance-priority or
the depth-first algorithm [9];
2 if ¢ C Cp then return 0;
3 else
4 ComputeCp- usingCp J{q};
(a) Compute fvaf) with only Cp. (b) UpdateCp after deleting points. 5 | S€t fveg, P7) equal to fveg, Cp-);
Fig. 7. CHFC algorithm. 6 Execute a range query using fycf*) on T’

q belongs to the set of vertices defining the convex hull of

P*. A good news is thafp- could be computed efficiently from Cpjq,;- Finally, ¢»'s RFN includes all points in the
from Cp andq alone, without looking at the rest of points inarea covered by its furthest Voronoi cell as Lemma 1 states.

P —Cp. In this case, its RN pg will be successfully retrieved.
The efficiency of the CHFC algorithm is achieved in two
Lemma 4 For a data setP and its convex hulCp, after folds. First of all, all query points that are encloseddy are
adding a pointy to P, if g is strictly contained b¢p (¢ € Cp), extremely fast to deal with. Secondly, for the rest of query
thenCp ¢4y = Cp; otherwise,Cp g} = Cep J{q)- points, computing their furthest Voronoi cells becomes imuc
) ] .. more efficient by taking into account only the pointsdp
Proof: This stra|_ghtforwardly foIIo_ws_from_ the definition (instead of doing this viaP). In practice,|Cp| << |P]|. Of
of the convex hull. Figure 7(a) gives its intuition. B course, this reduction in size may not always be the case. It
Fmal!y, it remains as a problem how to compygtefurthest ¢ fairly easy to construct examples whefe= Cp, e.g., P
Voronoi cell efficiently wheng is indeed a vertex for the oy contains points on edges of a rectangle. Nevertheless,
convex hull of P J{q} . An important result is stated nextsor ‘most real life data sets we expect thép| << |P| (or
that fve(g, P) could be computed using onigp. at least|Cp| < |P|) holds and we could storép in main
memory. This fact is verified in our experiments. For the case

Lemma 5 For a data set” and its convex hull’p, for apoint e this is violated, i.e(» is still too large to be stored

p € Cp, fvep, P)=fve(p, Cp). in main memory, one can use the PFC algorithm or use the
Proof: We use proof by contradiction. Suppose this claif@lPProximate technique we will discuss in Section V-A.
is not correct. Then there must be a popite P — Cp 2) Computing P’s convex hull:There are 1/O efficient

s.t. its furthest Voronoi cell could shrink the area enatbsedlgorithms for computing the convex hulls of disk-basechdat
by fvc(p,Cp). However, by Lemma 3, fvg(, P = (). This Sets. Specifically, convex hulls in two dimension can be com-
completes the proof. m puted in external memory with the help of sorting in external
1) The Main Algorithm:Lemma 3, 4 and 5 (together withmemory [16]. This means that we can find the convex hull
Lemma 1) immediately yield an efficient algorithm for theof the disk-based data sét (|P| = n) with O(3 log,, 575)
MRFN problem. Assuming for now that we have obtairigd !/Os for a main memory buffer withl/ pages, assuming the
(details will be discussed soon), given a query paintve Page size isB. From a practical point of view and to deal
can quickly return empty iff C Cp. Otherwise, we seP* = with data in higher dimensions, one would like to compute
P{q} and computeCp- using onlyCp and ¢. Next, the the convex hull ofP using a R-tree. Fortunately, this problem
furthest Voronoi cell ofy in P* is calculated using onlgp.. has been studied in the literature and one can apply either
Fina”y’ a range query using fv@’(P*) is executed on the R- the distance-priority or the depth-first algorithm from.[g:he
tree of P to retrieve the RN of ¢. This is referred as the complete CHFC algorithm is presented in Algorithm 2.
convex hull furthest cell (CHFC) algorithm. If P is static, an obvious optimization for the CHFC algo-
Figure 7(a) demonstrates CHFC's idea. If the query pointighm is to pre-comput€, and avoid the call to the distance-
q1, sinceq; C Cp, CHFC algorithm will immediately return priority (or depth-first) algorithm at Line completely. As
empty forg:’s RFN. Lemma 4 guarantees th@p (4,1 = Cp. argued above, we assurfie can fit into main memory in this
Then, by Lemma 3 fv@, P(J{q:}) = 0. Hence, by Lemma case, hence, any main memory convex hull algorithm could
1, there will have no points taking as their furthest neighborsbe applied in Lines. In fact, one could apply main memory
among all points inP. On the other hand, if the query pointdynamic convex hull algorithm [13] here to get an almost
is g, wheregy ¢ Cp, CHFC algorithm will obtainP | J{¢,}’s logarithm computation bound.
convex hull by applying Lemma 4. Essentially, only points 3) Dynamically MaintainingCp: When P is static, CHFC
from Cp and ¢z (i.e., {p1, p2, p3, P4, Ps,q2}) Will be used to algorithm is extremely efficient after pre-computifig once.
compute the convex hull oP | J{¢2}. The updated convex However, under dynamic insertion and deletionRp CHFC
hull is simply p1p2gapspapsp1. Next, sinceqs is one of the has to comput€p for every query and this could greatly de-
points in this convex hull, we need to compute its furthegirade the query performance.fffits in main memory, recent
Voronoi cell and Lemma 5 achieves this using only pointheoretical study has confirmed that dynamically maintegni



eo Algorithm 3: MaxVP(Querypy, p,, p; R-treeT)
b1 [ ] p: 1 Initialize the priority queueC with T7’s root node;

es > Vdi 2 L orders entries in decreasing order of their maxVvdist;
CRO max 1St 3 L.minVdist keeps the max minVdist among all its entries;
minVdist ) .

4 while £ is not emptydo

D5 P4 el D3 5 Pop the head entry of £;

(a) The ghull algorithm. (b) Adapt ghull to R-tree. 6 if e is pointthen return e;

Fig. 8. Dynamic updat€p using R-tree. 7 else )

8 for each childu; of e do
9 minVdist,, = co, maxvdist,, = —1;

the convex hull ofP could be done almost in logarithm time
[13]. The challenge is how to do this efficiently utilizingtRee *°
when P is disk-resident. 1
We distinguish two cases, hamely, point insertion and point
deletion. Point insertion is easy to handle as suggestedebyl
Lemma 4, assumingp fits in memory. The main obstacle is
when point is deleted as shown in Figure 7(b). Once agal|%,
the easy case is when the deleted poiig inside the convex 14

for each corner point: of u; do
if x andp are on the same side @fp,
then
Get the perpendicular distansg
from z to pyp,;
s, updates minVdist, maxvdist,,;

'f_madeis;l;i > L.minVdistthen

hull of P (p C Cp), €.9.,p7 in Figure 7(b). Obviously, in 15 Insertu; into £;
this situationCp will not be affected by the deletion. On theg if minvdist,, > £.minVdistthen
other hand, when the deleted pojnts an existing vertex for ;7 L E.mianist=mianisgi;

the convex hull ofP (p € Cp), updatingCp is necessary. For L
example, deletings in Figure 7(b) will eventually lead to -
addingp1o to Cp.

Whenp € Cp is deleted, we observe that most partdof
is intact except for its left and right neighbors (denoteghas
and p,.). New vertices may be introduced in betwegnand

must locate on one specified sidegp,.. This further reduces
to the next problem, given a line segmenp,., and an MBRe,

A straightforward solution is to retrieve all points, ugin whatis the maximum and minimum of the maximum possible
P 9 P  \B perpendicular distances from a point in the MBRb the line

R-tree, contained by the polygeapp..pe (p1p2psp1 in Figure

. LS .segmentpyp,.?
7(b)) and find the local convex hull for these points in main

memory. But this could be potentially expensive gifop,-pe
encloses large number of points).

A better approach is to adapt the ghull algorithm [7] to
tree in this setting. In the ghull algorithm, it is shown th
given two verticeg, andp, in the convex hull, a vertex (if it
indeed exists) in the final convex hull that locates in betwee  Proof: W.l.0o.g. assume that;p, ande are in the positive
p¢ andp,. could be located by finding the point that has thquadrant of the plane. L&t be the unit vector perpendicular
largest perpendicular distance pgp,. This is true for both to p,p, and point to the side gf,p, we are interested in. We
sides ofp,p,. Recursively applying this step, all vertices imeed to findz* = arg max,c. ¢’ z. Note that this is a linear
the final convex hull that locate in betwegn and p, could program with four linear constraints, is feasible and bachd
be identified. Hence by the fundamental theorem of Linear Programming,

In our case, we only need to search for points on one sidae of the vertices o must yield the optimal solution [11].
of the pyp,, i.e., the side that the deleted poiniocates at. The minimization problem can be handled similarly. A simila
An example demonstrating this idea is shown in Figure 8(gjroblem has also been studied by [9]. ]
When p, is deleted, we fingp, = p; andp, = p3 from Cp. With Lemma 6, it is possible to migrate the aforementioned
Searching along the side thpt locates at, the point with algorithm for the point deletion to an R-tree efficiently. Ve
the largest perpendicular distance figps is p7. It is added minVdist and maxVdist to denote the minimum and maximum
to Cp. Next, we recursively apply the same steppi@r and of the maximum possible perpendicular distance for a point
p7ps, still only to the side thap, locates at. In this cases from an MBRe to a line segmeng,p,.. A special note in our
will be retrieved and one more recursion usmgs andpsp;  setting is that minVdist and maxVdist are only bounded by
will terminate the search. The updated convex hull becomg® corner points ot that locate on the same side pfp,

Cp = {p1,ps, p7,P3, P4, p5 - The only puzzle left is to doing as the deleted poini. Consider the example in Figure 8(b),
these steps efficiently in R-tree. suppose, € Cp has been deleted. Its left and right neighbors
Using an R-tree, our problem essentially reduce to theCp arep; andps respectively. First, we can safely prune all

following. Given a line segment,p,., find the point from the MBRs that locate completely on the other sidepebps, e.g.,
R-tree that has the largest perpendicular distangegpand it es. Next, for the rest of MBRs, we calculate their minVdist

Lemma 6 For an axis-parallel MBRe, both the maximum and
minimum of the maximum possible perpendicular distances
rom a point in the MBRe to any line segmenp,p, are
algounded by the corner points ef



Algorithm 4: DynamicCH(Cp, op, p; R-treeT’) Algorithm 5: BRFN(Querygq, Q; R-treeT)

1 if op is Insertionthen 1 Compute the convex hullg of Q;
2 if p C Cp then return Cp; 2 if ¢ C Cg then return §; /lq ¢ Cq
3 | elseretunCe,yip}; 3 else
4 else ifop is Deletionthen 4 | Compute fveg, Co); _
5 if p C Cp then return Cp: 5 Execute a range query using fycCo) on T';
6 else
7 Find p’s left (right) neighborp, (p.), in Cp; (@)
8 CP: {"'5plvpap’l‘7"'}’—>{"'apl7p7”7"'}; P2 ;;5
9 Call QHullRtreegy, p,, p, Cp, T); B OX 1% X
L D3 fve(gs)
[+ ghull algorithmadapted to R-tree =/ X

fve °
10 QHullRtree ¢, p,, p,Cp; R-treeT) VL(.‘D) (-
11 q3 P4 )L‘ "\26
12 Let p’ =MaxVP({py, p,,p, T); (ze,ye)  Nfve(qr)
13 if p’ = 0 then return;

14 else Fig. 9. The BRFN algorithm.

15 Cpid . spe,pry-y—{. 0o, 0 pry - 1

16 | QHullRtreefy, p', p,Cp, T); q is to only check those MBRs that intersect with fya{)

17 | QHullRtreep’, p,, p,Cp,T); wheng € Cg, e.g., in Figure 9 we need to access the MBR

e that intersects with fvef) to retrieve its reverse furthest
neighbors. Ifg = ¢4, we can returr) immediately. Algorithm
and maxVdist using their corner points that locate on theesara details this method.
side ofp;p3 asps. Note that we can safely prune an MBR if its _ .
maxVdist is smaller than the minVdist of some other MBR@' Disk-Resident Query Group
e.g.,e; can be pruned in the presenceegfas the best point One limitation with our discussions so far is the problem
from e; cannot possibly beat at least one point frem(in  Of handling the query group with a massive size that do not
terms of the perpendicular distance to the query line segmeifit in internal memory. As we have discussed, one could use
We exploit the R-tree nodes in a priority queue that ordefde convex hull ofQ to reduce the number of points in the
entries by the decreasing maxVdist value. The search co@Mery group. There are I/O efficient algorithms for compgitin
terminate as soon as we find one point at the head of ithe convex hulls of disk-based data sets. In two dimer@j@n
queue or when the queue becomes empty. The Max-Vertice@uld be found withO(% log,, y75) 1/Os [16] for a main
Point (MaxVP) algorithm is listed in details in Algorithm 3. memory buffer withA/ pages, assuming the page sizeds
With these discussions, we could dynamically maintaidnd |Q| = m. Alternatively, if @ is indexed by R-tree, we
Cp using the R-tree. This reduces the cost of the CHFepuld simply use the algorithm from [9]. For most cases, we
algorithm by avoiding the call on Ling in Algorithm 2. The expect thafCq| < |Q|. However, one could easily construct
DynamicCH algorithm in Algorithm 4 summarizes our ide&Pecial cases wherg€g| = |Q|, e.g., all points inQ are
presented above. We would like to point out that Algorithm ¥ertices of a convex polygon. To handle such special instgnc
is presented for the two-dimensional case. For higher dimet€ propose to obtain an approximate convex hultotising
sions, certain generalization must be adapted. For examph!dley’s approximation [36]. Dudley’s construction geaters
instead of looking at one side for a segment from the conv@éR approximate convex hull of (denote it asACq) with

hull, we need to examine one side of a plane. O(1/€'4=1/2) vertices with maximunHausdorff distancef
€ to the convex hull ofQ). The Hausdorff distanceneasures
V. BICHROMATIC REVERSEFURTHESTNEIGHBORS how far two convex polygon$; andS; are from each other.

Informally, the Hausdorff distance betwee$y and S, is

the longest distance an adversary can force one to travel by
choosing a point in one of the two sets, from where one then
must travel to the other set. Formally, &t and Y be the
vertices ofS; and .S, respectively, then:

After resolving all the difficulties for the MFN problem
in Section 1V, solving the BFN problem becomes almost
immediate. From the discussion in Section 1V, all pointsin
that are contained by f¥g;, Q) will have ¢; as their furthest
neighbor. This immediately implies thatRBN (¢, @, P) =
{p € P Ap € fvc(q,Q)}. Furthermore, Lemma 5 guarantees d(S1,S2) = max (sup inf ||z —y||,sup inf ||z — y|)
that fvc(g, Q)=fvc(q, Cp). For example, in Figure 9 the reverse reX YEY yeYy T€X
furthest neighbor ofg; is {ps} which is contained in the For fixed dimensions, this means that we can always get
fvc(qi, Q) = fve(qi,Co). Lemma 3 indicates that only thosean approximate convex hull af with constant number of
points inCq will have reverse furthest neighbors. Hence, avertices. Obviously, the smaller is, the more accurate the
efficient R-tree based query algorithm for finding theNRof — approximation is and the larger the size of the approximate



convex hull is (since Dudley’s approximation is an inne|
approximation of the convex hull).

Roughly speaking, the edges of &iC, are withine dis-
tances from edges afy. Clearly, there is a trade-off between
the approximation quality and the size4€ . Henceforth, for
a disk-based query group, we first compute its convex hull
using the I/O efficient algorithm. I€¢ is still too large to fit
in main memory, we replacg, with Dudley’s approximation
and specify the size afiC( of our choice.

The Dudley’s approximation was proposed to work with
main memory data sets [36]. For our purpose, we need *, _ 1000
extend it to work with external data sets. To computé, in [mmere [mmere | M
external memory, one can build an index that supports near:_ 158 3000/ JBFS
neighbor search with logarithm 10s guarantees (such as t3
BBD tree[2]) onO(1/¢(@~1)/2) points scattered on the sphere% !
containing the convex hull of) and then do a scan of the &,

(a) correlated bivariate (CB). (b) random clusters (R-Cluster).
ig. 10. Different distribution types of synthetic datassahd query groups.

number of 10s
n
o
o
o

1000
convex hull and compute the reverse nearest neighbor of e¢ I J
point read fromCq. This approach requires only linear I/Os o T T o= T et
on Cq (excluding the I/Os to computég). The following (a) cpu time. (b) Number of 10s.

|emma Sum_marizes this r?SUIt- The details of this approach Ffig. 11. Mren algorithms: cpu computation and 10s analysis.
will appear in the full version.

. networks from California (CA), San Francisco (SF) and USA
Lemma 7 For a disk-based query grouf), one could al- . ) .
ways get a query groug)’ with size O(1/e[d=D/2) usin (US). CA also contains large number of points of intereg, (e.

ys g query grouf) ¢ 9 restaurants, resorts). These data sets are availabledniio

O( IOg.M arp) /Os, wherem . @l B 'S the page size create a data set of larger size, we merge them into one data
and M is the number of pages in the main memory, s.t. the

. : . sét (denoted aMap) after normalizing each data set into the
Hausdorff distance between edge<i andCq is at moste. spacel — (0,0) x (100000, 100000). Points in CA, SF and

The introduction of Dudley’s approximation only create§)S have various degrees of skew distributions in the space.
an additive errore on the corresponding edges betwegn Map containsl76, 578 number of points. There are three kinds
and ACq. Hence, for a query poing and query groupy, Of synthetic data sets used in the experiment: uncorrelated
if Cg is too large to fit in main memory, we calculati,. uniformly generated (UN) points, correlated bivariate JCB
If ¢ is inside the convex polygon defined byC, and away points and random-cluster distribution (R-Cluster) psintL.
from any edge of this polygon by more thanthen it does An example of the CB and R-cluster data sets is illustrated in
not have reverse furthest neighbors. Otherwise, we find thigure 10. In this work we concentrate on the .two-dimenslio.na
nearest neighbor af in the vertices ofACq, sayq’, and apply space. How to generalize our algorithms to higher dimerssion
algorithm 5 usingg’ and ACq. This algorithm is referred as as well as the experiments for those are interesting extessi
the A-BRFN algorithm and our experiment confirms that #0 this work.

has h|gh_ accuracy. . _ Performance measurementFor all algorithms, we measured
As a final note, the approximate convex hull idea could b[ﬁeir performance using two metrics, namely, BBU time

also applied to the CHFC algorithm for therR¥N problem in 4 thenumber of 10s We would like to highlight that the
Section IV-B whenCp is too large to fit in main memory. CPU time measure theure computation cogif an algorithm.
VI. EXPERIMENT It is NOT the total execution time of the algorithm. The total

All proposed algorithms have been implemented into ttfecution time is simply the CPU time plus the 1O cost.
widely used, disk-based spatial index libraty Standard Ip most cases, the 10 cost dommates the overall execution
geometric operations, e.g. convex polygon intersection, d'Me: I_:lnally, by defauliL,000queries were generated for each
provided by the CGAL librany?. Finally, our 1/O efficient ©€XPeriment and we report the average éoe query
approximate convex hull algorithm is developed based on ti&ge
library from [36]. All experiments were executed on a Linux
machine with an Inte2GHz cpu. For both R-tree and heapfilegxperiment Setup. For the MREN problem, we generated
the page sizeB is set to4KB. synthetic data sets whose size are equal to the size of Map
Data sets.The real data sets were obtained from tigi- data set. The query point is randomly selected from the space

tal chart of the world servemwhere points define the road’- For brevity, only the results from the UN, R-Cluster and
Map data sets are reported.

Algorithms for theMRFN problem

Iwww.research.att.com/imarioh/spatialindex/index.html
2www.cgal.org Swww.cs.fsu.edut lifeifei/SpatialDataset.htm
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Fig. 12. DynamicCH algorithms: deleting vertex ©f . Fig. 13. Pruning with the convex hull ap.

delete one point fronCp. We repeated this experiment for
data sets of different sizes as well as different distrinsi
d:igure 12 clearly shows that our approach is highly effegtiv

when P is static. In this setting, we can optimize the CHFC . .
. o . with cpu computation cost at aroufd milliseconds and 10s
algorithm by pre-computing’s convex hull using R-tree and . . :
lower than10. More importantly, our algorithm scales nicely

storeCp for query processing. Figure 11 compares the cost . L . L
P query p 9- 19 P ith the increase in size for the data $etUniform distributed
of these two algorithms against the brute-force search \BF . .

. ) o ata set generates higher maintenance cost as the chance of
based approach. To make the comparison fair, we optimize the

. L . ¢containing more points in the polygon argap,-p, is higher.
BFS algorithm by terminating the search as early as p055|b(feGiVen these results, we can safely claim that CHFC is

For a pointp € P, we first calculate its distance tpand then o . . -
pontp € o extremely efficient in practice. Of course, there definitely

calculate its distance to every other pojnitin P. However, . : o
y pojrt exists data sets such that dynamically maintaining the eonv

whenever there is & S.L. [p—p'| > [p—g], we know for sure hull could be expensivep{pp,p, contains large number of
. . r E
thatp gMREN (g, PU{g}) and the BFS algorithm Commuespoints), orCp does not fit into main memory. We could use

to the next point inP. Clearly, Figure 11 indicates that bOthPFC aloorithm in those cases
PFC and CHFC outperform the BFS algorithm in terms of 9 ’
both the CPU cost and the number of 10s. Especially, for ti®e TheBRFN algorithm

dominant cost of I0s, both algorithms are at least two orders
of magnitude better. Experiment Setup. For the BRFN problem, the cost of the

j}slfery depends on several critical factors. They include the

The PFC and CHFC algorithms. We first study the case

Among the three data sets, BFS algorithm has alm
constant computation cost as well as the number of 10s. ibuted within th v the si fal |
both the PFC and CHFC algorithms, R-Cluster data set res ! %m uted within the range. Lastly, the size@falso plays a

in higher costs. This is easily explained by the more scmﬂterfone‘ le\?vn these_observaotllt_)nj a random guery is ?err:eaated
geometric locations of points in the R-Cluster case. WHe&n ollows. We specifylQ| and its A (as a percentage of the area

is static andCp is known, it is easy to expect that CHFC‘COHEe entire sp?cf). Next a randor_phlocation I isf Zgleg;ed_
outperforms PFC, as for a large number of query points CHFE the center of the query group. Three types of distribation

could be extremely efficient. This is confirmed by Figure 119"?"393560' aboyg were used to genef@tienumber of p(_)ints
within the specified area. Examples of query groups witheghes

Dynamically maintaining Cp. One advantage of the PFCdistributions are given in Figure 10. In addition, we randpm
algorithm is that it requires no additional effort to workselect a query poinj € @ after generating). We distinguish
with dynamic data set. On the other hand, when insertiéwo casesy is randomly selected from® (R, strategy) org
and deletion of points happen iR, CHFC algorithm has to is randomly selected frordg, (R, strategy).

g_ynamlgally T“a'”t‘f’“”CPf using Algonthm f]' chillomgghour Pruning power of Cq. Figure 13 shows that for various query
Iscussions, insertion of points Is easy to handle and t etV\’Odistributions,CQ could significantly reduce the size of the

case is the deletion of a poipt that happens to be one of ery group. We plot the averages together withi¥ie- 95
the vertices inCp. Section IV-B.3 discussed this problem inqu y group. P verag g w %

. ) : ~ " "confidence interval. Fof) = 1000, |Cq| is only about2%
details and we executed_ an gxperlment to verify the eff|(;4en8f Q. Furthermore, the pruning power 6, increases (see
of the Dynam|cCH alg_orlthm in this worst case. For a dqta SEfgure 13(b)) for largetQ|'s as|Co| grows at a much slower
P, we first computed it€p using the R-tree based algorithm

from [9]. Then, for each poinp in C,, we deletedp and pace than|@Q| does. Lastly, Figure 13(a) indicates th%?'
computéd the ;1ew convex hull foP _p’{p} Note that. for is roughly a constant over the query area and UN distributed

each such poinp we always started with the originalp query groups have large€y| over correlated and clustered

and P. The average cost of maintaining the convex hull aftey OUPS- In most of our experiments, the results from the CB

deleting one point i€ p, in terms of both the cpu computation?endoz'tigjsrteesruﬂief%r?]r%u’\r: Zg;egg |teuz|rm|larguHche, we only
and number of 10s, of our DynamicCH algorithm is shown P query groups.
in Figure 12. They essentially reflect the cost of QHullRtreglgorithm BRFN. The BRFN algorithm (Algorithm 5) takes

algorithm based on the MaxVP algorithm when we randombdvantage of the convex hull @ and converts the BFN

Fation of @, the range (its areal) of @ and how points are
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Fig. 14. BrFN algorithms: cpu computation and 10s analysis, Map data set.
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102 3000

problem into a simple range query with a convex polygor EST EST

Figure 14 confirms its superior performance over the brut | Siaiecel o—+— | | Fronrace’

force search (BFS) algorithm. The BFS algorithm in therR~ §°° 2000

case simply calculates the furthest neighbor among alltpoir £

in Q for each pointp € P. If it is equal togq, thenp is &

included in the BFN (¢, @, P). Note that in Figure 14 all ‘ /g/a/g/g

the y-axes are plotted in the log scale. Th&m algorithm — * — " :

is in general2 to 4 orders of magnitude more efficient than I9f: x10000

the naive approach and the gap in performance is enlarging (a) cpu time. (b) 10s.

as |Q| increases (Figure 14(c) and 14(d)). The cost of the  Fig- 15. Approximate convex hullsd = 3%, Map data set.

BRFN algorithm does increase w.r.t the increase in the area of

the query group (Figure 14(a) and 14(b)), but it is not venwhere not only|Q| is large, but also|Cy|. These cases

sensitive to such increases as shown in the log scale. For taeely happen in practice. But it is not entirely impossible

BRFN algorithm, ifg is a random point frond)—Cg,, obviously Efforts have been devoted in Section V-A to deal with such

no range query is required on the R-tree and its query casenarios when they do arise. The idea is to develop 10

is tiny. Given the fact that majority of points iy will not efficient approximate convex hullsd(C). Figure 15 reports

be a member oy (as shown by the convex hull pruningthe performance of such an approach. The algorithm we have

experiments from this section), therBN algorithm will be developed could be applied on th& ¢ instead of the®p and

highly efficient for the case of € @ as reflected by Figure we denote it as A-BFN. Our algorithm outperforms the basic

14. TheUN type of query groups reduces the cost of thberute-force search by orders of magnitude. By treatih@s

BRFN algorithm compared to th€'B type in Figure 14, in external memory data sets, computing its approximate conve

terms of both cpu computation and 10s. The furthest cells bfill incurs a cost that is similar to the sorting in external

query points are distributed more evenly in théV query memory. Hence, we see an increase in terms of both cpu

groups due to the uniformity. This indicates smaller fusthecomputation and 10s for our algorithm whéf| increases.

cells than those from th€' B query groups. Hence, /BN is From the discussion in Section V-A, the error introduced

more efficient on théd/ N type of query groups. by the approximation is independent ¢f| and is only
Finally, we observe an interesting pattern for the 10s codetermined byj.ACq|. When |ACq| = 20, € is 0.01 in two

of the BRFN algorithm for query groups of different sizes. Itdimension. Hence, our algorithm achieves excellent approx

is in fact decreasing whil&)| increases (Figure 14(d)). Recallmation qualities.

that|Cq| increases much slower thaf| does. Hence, for the

R strategy, the chance thate C is getting smaller. This D. Scalability of various algorithms

will reduce the overall cost. On the other hand, for

strategy, asCq| still contains more points whelg)| increases, Experiment Setup. Finally, we investigate the scalability of

the furthest cell of an individual point € Cg is smaller which our algorithms w.r.t the size of the data set We use the
leads to the reduction in the query cost. same setup as in Section VI-A and VI-B, but with R-Cluster
data sets of different sizes @&

10°

number of 10s
S @
g 8
S 8

o
S
=3

g%

o

S

2 3
|QJ: x10000

C. Query groups of large size Scalability. For the BRFN problem, we fix the query area

. . as A = 3% and |Q| = 1000. The CB query type is used.
Experiment Setup. Concentrating on the €N problem, we F?iggure 16 shows the scalability of various algorithms. More

use the same setup as in Section VI-B, but with larger query’ .~ .

groups. The algorithm proposed in Section V-A for therdi > sg’jlcaltleyr,lelfslg;re rlf(lzg((?)n;nclifsl(g() d?g?]\g trtlr?erressltlfsff(z) rr mi
guery has much lower cost than the brute-force search agd vgerFN quer'les' Nlc?tltje that in both Fiaure 1év(b) and li6(d) the
good approximation qualities. For brevity those resultseNenw”nb(::qruOf IIOs were plottéd i the ;g; scale. Compared tyo the
omitted and we focused on reporting its query efficiency. brute-force search, all of our algorithms scale nicely viiita

Approximate convex hull based algorithm.There are casesincrease in size ofP|. When |P| = 2,000,000, BFS takes
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(c) BRFN: cpu time. (d) BRFN: number of 10s.

Fig. 16. Scalability: cpu computation and 10s, R-Clustetadset.

more thanl0, 000 10s whereas our algorithms take from only11]
a few to less thari00 10s.

VII. CONCLUSION [12]
This paper studies the reverse furthest neighbor querats t[r%gl
has many real life applications. Our work solves thenR [14]
gueries in both monochromatic and bichromatic versions. V\é%]
present R-tree based, efficient algorithms for botRAX and
BRFN problems with excellent pruning capability. All of our[16]
algorithms allow dynamic updates to the data sets. Further-
more, it has been adapted to work with disk-resident que[r1)7
groups in the BRFN case. Future work includes generalizingis]
our algorithms to higher dimensions, dealing with movinﬁg]
points and continuous queries, and answerimgl jueries in

a road-network or any Ad-Hoc subspaces.
[20]
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