
A Factorization Method for Affine :Structure from Line 
Correspondences 

Long Quan* Takeo Kariade 
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 

Abstract 
A family of structure from motion algorithms called 

the factorization method has been recently developed 
from the orthographic projection model to the afJine 
camera model [23, i6, 181, All these algorithms are 
limited to handling only point features of the image 
stream. W e  propose in  this paper an algorithm for 
the recovery of shape and motion from line correspon- 
dences by the factorization method with the afJine cam- 
era. Instead of one step factorization for points, a 
multi-step factorization method is developed for lines 
based on the decomposition of the whole shape and m80- 
tion into three separate substructures. Each of these 
substructures can then be linearly solved by factoriz- 
ing the appropriate measurement matrices. I t  is also 
established that a f i n e  shape and motion with uncnl- 
ibrated a f i n e  cameras can be achieved with a t  least 
seven lines over three views, which extends the preui- 
ous results of Koenderink and Van Doorn [Q] for points 
to lines. 

1 Introduction 
Points and line segments are generally considered 

as two most fundamental image features in vision. 
Line segments, compared with points are more global 
features, therefore more accurate, reliable and stable 
regarding to  segmentation process. Pose estimation, 
stereo and structure from motion using line features 
have all been explored by a number of researchers 
[3, 1, 12, 11, 5, 27, 151. However, most structure from 
motion algorithms using lines are limited to  the mini- 
mal view case (three views), and have no closed form 
solutions. Their high non-linearity makes the algo- 
rithms sensitive to noise [la,  51. The linear algorithms 
proposed in [ll, 21, 81 were based on a heavy over- 
parametrization which still lead to unstable solutions. 

In the last few years, a family of linear algorithins 
for structure from motion using highly redundant im- 
age sequences called the factorization method has been 
extensively studied [23, 26, 19, 16, 181 (the works 
[25, 9, 17, 10, 13, 251 are also closely related) for point 
features from orthographic projections to affine cam- 
eras. This kind of algorithm decomposes directly the 
feature points of the image stream into object shape 
and camera motion. Using simplified camera models 
from orthographic to affine, the principal gain is that 
the numerical computation is extremely well condi- 
tioned owing to the robust singular value decomposi- 
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tion algorithm. In this paper, we propose to extend 
these factolrization algorithms for point features t,o line 
segment features. 

The line factorization method in this paper will be 
developed with the affine camera model [14, 19, 181, 
so it will be naturally valid for all orthographic, wea.k 
perspective and para-perspective projection models. 

Based on the previous results on the recovery of 
shape and motion from line correspondences using per- 
spective cameras [la,  51 , a four-step factorization al- 
gorithm instead of one step factorization for points 
will be developed ta.king advantage of the linearity of 
affine models. First, the whole structure tlo be recov- 
ered is decomposed into three components: ( I )  the 
rotations (of the camera motion and the directions of 
3D lines; (2) the translations of the camera motion; 
and (3) the other two d.0.f. of the 3D lines. As we 
are at  first working with the uncalibrated affine ca.m- 
era, all thiese quantities are unculibruted, ,this means 
that these quantities are primarily rat,her affine than 
Euclidean. Then each of these compoiients can be lin- 
early solv'ed by factorizing the appropriate measure- 
ment matrices. It is interesting to observe that t8he 
very first step, as it will be clear later, is equivalent 
to a two dimensional projective reconstructmion from 
one dimensional projective spaces. The second st,ep 
will factorize the measurement matrix comiisisting of 
all the rescaled directions of image lines into the a.ffine 
camera rostatioiis and the affine directions of 3D lines. 
The third step turns out the affine translations by fac- 
torizing the measurement matrix obt,ained from t,lic 
constraink on the camera motion. The fourth st,ep 
factorizes the measurement matrix of interpret,a.t,ion 
planes into the space lines. All factorization can bc 
nicely handled by SVD, hence can automatically deal 
with the singular or near to singular casess tlia,t, may 
appear. We also establish that the minimal d a h  re- 
quired fo-r the recovery of affine struct,ure from line 
correspondences with the affine ca,mera. is seven lines 
over three views, which extencls the previous results 
of Koenderink and Van Doorii [9] for points to lines. 

2 The affine camera model: review 
Throughout the paper, without explicit meiit,ioii, 

capital letters in bold are generally used to denot,e 
matrices, and small case letters in bold denote vectors: 
small case letters and greek letters deiiok scalars. 

As far as perspective camems (piii-hole caneras)  
are concerned [4], the projection between a. point x = 
(x, y ,  ~ , t ) ~  in P3 and a point U = (U, I ) ,  in 7" (:an 
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be described by a 3 x 4 projection matrix P as line correspondence across three views (cf, [12. 51) 
is that the interpretation planes from different views 
must intersect in a common line in space. 

If the equation of a line in image is given by 
lTu = 0, then substituting = xpX into it turns out 

For a restricted Of set- the equation of the interpretation plane of 1 in space: 
lTPx = O'  

The plane is therefore given by the 4-vector pT = 
ITP, which can also be expressed as pT = (d,, ~ l , ) ~  
where d, is the normal vector of the plane. 

For an image line of direction d,, it can be written 
as 1 = (du, d, )T ,  its interpretation plaiie is 

Xu = Px, (1) 

which is a h e a r  mapping in homogeneous coordinates. 

ing the third row of the perspective camera P to 
,10,0,0, A), we obtain the affine camera initially intro- 

uced by Mundy and Zisserman in [14] 

Pll Pl2 P13 PI4 
PZl P22 P23 P24 t 3 x 1  ) ,  
0 0 0 P34 

For points not a t  infinity within affine spaces, U = 
and (U, l )T  = (U15,  l)T, x = (x, l)T = (z,jj,Z, 

t = (Z, I ) ~  = (u14/a34, u24/u34, I ) ~ ,  we have 
- 
U = MZ + E. 

If we further use relative coordinates of the points 
with respect to a given reference point (for instance, 
the centroid of a set of points), the vector ? is can- 
celed, therefore we have the following linear mapping 
between space points and image points: 

Aii = MAZ. (2) 

The affine camera generalizes the orthographic pro- 
jection, weak perspective and para-perspective projec- 
t,ioiis and preserves the affine properties. Several in- 
vestigators [19, 181 have been interested in this model 
and achieved interesting results based on this concept. 

3 Geometry of lines under affine cam- 
era 

Now consider a line in R3 going through a point 
xo and of direction d,: Z = YO + Ad,, which will be 
projected by P into an image line: 

- 

P (7) = (MZo +%) + XMd, = uO + XMd 

This line in image goes through the point 
- 
uo 1 MZo + T 

and has the direction 

d, = XMd,. (3) 

This equation reflects nothing but the key property of 
the affine camera: lines parallel in 3D remain parallel 
in the image. 

Now, let us consider how lines constrain the cam- 
era motion. It is well known that line correspondences 
froin two views do not impose any constraint on cam- 
era motion, the minimum number of views required is 
three. If the interpretation plane of an image line for 
a given view is defined as the plane going through the 
line and the projection center, the well-known geomet- 
ric interpretation of the constraint available for each 

(4) 

Once the equation of the interpretation pla.nes of 
lines are made explicit in terms of the iinage line and  
the projection niat,rix, the geometric constraint, of line 
correspondence on the camera motion implies that 
3 x 4 mat,rix whose rows are the three interpretat'ioii 
planes, (pT, plT, has rank at most two. Hence, 
all of its 3 x 3 minors vanish. There are a t  t.otal four 
3 x 3 minors for a 3 x 4 matrix, it is well-known t1ia.t 
these minors are not algebraica,lIy independent, a.re 
connected by the quadratic identities. There are only 
two of them independent. 

The vanishing of any two such minors provide the 
two constraints on camera motion for a given line cor- 
respondence of three views. These constraints will lie 
used to do the second step of factorization in Section 6. 

4 Resealing-step 0 
Equation (3) relating image direction and space 

direction is the key equation for line factoriza.tion 
method. Note that Equation (3)-conipa,red wit'h 
Equation (1) describing a projection from P3 to P2-- 
describes nothing but a projective projection froin 
P2 to P I .  This means t1ia.t the affine reconstruc- 
tion of lines with a two-dimensional a,ffine ca.iiiera 
is equivalent, partly, to the projective reconstruction 
of points with a one-dimensional perspective camera! 
The preliminary step for line fact,orization will be a, 
two-dimensional projective reconstruction from one- 
dimensional projective spaces. This projective recoii- 
struct,ion will allows us to rescale properly the image 
directions for further submitting them to factoriz- 
tion. 

This pa.rt is largely inspired by many recent, works 
[24, 22, 6: 7 ,  20, 211 on the geomet#ry of multi-views 
of two dimensional perspective camera, especially the 
approaches taken by Triggs and Sturin [24,22]. We es- 
tend these ideas to one-dimensiond camera. It, turns 
out some interesting properties which were absent for 
2 dimensional camera. 
4.1 Matching constraints of 

one- d ime ns io nal perspective views 
First, let's rewrite Equation (3) into Equat,ioii (5) 

using U and x instead of d,, a.nd d, to stress that, we 
are dealing with points in projective space of lower 
dimensions pa and P' rather than line directions in 
vector spaces of higher dimensions 723 and R2: 
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XU = M ~ X ~ X .  (5) 
This describes exactly a one-dimensional perspec 

tive camera which projects a point x in P 2  onto a 
point U in P’. 

We can now examine the matching constraints of 
multiple views of the same point. It is quite evident 
that there is no any constraints for two views. The 
minimum number of view that may have any geomet- 
ric constraints is three. 

Let the three views of the same point x be given as 
follows: 

Xu = Mx 
X’U’ = M’x 

X”U” = M”x, 

This can he rewritten together in matrix form as 

(E’ :’ :) (5‘) = O .  (6) 

can not be a zero 

M” 0 0 U’’ -A//  

The vector (x, -A, -A’, 
vector, so that 

1,7) 

The expansion of this determinant, turns out a t,ri- 
linear constraints of three views 

2 

l$&u;u/,‘ = 0,  
i , j , k  = 1 

where T i j k  is a 2 x 2 x 2 homogeneous tensor. 
It can also be easily seen that there is no non-trivial 

quadrilinear constraints by adding inore views as all 
of them reduce to the trilinearity. This proves the 
uniqueness of the trilinear constraint. Moreover, bhe 
2 x 2 x 2 homogeneous tensor Ti , jk  has 7 = 2 x 2 x 2 - 1 
d.o.f., so the tensor T i j k  is a minimal parametrization 
of three views since three views have exactly 7 d.o.f., 
up to a projective transformation in P2.  

Each correspondence across three views gives one 
linear equation on the tensor T ; j k ,  with at least 7 
points in P’, the tensor z j k  can be linearly estimated. 
4.2 Retrieving the projection matrices 

The geometry of the three views is more corive- 
niently, also the most completely represented by the 
projection matrices associated with each view. In the 
previous section, the trilinear tensor was expressed in 
terms of the projection matrices. We are now seeking 
a map which goes back to projection matrix repre- 
sentation from the unique trilinear tensor of the three 
views. 

from the trilinearity 

Without loss of generality, we can always take the 
following normal forms of projection matrices for the 
set of three views 

M; = (12x2 O ) ,  
M’ = (Azx2 c )  = (a h c ) ,  
M” = (Dzx:! f) = (d e f ) .  

With such projection matrices, the tri1iiiea.r t,ensor 
x j k  is given by using (7) as 

X z j k  = f(dzjcc, - a.Tjfk), (8) 

where i , j ,  k = I ,  2 ;  i = ( i  + 1) mod 2 ,  the same for 3 
and i. 

If we consider the tensor Tijl; a.s a 8-vector 
( S I ,  . . . , ~ s ) ~ ,  the eight homogeneous equations of (8) 
can be rearranged by cancelling the coininon scalar X 
into 

G if) = 0,  

where G is given by 

Since (d, e, qT can not be zero vector, so all its 6 x 6 
minors must vanish. There are 2 algebraically inde- 
pendent such minors, each of them gives a quadra.tic 
homogeneous polynomial in a, b and c .  At this point, 
we are still unable to uniquely solve for a, b a.ncl c 
without further constraints. We ca.n notice that rA is 
only determined up to adding a matrix of fixm cv’ for 
any 2-vector v.  Thus we can further constrain A such 
that AT,; = 0. This is equivalent to saying that t,he 
rank of A is one, i.e. we have h = ka for a. non-zero 
scalar k .  This produces two scalar constra.ints on a, b. 
Together with the previous two quadratic constra.int,s 
on a, b and c ,  we obtain a homogeneous quadrat,ic 
equation in a1 and U ? :  

nu;  + pula2 + Tu;  = 0,  (10) 

where cy = s3sg - sqs7, ,B = s~s:! + sgsq - ~ 3 . ~ 6  - sgs1 
and y = s6s1 - S ~ S S ,  and this quadratic equation may 
be easily solved for u l /u2 .  

Then k is given by the following linear equation in 
terms of a l / u 2  

( - U 2 5 1  + ssa1)k + ( S ? U ?  - squ1) = 0. 

After that, the %vector c is obta.inet1 by solving 
ATc = 0. Thus, the projection matrix M’ is fulls’ 
recovered up to two solutions. 

Finally, the 6-vector (d, e ,  qT for the projection 
matrix I!&’’ i s  linearly solved by Equation (9) in terms 
of M’. 
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4.3 Rescaling of one-dimensional image 

According to Triggs and Sturm [24, 221, projective 
reconstruction is equivalent to the rescaling of the im- 
a.ge points. For each image point through three views 
A ( j ) i i ( j )  = M(j)x, the scaling factors A ( j ) :  taken in- 
dividually, are arbitrary; however, taken as a whole: 
t,liey encode all the projective structure of all views 
and points. 

One way to recover the rescaling factors, up to a 
scaling factor, is directly to use the basic reconstruc- 
tion equation (6) or alternatively to observe the fol- 
lowing matrix identity: 

points 

The rank of the left matrix is therefore at  most 3. 
All 4 x 4 minors vanish, three of them are algebraically 
independent. Each can be expanded by cofactors in 
the last column to obtain a linear homogeneous equa- 
tion in A, A’, A”. Therefore (A, A’, A/’)* can be linearly 
solved u p  to a scalar by 

where * designate a known constant entry in the ma- 
trix. 

For each triplet of views, the image points can be 
consistently rescaled according to the previous para- 
graphe. For general n > 3 view case, we can take 
appropriate triplets among R views such that any two 
triplets has a t  least a common view. Then, the rescal- 
iiig factors for any given point of all triplets of views 
can be chained together over n views. 

5 Direction factorization-step 1 
Suppose we are given m line correspondences in n 

views. The view is indexed by a superscript number 
and the feature by a subscript one. We can now create 
the 2n x m measurement matrix WD of all lines of all 
views by stacking the direction vectors dLJIz properly 
rescaled by A y )  as follows: 

As the following matrix equation holds for the mea- 
surement matrix WD : 

the rank of WD is t,lierefore at  most of three. The 
factorization method can then be applied to WD. 

Let 
W D  UDcDv; 

be the SVD factorization of WD , the 3 x 3 diagonal ma- 
trix C D ~  be obtained by keeping the first three singular 
values (assuming that singular values are ordered) of 
C and U D ~  ( V D ~ )  be the first 3 columns (rows) of‘ U 

Then, the product U D ~ C D ~ V ~ ,  gives the best, rank 

One possible solution for M and D may be ta.l<eii 

(VI. 

3 approximation to WO. 

to be 

M = u D ~ . x ~ :  and D = c Z ~ V D ~  

For any nonsingular 3 x 3 matrix A3x3, M’ = 
MA3x3 and D = Ag$3D are also a. valid solution, 
as we have 

” I  

r I A /  

MAA-ID = M D = MD. 

This means that the recovered direction inat,ris D and 
the rotation matrix M are defined only up t80 affine 
transformations. 

6 Translatioil factorization-step 2 
Once we obta.ined the affine line directions and 

affine rotations of the camera motion from the first 
factorization step, we proceed to the second step t>o 
obtain scaled affine translations from faa.ctorization. 

For each interpretation plane lTP = (d,c,dr)T of 
each image line, its direction component is complet.ely 
determined with the recovered M from equation (4) 
as 

d, = M dtL. 
- T  

Actually only its fourt,h component d,. = lTt re- 
mains undermined, depending linearly on t .  The in- 
terpretation plane can be properly written as 

pT = (AM*d,,,pl T T  t )  . 

We can then stack all the planes of different views 
for a given line as the following n x 4 measurement 
matrix of planes: 

* * lTt 

w p  = 

This matrix Wp geometrically represents the pen- 
cil of planes, so it has a t  most rank 2. For any three 
rows, we can have two independent, minors, as one by 
taking the first three columns is always a constant, 
there remains only one independent ininor involving 
the t(’). 
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Expanding each minor, formed by any three rows i ,  
j and k of Wp, by cofactors in the last column gives 
an homogeneous linear equation in di), t(j) and t(')): 

(:::) = 0, 
t(k) 

( x  x )  

where the "x"  designate 3 constants in a row. 

gether, we obtain 
For all those vanishing minors, collecting them to- 

x x x o o " ' o o o  

0 . . . . . .  . x . x . x . 0 . . . '  . O . . .  . O . o j  . (+. ( . . . . .  
0 0 0 0 0 . ' .  x x x tb) 

At this stage, since the origin of the coordi- 
nate frame in space is not yet fixed, we may take 
t = (o,o, l)T up to a scaling factor, say t o ,  so 
the final hoinogeneous linear equations to solve for 
( t o ,  t', . . . , t(n))T is (:;,)=(; . . . . .  :: :: :: : : : :  ," . .  ," :) (3) = 0 .  

. . . . . . . . . W T  

. . . . .  . . . .  
t ( n )  0 0 0 0 0 . . .  x x x t (")  

Once again, this system of equations can be nicely 
solved by SVD factorizing WT. 

At this stage, apart from the undermined overall 
scaling for the computed (to, t', t", . . )T ,  it is still am- 
biguous up to a sign, as - ( t o ,  t', t", . . .)T is also a valid 
solution. This sign-inversed solution geometrically re- 
flects the shape in space. 

7 Shape factorization-step 3 
Once ( t o ,  t', t", . . .)T are recovered by step 2,  to- 

gether with the results of step 1, the projection matri- 
ces of a,ll views are completely determined up to one 
common scaling factor. The matrix Wp containing all 
interpretation planes is also completely determined. 

Two methods to obtain the shape a,re possible, one 
based on the projective representation of lines and an- 
other on the minimal representation of lines, inspired 
by [5]. Due to space limitation, only the first method 
will be described here. 

A projective line in space can be defined either by a 
pencil of planes (two projective planes define a pencil 
of planes); or by any of its two points. 

If the rank of the matrix Wp is 2,  its nullity is also 
2. The range of Wp define the pencil of planes and 
the iiull space spans the projective line in space. 

Once again, using SVD to factorize Wp gives ev- 
erything we want. Let 

w p  = upcpv; 
be the SVD of W p  with ordered singular values. Two 
points of the line might be taken to be v3 and v4, so 
the line is given by 

AV3 + p 4 .  

One advantage of this inethod is t,liat using sub- 
set selection, near singular views can lie detected and 
discarded. 

8 Calibrated affine camera 
Up to this point, we have worked with uncalibrated 

affine camera, the recovered motion and the shape arc 
defined up to an affine transformation. If the affiiir 
camera is calibrated, then it is possible to directsly oli- 
tain Euclidean shape and motion. 

Following the intrinsic K and extrinsic R deconi- 
position of M = KR introduced in [18], the whole 
metric information from the calibrated affine camera 
is contained in the affine intrinsic parameters KKT. 

The affine motion matrix M = tzi) is constraint by  

The linear solut,ions ina,y be expect,ed if we solve for 
the entries of A A ~  , however it inay 1iapI)en tlie lin- 
ear estimation of AAT be not positive-definite due 
to noise. The alternative non-linear solut,ion using 
Cholesky parametrization that ensures t,he posit,ive- 
definiteness can be found in [18]. 

Once we obta.in the appropriate A,  t,lien MA and 
A- lD  carry the rotations of the camera. a.nd t,he tli- 
rections of lines. 

The ot,her steps remain the same as for tiincalibrat8ed 
affine camera. 

9 Minimum data case 
Although the general context of t,he dievelopmcnt~ 

of the line factorization inethod is focused 011 using 
the heavily redundant image features a.iitI views, t,he 
minimal data required for such achievenient is ecluall>~ 
important and interesting. 

The minimum numbers of views and liiiies required 
at each step are summarized in Table 9. 

r Ster, I views dt I lines-al 

1 (direction 
2 (translation 3 

Table 1: The minimum numbers of view and lines 
required at  each step of t,he factorization. 

In view of this, we ca.n esta.blish the following. 
For the recovery of affine shape a n d  (ifline ~inotimi. 

from line correspondences with a n  uncalibrated c i f i i ie  

camera, the minimum number of views needed is th i re  
and the minimum number of lines ,required i s  seven for 
a linear solution. 

Note the difference with the the perspective camera. 
case. A minimum of 6 lines is required to 1ia.w now 
linear algorithms with the perspective ca.mera. and  t,o 
have a linear solution, a minimum of 1 3  lilies is re- 
quired itcross three views, as have heen reported in 
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[12, 11, 51. It is important to note that with the affine 
camera and the method presented in this paper, the 
number of line correspondences for achieving a lin- 
ear solution is reduced from thirteen to seven, which 
presents an important, practical significance. 

10 Experimental  results 
We first used the simulated image to validate the 

theoretical development of the algorithm. The sim- 
ulation is set up as follows. We first use the per- 
spective projection matrices obtained by calibration. 
Then these projection matrices are approximated to 
the affine projection ones. A set of 3D line segments 
lying on two visible faces of a cube is finally projected 
into sets of 2D line segments. Each 2D line segment 
is perturbed by adding different level of noise to cre- 
ate the final simulated images. The algorithm turns 
out very good reconstruction results up to two pixel 
noise, then the results degrade with increasing noises. 
Figures 1 show the reconstruction results with one 
pixel noise. Each 3D line segment is displayed by its 
two endpoints. The endpoints are obtained by back- 
projecting the endpoints of the line segment in one of 
the views onto the 3D line. 

Figure 1: The top and side views of the reconstructed 
affine shape of the simulation with one pixel noise. 

11 Discussions 
We have presented a four step factorization algo- 

rithm for the recovery of shape and motion from line 
correspondences with an affine camera. This algo- 
rithm extends the previous algorithms for points to 
line features which can be more accurately extracted 
from images. The method is based on the decomposi- 
tion of the whole structure into three separate param- 
eter sets, each one is then solved by factorizing the 
different measurement matrices. Although the four 
steps are sequential, the first two steps are based on 
very stable and accurate measures, so the accuracy for 
the following steps is hardly influenced. 

As the line factorization algorithm presented in this 
paper is developed within the same framework as sug- 
gested in [18] for points, it is therefore straightforward 
to integrate both points a,nd lines into t,he same frame- 
work. 
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