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Abstract

A family of structure from motion algorithms called
the factorization method has been recently developed
from the orthographic projection model to the affine
camera model [23, 16, 18]. All these algorithms are
limited to handling only point features of the image
stream. We propose in this paper an algorithm for
the recovery of shape and motion from line correspon-
dences by the factorization method with the affine cam-
era. Instead of one step factorization for points, a
multi-step factorization method is developed for lines
based on the decomposition of the whole shape and mo-
tion into three separate substructures. Fach of these
substructures can then be linearly solved by factoriz-
ing the appropriate measurement matrices. It is also
established that affine shape and motion with uncal-
tbrated affine cameras can be achieved with at least
seven lines over three views, which extends the previ-
ous results of Koenderink and Van Doorn [9] for points
to lines.

1 Introduction

Points and line segments are generally considered
as two most fundamental image features in vision.
Line segments, compared with points are more global
features, therefore more accurate, reliable and stable
regarding to segmentation process. Pose estimation,
stereo and structure from motion using line features
have all been explored by a number of researchers
[3, 1,12, 11, 5, 27, 15]. However, most structure from
motion algorithms using lines are limited to the mini-
mal view case (three views), and have no closed form
solutions. Their high non-linearity makes the algo-
rithms sensitive to noise [12, 5]. The linear algorithms
proposed in [11, 21, 8] were based on a heavy over-
parametrization which still lead to unstable solutions.

In the last few years, a family of linear algorithms
for structure from motion using highly redundant im-
age sequences called the factorization method has been
extensively studied [23, 26, 19, 16, 18] (the works
(25,9, 17, 10, 13, 25] are also closely related) for point
features from orthographic projections to affine cam-
eras. This kind of algorithm decomposes directly the
feature points of the image stream into object shape
and camera motion. Using simplified camera models
from orthographic to affine, the principal gain is that
the numerical computation is extremely well condi-
tioned owing to the robust singular value decomposi-
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tion algorithm. In this paper, we propose to extend
these factorization algorithms for point features to line
segment features.

The line factorization method in this paper will be
developed with the affine camera model {14, 19, 18],
so 1t will be naturally valid for all orthographic, weak
perspective and para-perspective projection models.

Based on the previous results on the recovery of
shape and motion from line correspondences using per-
spective cameras [12, 5], a four-step factorization al-
gorithm instead of one step factorization for points
will be developed taking advantage of the linearity of
affine models. First, the whole structure to be recov-
ered is decomposed into three components: (1) the
rotations of the camera motion and the directions of
3D lines; (2) the translations of the camera motion;
and (3) the other two d.o.f. of the 3D lines. As we
are at first working with the uncalibrated affine cam-
era, all these quantities are uncalibrated, this means
that these quantities are primarily rather affine than
Euclidean. Then each of these components can be lin-
early solved by factorizing the appropriate measure-
ment matrices. It is interesting to observe that the
very first step, as it will be clear later, 1s equivalent
to a two dimensional projective reconstruction from
one dimensional projective spaces. The second step
will factorize the measurement matrix consisting of
all the rescaled directions of image lines into the affine
camera rotations and the affine directions of 3D lines.
The third step turns out the affine translations by fac-
torizing the measurement matrix obtained from the
constraints on the camera motion. The fourth step
factorizes the measurement matrix of interpretation
planes into the space lines. All factorization can be
nicely handled by Svp, hence can automatically deal
with the singular or near to singular cases that may
appear. We also establish that the minimal data re-
quired for the recovery of affine structure from line
correspondences with the affine camera is seven lines
over three views, which extends the previous results
of Koenderink and Van Doorn [9] for points to lines.

2 The affine camera model: review

Throughout the paper, without explicit mention,
capital letters in bold are generally used to denote
matrices, and small case letters in bold denote vectors;
small case letters and greek letters denote scalars.

As far as perspective cameras (pin-hole cameras)
are concerned [4], the projection between a point x =
(z,y,z,t)T in P? and a point u = (u,v,w)T in P? can



be described by a 3 x 4 projection matrix P as

Au = Px, (1)
which is a linear mapping in homogeneous coordinates.
For a restricted class of camera models, by set-
ing the third row of the perspective camera P to
SO, 0,0, A), we obtain the affine camera initially intro-
uced by Mundy and Zisserman in [14]

Pir P12 P13 Pi4 M
P=|pa p22 P23 P = ( 012’(33 tax1 > .
0 0 0 pa X

For points not at infinity within affine spaces, u =
@n)” = @7, 1)7, x = (x,1)T = (7,7,7,1)7 and
t = (t, l)T = (a14/a34, aza/aza, l)T, we have

=M%+t

If we further use relative coordinates of the points
with respect to a given reference point (for instance,

the centroid of a set of points), the vector t is can-
celed, therefore we have the following linear mapping
between space points and image points:
Au = MAX. (2)

The affine camera generalizes the orthographic pro-
Jjection, weak perspective and para-perspective projec-
tions and preserves the affine properties. Several in-
vestigators [19, 18] have been interested in this model
and achieved interesting results based on this concept.

3 Geometry of lines under affine cam-

era
Now consider a line in R3 going through a point
%o and of direction d,: X = X5 + Ad,, which will be
projected by P into an image line:

P <>1_(> = (Mfo + E) + AMd, = u; + AMd.

This line in image goes through the point
W= MX,+t
and has the direction

d, = AMd,. (3)
This equation reflects nothing but the key property of
the affine camera: lines parallel in 3D remain parallel
in the image.

Now, let us consider how lines constrain the cam-
era motion. It is well known that line correspondences
from two views do not impose any constraint on cam-
era motion, the minimum number of views required is
three. If the interpretation plane of an image line for
a given view is defined as the plane going through the
line and the projection center, the well-known geomet-
ric interpretation of the constraint available for each

804

line correspondence across three views (¢f. [12, 5])
is that the interpretation planes from different views
must intersect in a common line in space.

If the equation of a line in image is given by
u = 0, then substituting u = APx into it turns out
the equation of the interpretation plane of 1 in space:
"Px =0.

The plane is therefore given by the 4-vector p*
17P, which can also be expressed as p7 = (de, d)T
where d; is the normal vector of the plane.

For an image line of direction d,, it can be written
as 1 = (dy, dy)7, its interpretation plane is

IT

pT =1"P = (MT4,,1"t)7. (4)

Once the equation of the interpretation planes of
lines are made explicit in terms of the image line and
the projection matrix, the geometric constraint of line
correspondence on the camera motion implies that
3 x 4 matrix whose rows are the three interpretation
planes (p”,p'7, p"7)T has rank at most two. Hence,
all of its 3 x 3 minors vanish. There are at total four
3 x 3 minors for a 3 x 4 matrix, it is well-known that
these minors are not algebraically independent, are
connected by the quadratic identities. There are only
two of them independent.

The vanishing of any two such minors provide the
two constraints on camera motion for a given line cor-
respondence of three views. These constraints will be
used to do the second step of factorization in Section 6.

4 Rescaling—step 0

Equation (3) relating image direction and space
direction is the key equation for line factorization
method. Note that Equation (3)—compared with
Equation (1) describing a projection from P2 to P?—
describes nothing but a projective projection from
P? to P'. This means that the affine reconstruc-
tion of lines with a two-dimensional affine camera
is equivalent, partly, to the projective reconstruction
of points with a one-dimensional perspective cameral!
The preliminary step for line factorization will be a
two-dimensional projective reconstruction from one-
dimensional projective spaces. This projective recon-
struction will allows us to rescale properly the image
directions for further submitting them to factoriza-
tion.

This part 1s largely inspired by many recent works
[24, 22, 6, 7, 20, 21] on the geometry of multi-views
of two dimensional perspective camera, especially the
approaches taken by Triggs and Sturm {24, 22]. We ex-
tend these ideas to one-dimensional camera. It turns
out some interesting properties which were absent for
2 dimensional camera.

4.1 Matching constraints
one-dimensional perspective views
First, let’s rewrite Equation (3) into Equation (5)
using u and x instead of d,, and d; to stress that we
are dealing with points in projective space of lower
dimensions P? and P! rather than line directions in
vector spaces of higher dimensions R® and R?:

of



(5)

This describes exactly a one-dimensional perspec-
tive camera which projects a point x in P? onto a
point u in P!,

We can now examine the matching constraints of
multiple views of the same point. It 1s quite evident
that there is no any constraints for two views. The
minimum number of view that may have any geomet-
ric constraints is three.

Let the three views of the same point x be given as
follows:

Au = MsysX.

Au = Mx
Md = Mx
,\/Iu// — MIIx .

This can be rewritten together in matrix form as

M u 0 0\[*
(M’ 0 v 0 ) _y | =0 (6)
M’ 0 0 u _\

The vector (x,—A, =X, =A")T can not be a zero
vector, so that

M u 0 0
M 0 v 0 |=0. (7)
M 0 0 uw

The expansion of this determinant turns out a tri-
linear constraints of three views

2
E : 1o
Tijkuiujuk = 0,
1,5,k=1

where Tjjx is a 2 x 2 x 2 homogeneous tensor.

It can also be easily seen that there is no non-trivial
quadrilinear constraints by adding more views as all
of them reduce to the trilinearity. This proves the
uniqueness of the trilinear constraint. Moreover, the
2% 2 x 2 homogeneous tensor Tij; has 7 =2%x2x2—1
d.o.f., so the tensor Tj;) is a minimal parametrization
of three views since three views have exactly 7 d.o.f.,
up to a projective transformation in PZ.

Each correspondence across three views gives one
linear equation on the tensor T;;x, with at least 7

points in P!, the tensor T} ;4 can be linearly estimated.
4.2 Retrieving the projection matrices
from the trilinearity

The geometry of the three views is more conve-
niently, also the most completely represented by the
projection matrices associated with each view. In the
previous section, the trilinear tensor was expressed in
terms of the projection matrices. We are now seeking
a map which goes back to projection matrix repre-
sentation from the unique trilinear tensor of the three
views.
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Without loss of generality, we can always take the
following normal forms of projection matrices for the
set of three views

M = (Izxz 0),
M = (Azxg C) = (a b C) ,
MH = (szz f) = (d e f) .

With such projection matrices, the trilinear tensor
Tijk is given by using (7) as

ATy = *(dijep — ag;fr), (8)
where 7,7,k = 1,2; t= (i+ 1) mod 2, the same for j
and k.

If we consider the tensor Tjjx as a 8-vector

(s1,...,58)7, the eight homogeneous equations of (8)
can be rearranged by cancelling the common scalar A

into
d
Gle) =0,
f

where G is given by

(9)

sgcy sypb1 ~sgal

[} —s1c1 o
0 0 —sqerp sgco sobl ~sgh2
0 —sgcy —s3c) 0 s5b1 sgal
0 0 —s4c1 —sgcy s4b1 sghl
—sgcy 0 —s5ecp ] sgal + sgbl 0
[ [ —sgey — sgen o sgh2 4+ sgbl )
sgey 0 —syep 0 ~sgal + sybl 0

Since (d, e, )7 can not be zero vector, so all its 6x6
minors must vanish. There are 2 algebraically inde-
pendent such minors, each of them gives a quadratic
homogeneous polynomial in a, b and ¢. At this point,
we are still unable to uniquely solve for a, b and ¢
without further constraints. We can notice that A is
only determined up to adding a matrix of form e¢v® for
any 2-vector v. Thus we can further constrain A such
that AT¢ = 0. This is equivalent to saying that the
rank of A is one, i.e. we have b = ka for a non-zero
scalar k. This produces two scalar constraints on a, b.
Together with the previous two quadratic constraints
on a, b and ¢, we obtain a homogeneous quadratic
equation in a1 and as:

aa? + fajag +yai =0, (10)
where o = s3sg — s457, B = 8782 + $554 — S35 — $851
and v = sgs1 — sass5, and this quadratic equation may
be easily solved for aj/as.

Then k is given by the following linear equation in
terms of a1 /as

(—CLQSl + 53a1)k + (Sgag —_ S4Cl1) =0.

After that, the 2-vector ¢ is obtained by solving
ATc = 0. Thus, the projection matrix M’ is fully
recovered up to two solutions.

Finally, the 6-vector (d, e, f)T for the projection
matrix M" is linearly solved by Equation (9) in terms
of M’.



4.3 Rescaling of one-dimensional image
points

According to Triggs and Sturm [24, 22}, projective
reconstruction is equivalent to the rescaling of the im-
age points. For each image point through three views
ADal) = MYx, the scaling factors (), taken in-
dividually, are arbitrary; however, taken as a whole,
they encode all the projective structure of all views
and points.

One way to recover the rescaling factors, up to a
scaling factor, is directly to use the basic reconstruc-
tion equation (6) or alternatively to observe the fol-
lowing matrix identity:

M  Au M
M A

= M, (IB><3 X) .
M/I /\/ru// Ml/

The rank of the left matrix is therefore at most 3.
All 4 x 4 minors vanish, three of them are algebraically
independent. Each can be expanded by cofactors in
the last column to obtain a linear homogeneous equa-
tion in A, A, N/, Therefore (A, X', \")T can be linearly
solved up to a scalar by

* % % A
A/
(* * *> (A”>

where * designate a known constant entry in the ma-
trix.

For each triplet of views, the image points can be
consistently rescaled according to the previous para-
graphe. For general n > 3 view case, we can take
appropriate triplets among n views such that any two
triplets has at least a common view. Then, the rescal-
ing factors for any given point of all triplets of views
can be chained together over n views.

*
*
*

5 Direction factorization—step 1
Suppose we are given m line correspondences in n
views. The view is indexed by a superscript number
and the feature by a subscript one. We can now create
the 2n x m measurement matrix Wp of all lines of all
views by stacking the direction vectors dq(j)i properly
)

rescaled by A"’ as follows:
Ardy, /‘\gd}JZ )\md}lm
Aidy,  Apdy, Andy,,
Wp = : : :
APAE AP AP

As the following matrix equation holds for the mea-
surement matrix Wp:
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the rank of Wy is therefore at most of three. The
factorization method can then be applied to Wp.
Let
Wp =UpSpVh

be the SvD factorization of Wp, the 3x 3 diagonal ma-

trix X ps be obtained by keeping the first three singular

values (assuming that singular values are ordered) of
(E %nd Ups (Vps) be the first 3 columns (rows) of U
V).

Then, the product UpsXpsV 5, gives the best rank
3 approximation to Wp.

One possible solution for M and D may be taken
to be

M = UD3EZ/32 and D= ElD/??VD;y

. . . !
For any nonsingular 3 x 3 matrix Agxs, M

R . R > )
MA3zx3 and D = A3>}3D are also a valid solution,
as we have

MAA™'D =MD =MD.

This means that the recovered direction matrix D and
the rotation matrix M are defined only up to affine
transformations.

6 Translation factorization—step 2

Once we obtained the affine line directions and
affine rotations of the camera motion from the first
factorization step, we proceed to the second step to
obtain scaled affine translations from factorization,

For each interpretation plane 1P = (dy,d.)T of
each image line, its direction component is completely
determined with the recovered M from equation (4)
as

d, = MT d,.

Actually only its fourth component d, = 17t re-
mains undermined, depending linearly on t. The in-
terpretation plane can be properly written as

p?T = om7d,, ulfe)T.

We can then stack all the planes of different views
for a given line as the following n x 4 measurement
matrix of planes:

17¢
* 1Ty
Wp =

w % ox 1T

This matrix W p geometrically represents the pen-
cil of planes, so it has at most rank 2. For any three
rows, we can have two independent minors, as one by
taking the first three columns is always a constant,
there remains only one independent minor involving

the (2.



Expanding each minor, formed by any three rows i,
j and k of Wp, by cofactors in the last column gives

an homogeneous linear equation in @ £0) and t):
£()
£(9)
£(k)

(x x x) =0,

where the “x” designate 3 constants in a row.
For all those vanishing minors, collecting them to-
gether, we obtain

x X x 0 0 0 0 0 t

0 x x x 0 0 0 0 t’

S A : =0.
0 0 0 0 0 x x x) 4™

At this stage, since the origin of the coordi-
nate frame in space is not yet fixed, we may take
t = (0,0,1)7 up to a scaling factor, say tg, so
the final homogeneous linear equations to solve for
(to, t/, ..., tN)7T is

* 0

‘9 : W

X X

W . :
() 0 x/ \ew

Once again, this system of equations can be nicely
solved by SvD factorizing Wrp.

At this stage, apart from the undermined overall
scaling for the computed (g, t',t", - )T, it is still am-
biguous up to a sign, as —(tp, t’, t", - - )T is also a valid
solution. This sign-inversed solution geometrically re-
flects the shape in space.

7 Shape factorization—step 3

Once (to,t',t”,--)T are recovered by step 2, to-
gether with the results of step 1, the projection matri-
ces of all views are completely determined up to one
common scaling factor. The matrix W p containing all
interpretation planes is also completely determined.

Two methods to obtain the shape are possible, one
based on the projective representation of lines and an-
other on the minimal representation of lines, inspired
by [5]. Due to space limitation, only the first method
will be described here.

A projective line in space can be defined either by a
pencil of planes (two projective planes define a pencil
of planes); or by any of its two points.

If the rank of the matrix Wp is 2, its nullity is also
2. The range of Wp define the pencil of planes and
the null space spans the projective line in space.

Once again, using SvD to factorize Wp gives ev-
erything we want. Let

Wp =UpXpVy

be the SvD of W p with ordered singular values. Two
points of the line might be taken to be vz and v4, so
the line is given by

Avg + pvy.
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One advantage of this method is that using sub-
set selection, near singular views can be detected and
discarded.

8 Calibrated affine camera

Up to this point, we have worked with uncalibrated
affine camera, the recovered motion and the shape are
defined up to an affine transformation. If the affine
camera. Is calibrated, then it is possible to directly ob-
tain Euclidean shape and motion.

Following the intrinsic K and extrinsic R decom-
position of M = KR introduced in [18], the whole
metric information from the calibrated affine camera
is contained in the affine intrinsic parameters KK~ .

. o ms ) . .
The affine motion matrix M = <m1,) 1s constraint by

)

The linear solutions may be expected if we solve for
the entries of AAT, however it may happen the lin-

ear estimation of AAT be not positive-definite due
to noise. The alternative non-linear solution using
Cholesky parametrization that ensures the positive-
definiteness can be found in [18].

Once we obtain the appropriate A, then MA and

(mlAATm1 mlAAng - KKT

JmlAAng mgAAng

A 1D carry the rotations of the camera and the di-
rections of lines.

The other steps remain the same as for uncalibrated
affine camera.

9 Minimum data case

Although the general context of the development
of the line factorization method is focused on using
the heavily redundant image features and views, the
minimal data required for such achievement is equally
important and interesting.

The minimum numbers of views and lines required
at each step are summarized in Table 9.

Step views # | lines #
0 (rescaling) 3 7
1 (direction) 2 5
2 (translation) 3 6

Table 1: The minimum numbers of view and lines
required at each step of the factorization.

In view of this, we can establish the following.

For the recovery of affine shape and affine motion
from line correspondences with an uncalibrated affine
camera, the minimum number of views needed is three
and the minimum number of lines required is seven for
a linear solution.

Note the difference with the the perspective camera
case. A minimum of 6 lines is required to have non-
linear algorithms with the perspective camera and to
have a linear solution, a minimum of 13 lines is re-
quired across three views, as have been reported in



{12, 11, 5]. It is important to note that with the affine
camera and the method presented in this paper, the
number of line correspondences for achieving a lin-
ear solution is reduced from thirteen to seven, which
presents an important practical significance.

10 Experimental results

We first used the simulated image to validate the
theoretical development of the algorithm. The sim-
ulation is set up as follows. We first use the per-
spective projection matrices obtained by calibration.
Then these projection matrices are approximated to
the affine projection ones. A set of 3D line segments
lying on two visible faces of a cube is finally projected
into sets of 2D line segments. Fach 2D line segment
is perturbed by adding different level of noise to cre-
ate the final simulated images. The algorithm turns
out very good reconstruction results up to two pixel
noise, then the results degrade with increasing noises.
Figures 1 show the reconstruction results with one
pixel noise. Each 3D line segment is displayed by 1ts
two endpoints. The endpoints are obtained by back-
projecting the endpoints of the line segment in one of
the views onto the 3D line.

% .
s
- P AR e e

Figure 1: The top and side views of the reconstructed
affine shape of the simulation with one pixel noise.

11 Discussions

We have presented a four step factorization algo-
rithm for the recovery of shape and motion from line
correspondences with an affine camera. This algo-
rithm extends the previous algorithms for points to
line features which can be more accurately extracted
from images. The method is based on the decomposi-
tion of the whole structure into three separate param-
eter sets, each one is then solved by factorizing the
different measurement matrices. Although the four
steps are sequential, the first two steps are based on
very stable and accurate measures, so the accuracy for
the following steps is hardly influenced.

As the line factorization algorithm presented in this
paper is developed within the same framework as sug-
gested in [18] for points, it is therefore straightforward
to integrate both points and lines into the same frame-
work.

Acknowledgement

This work is partly supported by CNRS and French
Ministere de I’Education which are gratefully acknowl-
edged.

808

References

(1]
[2]

(31

[4]

(5]

(e}

71

(8]

(e

[10]

11}

f12]

[13]

{14]

{1s]

(16]

(17]

[23)

[24]

{25}

[26]

[27]

N. Ayache. Stereovision and sensor fusion. MIT-Press, 1990.

M. Spetsakis ans J. Aloimonos. Structure from motion using line corre~
spondences, 1JCV, 4:171-183, 1990.

M. Dhome, M. Richetin, J.T. Lapresté, and G. Rives. Determination of
the attitude of 3D objects from sigle perspective view. leee T-PAMI,
11(12):1265-1278, 1989.

O. Faugeras. Three-Dimensional Computer Vision - A Geometric View-
point. Artificial intelligence. M.I.T. Press, Cambridge, MA, 1993.

O.D. Faugeras, F. Lustman, and G. Toscani. Motion and structure from
point and line matches. In Proc. the 1st ICCV, London, England, June
1987.

O. Faugeras and B. Mourrain. About the correspondence of points be-
tween N images. In Proceedings of IEEE Workshop on Representations
of Visual Scenes, Cambridge, Massachusetts, USA, June 1995.

R. Hartley. Lines and Points in Three Views - An Integrated Approach.
Technical report, G.E. CRD, 1994.

R.I. Hartley. Projective reconstruction from line correspondences.
Proc. CVPR, Seattle, Washington, USA, 1994.

In

J.J. Koenderink and A. J. Van Doorn. Affine structure from motion.
Technical report, Utrecht University, Utrecht, The Netherlands, October
1989.

C.H. Lee and T. Huang. Finding point correspondences and determining
motion of a rigid object from two weak perspective views. CVGIP, 52:309~
327, 1e90.

Y. Liu and T.S. Huang. A linear algorithm for motion estimation using
straight line correspondences. CVGIP, 44(1):35-57, October 1988,

Y. Liu and T.S. Huang. Estimation of rigid body motion using straight
line correspondences. CVGIP, 43(1):37~52, July 1988.

Ph.F.McLauchlan, 1.D. Reid and D.W. Murray. Recursive affine structure
and motion from image sequences. In J.O. Bklundh, editor, Proc. the 3rd
ECCYV, Stockholm, Sweden, pages 217-224. Springer-Verlag, May 1994.

J.L. Mundy and A. Zisserman, editors. Geometric Invariance in Computer
Vision. MIT Press, Cambridge, Massachusetts, USA, 1992,

T.Q. Phong, R. Horaud, A. Yassine, and D. T. Pham. Optimal Estimation
of Object Pose from a Single Perspective View. In Proc. the 4th ICCV,
Berlin, Germany, May 1993.

C. J. Poelman and T. Kanade. A paraperspective factorization method
for shape and motion recovery. In J.O., Eklundh, editor, Proc. the 3rd
ECCV, Stockholm, Sweden, pages 97-108, May 1994,

L. Quan and R. Mohr. Affine shape representation from motion through
reference points. JMIV, 1:145-151, 1992. also in IEEE Workshop on
Visual Motion, New Jersey, pages 249-254, 1991.

L. Quan. Self-calibration of an affine camera from multiple views. 1JQV,
1995. to appear.

L.S. Shapiro, A. Zisserman, and M. Brady.
using affine epipolar geometry. 1JCV, 1994.

Motion from point matches

A. Shashua. Algebraic functions for recognition. leee Transactions on

PAMI, 1994, in press.

M. Spetsakis and J. Aloimonos. A Unified theory of structure from mo-
tion. In Proceedings DARPA IU Workshop, 1990.

P. Sturm and B. Triggs. A factorization based algorithm for multi-image
projective structure and motion. In Proc. the 4th ECCV, Cambridge,
England. 1996.

C. Tomasi and T. Kanade. Shape and motion from image streams under
orthography: A factorization method. IJCV, 9(2):137-154, 1992.

B. Triggs. The geometry of projective reconstruction I: Matching con-
straints and the joint image. In Proc. the 5th ICCV, Cambridge, Mas-
sachusetts, USA, 1995.

S. Ullman. The Interpretation of Visual Motion. The MIT Press, 1979.

D. Weinshall and C. Tomasi. Linear and incremental acquisition of in-
variant shape models from image sequences. In Proceedings of the 4th In-
ternational Conference on Computer Vision, Berlin, Germany. leee, 1993.

Z. Zhang and O. Faugeras. Three-dimensional motion computation and
object segmentation in a long sequence of stereo frames. IJCV, 7(3):211—
241, 1992.



