Colorization by Patch-Based Local Low-Rank Matrix Completion

Quanming Yao James T.Kwok

Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Outline

1 Motivation
 - colorization
 - global approach

2 Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3 Experimental Results
 - setup
 - results

4 Conclusion

Quanming Yao, James T.Kowk
Outline

1. Motivation
 - colorization
 - global approach

2. Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. Experimental Results
 - setup
 - results

4. Conclusion
Colorization aims at recovering color of a gray image when given some few labeled color pixels.

- **(a) gray image** G
- **(b) given labels** O
- **(c) color image** L

- **color image (of size $m \times n$):** $L = [R, G, B] \in \mathbb{R}^{m \times 3n}$.
- **gray image** $G = LT \in \mathbb{R}^{m \times n}$: T averages the channels.
- **labels** $O \in \mathbb{R}^{m \times 3n}$: observed pixel values are nonzero.
Outline

1. **Motivation**
 - colorization
 - global approach

2. **Proposed method (PaLLR)**
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. **Experimental Results**
 - setup
 - results

4. **Conclusion**

Quanming Yao, James T.Kowk
state-of-the-art [Levin et al., 2004].
unlabeled gray pixels are colorized by a weighted average over its K nearest color labels.
the similarity w_{ij} between pixels is defined on:
1. spatial distance
2. difference on gray value
result in a least square minimization problem:

$$G_{ij} = \arg \min \sum_{k}^{K} (G_{ij} - w_{ij}O_k)^2$$
state-of-the-art [Wang et al., 2012].

models colorization as a Robust PCA problem

\[
\begin{align*}
\min_L & \quad \frac{1}{2} \|LT - G\|_F^2 + \lambda \|\Omega \odot (L - O)\|_1 + \mu \|L\|_* \\
\text{consistency with gray values} & \quad \text{sparse labeled errors} & \quad \text{low-rank}
\end{align*}
\]

use Alternating Direction Method of Multipliers (ADMM) [Boyd et al., 2011]

- introduce two extra parameters \((X\) and \(E\))

\[
\begin{align*}
\min_{L,X,E} & \quad \frac{1}{2} \|LT - G\|_F^2 + \lambda \|\Omega \odot E\|_1 + \mu \|X\|_* \\
\text{s.t.} & \quad O = L + E, \quad L = X
\end{align*}
\]

- convergence rate \(O(1/t)\): \(t\) is number of iterations
- low-rank assumption may not hold on natural images

- images need well-aligned repeating patterns
- but group of similar images are approximately low-rank
Outline

1. Motivation
 - colorization
 - global approach

2. Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. Experimental Results
 - setup
 - results

4. Conclusion

Quanming Yao, James T.Kowk
split the image into overlapping patches
for patch \(P_{i,j} \) located at \((i, j)\), its distance to \(P_{i',j'} \) is

\[
d(P_{i,j}, P_{i',j'}) = \sqrt{\frac{1}{m^2} (i - i')^2 + \frac{1}{n^2} (j - j')^2} + \beta \left(\frac{1}{m^2} (i - i')^2 + \frac{1}{n^2} (j - j')^2 \right)
\]

- grouping is done by finding K-nearest neighbors.
- $P_{i,j}$ and its nearest neighbors: locally low-rank
- Single patch is not low rank.

(a) group of patches.
(b) one patch.
Outline

1. Motivation
 - colorization
 - global approach

2. Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. Experimental Results
 - setup
 - results

4. Conclusion
in each patch group, solve

\[
\min_{\tilde{L}} \frac{1}{2} \| \tilde{L} \tilde{T} - \tilde{G} \|^2_F + \frac{\lambda}{2} \| \tilde{\Omega} \odot (\tilde{L} - \tilde{O}) \|^2_F + \mu \| \tilde{L} \|_*
\]

consistency with gray values Gaussian noise local low-rank

change from ℓ_1 to ℓ_2 does not harm performance, but

1. leads to fewer optimization parameters
2. allows use of accelerated ADMM [Goldstein et al., 2012]

\[
\min_{\tilde{L}, X} \frac{1}{2} \| \tilde{L} \tilde{T} - \tilde{G} \|^2_F + \frac{\lambda}{2} \| \tilde{\Omega} \odot (\tilde{L} - \tilde{O}) \|^2_F + \mu \| X \|_* \quad \text{s.t.} \quad X = \tilde{L}
\]

only one new parameter X is introduced
Accelerated ADMM, with a faster convergence rate $O(1/t^2)$

- augmented Lagrangian
- minimize w.r.t X
 \[
 X_t = \arg \min_X \frac{1}{2} \left\| X - \left(\tilde{L}_t + \frac{1}{\rho} \hat{Q}_t \right) \right\|^2_F + \frac{\mu}{\rho} |X|_* \\
 \]
- singular value thresholding (SVT) [Cai, et al. 2010]
- minimize w.r.t L
 \[
 \tilde{L}_t = \arg \min_{\tilde{L}} \frac{1}{2} \left\| \tilde{L} \tilde{T} - \tilde{G} \right\|^2_F + \frac{\lambda}{2} \left\| \tilde{\Omega} \odot (\tilde{L} - \tilde{O}) \right\|^2_F \\
 + \text{tr}(\hat{Q}_t^T (\tilde{L} - \hat{X}_t)) + \frac{\rho}{2} \left\| \tilde{L} - \hat{X}_t \right\|^2_F \\
 \]
- smooth problem
 \[
 R \text{vec}(\tilde{L}_t) = \text{vec}(C), \\
 C = \tilde{G} \tilde{T}^T + \lambda \left(\tilde{\Omega} \odot \tilde{O} \right) + \rho \hat{X}_t - \hat{Q}_t, \\
 R = (\tilde{T} \tilde{T}^T) \otimes I + \lambda \text{Diag} \left(\text{vec} \left(\tilde{\Omega} \right) \right) + \rho I \\
 \]
- can be solved by conjugate gradient descent
- we propose a faster solver based on divided-and-conquer
After colorization of groups, if a patch is covered by K groups, it is combined by a weighted average:

$$P_{i,j} = \sum_{k}^{K} w_k P^k_{i,j}$$

where $P^k_{i,j}$ is corresponding colorized result in the group.

The final color image is obtained by rearranging overlapped patches back into a image.
Outline

1. Motivation
 - colorization
 - global approach

2. Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. Experimental Results
 - setup
 - results

4. Conclusion

Quanming Yao, James T. Kowk
1: input: monochrome image; a small set of color pixels.
2: while there exists a patch P not yet colored do
3: find $k - 1$ patches that are most similar to P;
4: obtain colorization for the group of k patches by solving the optimization problem with accelerated ADMM;
5: end while
6: for each patch P do
7: perform (weighted) average on the colorization results from all groups containing P;
8: end for
9: for each pixel in the image do
10: average the values from overlapping patches.
11: end for
Outline

1. Motivation
 - colorization
 - global approach

2. Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. Experimental Results
 - setup
 - results

4. Conclusion

Quanming Yao, James T.Kowk
for each image, randomly sample a small proportion \(\{1\%, \ldots, 10\%\} \) of color pixels as labels

input: these labels and gray image

compare the proposed PaLLR with

1. local color consistency (LCC) [Levin et al. 2004];
2. global low-rank based (GLR) method in [Wang et al. 2012];
3. single patch based, local low-rank matrix approximation (LLORMA) [Lee et al. 2013].
Motivation
Proposed method (PaLLR)
Experimental Results
Conclusion

(a) castle. (b) koala. (c) mushroom. (d) woman.

(e) couple. (f) lake.

(g) landscape. (h) street.

Quanming Yao, James T.Kowk
Outline

1. Motivation
 - colorization
 - global approach

2. Proposed method (PaLLR)
 - grouping similar patches
 - local matrix completion with accelerated ADMM
 - PaLLR algorithm

3. Experimental Results
 - setup
 - results

4. Conclusion

Quanming Yao, James T.Kowk
Motivation
Proposed method (PaLLR)
Experimental Results
Conclusion

setup
results

PSNR

(a) castle.
(b) couple.
(c) koala.
(d) lake.
(e) landscape.
(f) mushroom.
(g) street.
(h) woman.

Blue: PaLLR-ℓ₂(proposed), Red: PaLLR-ℓ₁, Black: GLR, Cyan: LCC, Magenta: LLORMA.

Quanming Yao, James T.Kowk
Difference with ground truth.

For GLR, artifacts can be seen. Moreover, while the errors produced by GLR and PaLLR are localized, those by LCC are more diffused.
Motivation
Proposed method (PaLLR)
Experimental Results
Conclusion

Insensitiveness on parameters (castle).

(a) patch size.

(b) group size.

(c) μ.

(d) λ.
low-rank assumption on a group of similar patches is more reasonable on natural images.

- optimization: accelerated ADMM can be used, and the subproblem can be efficiently solved by divide-and-conquer.
- experimental results demonstrate superiority with existing approaches.

Author e-mail: quanmingyao@gmail.com

Thanks