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Abstract
We introduce a general purpose method for increasing the frame-
rate of real-time rendering applications. Whereas many existing
temporal upsampling strategies only reuse information from pre-
vious frames, our bidirectional technique reconstructs intermediate
frames from a pair of consecutive rendered frames. This signifi-
cantly improves the accuracy of interpolated frames since very few
pixels are mutually occluded in both frames, but does introduce a
small amount of lag in the resulting image sequence (typically 1–
2 frames). We present two versions of this basic algorithm. The
first is appropriate for fill-bound scenes as it limits the number of
expensive shading calculations, but requires processing the scene
geometry at each intermediate frame. The second version lowers
both shading and geometry computations by warping the pair of
rendered images according to the scene depth and an estimate of the
scene flow obtained through a simple iterative search. We demon-
strate that our method offers substantial performance improvements
(3–4×) for a variety of applications, including vertex-bound and
fill-bound scenes, multi-pass effects, and motion blur.

1 Introduction
Driven by the programmability and performance of dedicated
graphics hardware, modern real-time rendering systems incorporate
more computationally intensive pixel shading and larger geometric
models than ever before. Additionally, mobile graphics platforms
have emerged that offer exciting application opportunities, but pos-
sess far less computational power than desktop computers.

Providing high-quality rendered content on any of these plat-
forms or porting applications from one platform to another requires
general purpose methods for trading performance (framerate) for
accuracy. A popular trend is to exploit the natural temporal and
spatial coherence in animated image sequences by reusing the re-
sults of expensive shading calculations at nearby frames and pixels.
The reverse reprojection scheme proposed by Nehab et al. [2007]
allows pulling shading information from the previously rendered
frame to accelerate the computation of the current frame. This ap-
proach provides an adjustable trade-off between performance and
image quality and has proved useful in practice, including in the
Gears of War II video game to accelerate low-frequency lighting
effects.

However, a fundamental limitation of existing real-time repro-
jection techniques [Nehab et al. 2007; Scherzer et al. 2007; Sitthi-
amorn et al. 2008a] is that they incur a drop in performance when-
ever there are disoccluded regions in the scene — elements visible
in the current frame that were not visible in the preceding frame.
Furthermore, the number of disoccluded pixels typically varies over
time which can lead to undesirable fluctuations in framerate. Ad-
ditionally, these multi-pass techniques are designed to reduce the
average number of pixel shader invocations and are not suitable for
accelerating vertex-bound scenes since they offer no reduction in
geometry processing or rasterization.

We propose a bidirectional reprojection method for temporally
upsampling rendered content that combines information from both
the previous and next frames to achieve a higher and more stable

framerate. Inspired by video compression algorithms, our approach
is to insert interpolated frames between pairs of rendered frames.
We will also adopt the terminology used in the video compres-
sion literature and will refer to rendered frames as intra- or simply
I-frames and interpolated frames as bidirectional predicted- or B-
frames. We observe that in the great majority of cases, the portion
of the scene visible at each pixel in a B-frame is either visible in one
of the I-frames or both, allowing reliable high-quality interpolation.

Our approach gives an adjustable trade-off between accuracy and
performance without requiring manual profiling and optimization
of shader code or scene geometry. This makes it particularly well
suited for porting real-time applications to different architectures
and display formats. The downside to our approach is that it intro-
duces a lag in the resulting image sequence. However, we present a
careful analysis of this lag and show that it is small, typically only
one or two I-frames, and therefore the method is suitable for many
real-time rendering applications.

We present two algorithms that fall within this basic bidirectional
reprojection framework. Our scene-assisted algorithm is a straight-
forward extension of existing reverse reprojection methods and re-
quires rasterizing the scene geometry in order to reconstruct each
B-frame. This technique provides a performance improvement for
fill-bound scenes in which evaluating the pixel shading comprises
a significant portion of the rendering budget. As compared to con-
ventional single-direction reprojection, it achieves superior image
quality and higher framerates since combining information from
multiple frames drastically reduces the disocclusion rate. More-
over, even in the rare situations where a pixel is not visible in either
I-frame it allows forming an acceptable approximation that avoids
ever having to evaluate the pixel shader.

We also describe an image-based algorithm which is a larger de-
parture from prior work and allows accelerating both vertex- and
fill-bound scenes. It reconstructs B-frames by warping the I-frames
according to their corresponding depth maps and 3D scene flow,
which is estimated using a simple iterative search performed in a
fragment shader. The geometry is rasterized only at the I-frames
and the complexity of computing the B-frames is proportional to
the number of pixels in the framebuffer. Furthermore, we show
how to achieve a stable framerate by interleaving the I-frame com-
putation with the much less expensive reconstruction and display
of B-frames. In many cases, our image-based algorithm produces
B-frames that are nearly indistinguishable from reference images
while providing a 3- to 4-fold increase in framerate.

2 Previous work
Data reuse Exploiting spatio-temporal coherence in order to
render animated image sequences more efficiently has been ex-
tensively studied in both offline and interactive rendering sys-
tems [Cook et al. 1987; Badt 1988; Chen and Williams 1993;
Bishop et al. 1994; Adelson and Hodges 1995; Mark et al. 1997;
Walter et al. 1999; Bala et al. 1999; Ward and Simmons 1999;
Havran et al. 2003; Tawara et al. 2004], as well as hybrid CPU-
GPU ray-based systems [Simmons and Séquin 2000; Stamminger
et al. 2000; Walter et al. 2002; Woolley et al. 2003; Gautron et al.
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Figure 1: Overview of scene-assisted and image-based algorithms for reconstructing one pixel in a B-frame: It+α[pt+α].

2005; Zhu et al. 2005; Dayal et al. 2005]. For scanline-based ren-
dering systems, recently proposed reverse reprojection methods al-
low reusing the shading from the previous frame to reduce the cost
of computing the shading in the current frame [Nehab et al. 2007;
Scherzer et al. 2007; Sitthi-amorn et al. 2008a,b]. Another approach
exploits temporal coherence to amortize the computation of super-
sampled frames [Yang et al. 2009]. Finally, there are hybrid meth-
ods that exploit not only temporal, but also spatial coherence [Her-
zog et al. 2010].

Image warping and interpolation Image warping algorithms
play a key role in image morphing and image-based rendering sys-
tems [Beier and Neely 1992; Chen and Williams 1993; McMillan
and Bishop 1995; Seitz and Dyer 1996; Vedula et al. 2002; Fitzgib-
bon et al. 2005; Stich et al. 2008a,b]. These techniques often use
sparse feature correspondences obtained either from user input or
automatic feature extraction algorithms. A notable exception is the
Moving Gradients system proposed by Mahajan et al. [2009] which
computes space-time paths through an image sequence and uses
gradient domain techniques to reconstruct the pixel values at inter-
mediate frames. In contrast to our work, Moving Gradients targets
a harder problem in which accurate and dense scene flow and scene
depth is not available.

Mark et al. [1997] describe a system that upsamples rendered
frames by warping images with the aid of scene depth. However,
this method only considers changes in viewpoint. A related method
is due to Didyk et al. [2010] which targets high-refresh-rate dis-
plays. Similar to our approach, exact scene flow between neighbor-
ing I-frames is computed using the available 3D scene geometry.
This flow field is used to compute an image warp defined over a
coarse grid superimposed over the framebuffer. Occlusion artifacts
are diminished by applying an adaptive spatial blur. By reconstruct-
ing a dense scene flow field that relates each B-frame to its adjacent
I-frames, our technique produces higher quality interpolated con-
tent and is thus more suitable for applications targeting lower fram-

erates where B-frames are more easily visible. We present a direct
comparison to this method in Section 7.

Video compression Another related set of methods are video
compression algorithms. Standards such as H.264, AVC, MPEG-
4 [Wiegand et al. 2003; Sullivan and Wiegand 2005] all incorpo-
rate some form of motion compensation, in which the motion of
small windows of pixels (blocks) between consecutive frames is
estimated and used to further reduce the bitrate. These techniques
also encode video frames using information from multiple refer-
ence I-frames in a way analogous to bidirectional reprojection.

3 Overview
Our basic approach is to render the full 3D scene at I-frames us-
ing conventional methods and then insert interpolated B-frames be-
tween these to achieve a higher framerate. As compared to standard
single-direction reprojection methods, this approach significantly
lowers disocclusion artifacts by virtue of using information from
two viewpoints instead of one. The interpolation process is guided
by scene flow, the 3D velocities of visible surface points between
two frames, which indicates where and how to pull shading infor-
mation from the I-frames to reconstruct each B-frame.

We will use Ft to denote the framebuffer of the I-frame rendered
at time t ∈ Z. Between successive I-frames Ft, Ft+1, we compute
n−1 B-frames, corresponding to times t+α with α ∈ 1

n
, . . . n−1

n
.

Because this series of B-frames will be displayed before the I-frame
at time t+ 1, our upsampling algorithm introduces a lag of roughly
one I-frame with respect to a conventional rendering system. Sec-
tion 6 provides a detailed analysis of this lag.

We let the symbol p = (px, py) denote the 2D coordinate of
a pixel in clip space. The third coordinate (depth) is available
during geometry rasterization and in the depth buffer Z. We use
p̄ =

(
px, py, Z[p]

)
to denote its corresponding 3D coordinate. Be-

cause models may deform and the viewpoint may change over time,
we must account for changes in clip spaces. We let πt→t′ denote
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Figure 2: Three iterations of the search algorithm used to estimate the scene flow at one pixel in a B-frame with respect to an I-frame in the
forward direction.

the transformation that maps the surface point p̄t at time t into the
clip space at time t′. This transformation is easily computed during
rasterization of the frame at time t, by supplying the animation and
camera parameters for time t′, and leveraging hardware interpola-
tion of per-vertex attributes [Nehab et al. 2007].

We introduce two interpolation algorithms:

• Scene-assisted interpolation computes the exact scene flow
between each B-frame and its pair of neighboring I-frames
by rasterizing the scene geometry (without shading) at each
B-frame. (Section 4)

• Image-based interpolation only computes the exact scene
flow between adjacent I-frames and uses a simple iterative
search to estimate the scene flow between each B-frame and
its neighboring I-frames. This sacrifices accuracy in the inter-
polated frames, but avoids rasterizing the geometry more than
once per I-frame. (Section 5)

In the following sections we describe these two interpolating strate-
gies in detail. Section 7 presents results along with a comparison of
the two approaches.

4 Scene-assisted interpolation
This technique renders the depth of the scene at each B-frame
(no shading) and uses reprojection to reconstruct the shading from
the two adjacent I-frames (Figure 1, top). Because the shading is
only ever computed at the I-frames, this approach can increase the
framerate of fill-bound scenes.

I-frame Each I-frame bufferFt = (It, Zt) consists of anRGBA
color image It and a depth buffer Zt, obtained using straightfor-
ward rasterization. Before reconstructing the B-frames within the
interval [t, t + 1], we must first rasterize Ft+1. Note that Ft will
have already been generated during rendering the interval [t− 1, t].

B-frame To reconstruct the B-frame image It+α, we rasterize
the scene geometry at time t + α and perform reprojection into
both adjacent I-frames (Ft, Ft+1) (see Figure 1). The position
of the 3D surface point visible at each pixel p̄t+α with respect to
the camera at time t and t + 1 is computed in the vertex shader
and interpolated during rasterization [Nehab et al. 2007]. Note
that the necessary camera parameters and animation parameters
at time t + 1 are known since frame Ft+1 has already been ren-
dered. The reprojection step compares the depth of πt+α→t(p̄t+α)
and πt+α→t+1(p̄t+α) to the depth stored atZt[πt+α→t(p̄t+α)] and
Zt+1[πt+α→t+1(p̄t+α)], respectively, in order to identify possible
occlusions [Nehab et al. 2007]. If the surface point is visible in only
one I-frame, we simply set It+α(pt+α) to its shaded color there. If
it is visible in both, we blend the shaded colors based on α. If it is
visible in neither, we follow one of two approaches:

• Shade-on-miss simply evaluates the pixel shader to obtain an
accurate result.

• Closest-on-miss uses the color from the nearest buffer. In
other words, the depth values at the reprojected positions in
Zt and Zt+1 are compared and the shading associated with
whichever is smaller is used.

In our results, we used the closest-on-miss approach. This strat-
egy maps well to the SIMD architecture of modern graphics hard-
ware since it avoids any conditional execution and branch diver-
gence at neighboring pixels. Furthermore, we have found that it
produces results that are nearly indistinguishable from the more
conservative shade-on-miss approach largely due to the rarity of
this “double miss” case.

5 Image-based interpolation
Our image-based interpolation algorithm also reconstructs B-
frames at uniformly spaced time locations in the interval [t, t + 1],
but does so without rasterizing the scene geometry. Instead, we use
the 3D scene flow between adjacent I-frames to drive the interpola-
tion process. Specifically, as Ft is rendered we compute and store
a forward flow field V ft which encodes the motion of the scene at
each pixel between I-frames at times t and t + 1 (the 3D motion
relative to the image plane at time t)

V ft [p] = πt→t+1(p̄t)− p̄t . (1)

Similarly, we compute a backward flow field V bt+1 during rendering
Ft+1 which encodes the per-pixel relative scene motion between
I-frames at times t+ 1 and t:

V bt+1[p] = πt+1→t(p̄t+1)− p̄t+1 . (2)

These flow fields are computed using the same reprojection tech-
nique described above and originally proposed by Nehab et al.
[2007].

I-frame At time t, the algorithm first renders V ft . It then ren-
ders the buffers It+1, Zt+1, V bt+1 associated with time t+ 1 in a
single rendering pass using multiple render targets. Note that the
buffers It and Zt, which will also be needed to reconstruct the B-
frames in the interval [t, t + 1], are available after rendering the
I-frame at time t− 1.

B-frame For each pixel in each B-frame we wish to find the pixel
coordinates of the same surface point (if visible) in the adjacent
I-frames so that we can reuse those colors. In what follows, we
describe an iterative search for estimating these positions that can
be efficiently implemented on graphics hardware and discuss some
useful optimizations.

5.1 Iterative search
For each pixel pt+α in B-frame Ft+α, our goal is to compute
the corresponding locations pt = πt+α→t(p̄t+α) and pt+1 =
πt+α→t+1(p̄t+α) in the neighboring I-frames Ft and Ft+1, respec-
tively. Since we do not have access to the scene geometry and cam-
era parameters at time t + α and thus cannot perform exact repro-
jection as in the scene-assisted case, we will instead approximate
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these positions using a greedy search directed by the forward and
backward flow fields.

Forward direction We will assume that the pixel coordinate
pt+α and its corresponding coordinate pt in I-frame Bt are related
to one another according to the fractional displacement along the
forward flow field αV ft [pt] (leftmost image in Figure 2). Specifi-
cally,

pt+α = pt + αV ft [pt].xy . (3)

This is equivalent to assuming that all surface points undergo linear
motion relative to the moving coordinate frame associated with the
clip space coordinate system at time t+α. Under these conditions,
if the 3D surface point at pixel pt+α is visible in I-frameBt, then at
least one solution to Equation 3 must exist (up to sampling error).
Note that multiple solutions may exist, since other points visible
in Bt may also map to pt+α but are occluded in this frame.

As illustrated in Figure 2, we estimate pt using a simple search.
We start with

pt,0 = pt+α , (4)

and iteratively compute

pt,i = pt+α − dfi where dfi = αV ft [pt,i−1].xy . (5)

So that this algorithm will map well to a SIMD architecture, we
always terminate the search after a fixed number of m iterations.
We compute the clip space depth of the computed surface point as

zf = Zt[pt,m] + αV ft [pt,m].z . (6)

Finally, a measure of the screen space error is given by

ef =
∥∥∥(pt,m + αV ft [pt,m].xy

)
− pt+α

∥∥∥ . (7)

Backward direction In parallel, we perform the same process
as above, but with respect to the I-frame at time t+ 1. Specifically,

pt+1,0 = pt+a , (8)

pt+1,i = pt+α − dbi , (9)

dbi = (1− α) V bt+1[pt+1,i−1].xy . (10)

Similarly, we compute the depth with respect to the clip space co-
ordinate system at frame t+ α as

zb = Zt[pt+1,m] + (1− α) V bt+1[pt+1,m].z , (11)

and screen space error

eb =
∥∥∥(pt+1,m + (1− α)V bt+1[pt+1,m].xy

)
− pt+α

∥∥∥ . (12)

5.2 Visibility and shading
After these searches terminate, we test whether the resulting screen
space errors are within a threshold (ef < ε1 and eb < ε1).

(1) If they are both below this threshold and have similar depths(
|zf − zb| < ε2

)
, we conclude that they refer to the same

3D surface point and a straightforward approach would be to
simply blend the two colors according to α:

(1− α)It[pt,m] + αIt+1[pt+1,m] . (13)

However, we have found that this introduces undesirable blur-
ring since the two surface points will never be identical. In-
stead, we identify the point with the smallest screen-space er-
ror and project that point into the other I-frame before blend-
ing the colors. (Due to the exact flow fields, we can perform

this mapping precisely.) Thus, in the case that ef < eb, we
compute the blended color as:

(1− α)It[pt,m] + αIt+1[pt,m + V ft [pt,m].xy] . (14)

Conversely, if eb ≤ ef , we compute the blended color as:

(1− α) It
[
pt+1,m + V bt+1[pt+1,m].xy

]
+ α It+1[pt+1,m] .

(15)

Note that we must ensure the point is visible in the other I-
frame. In the rare event that it is not, we fall back to only
using the results from the frame with the least screen-space
error.

(2) If both errors are below ε1 but have different depths, we select
the color closest to the camera (since it occludes the other
point). We still map that same point into the other I-frame,
and if it is visible there as well, we blend the two colors as
in step (1) above; this is essentially a “second chance” to find
the appropriate point in the other frame.

(3) In the rare case where both errors exceed our tolerance, we
simply apply the blending procedure in step (1) to the solu-
tions of both searches.

5.3 Additional search initializations
The bidirectional search described above generally produces good
matches. However, there are situations where the starting points of
both searches lead to problems. We address this by performing the
search from additional starting points and using whichever solution
has the smallest screen space error in the end. These additional
starting conditions are described next.

Dual initialization One difficult situation arises along the sil-
houettes of an object that is both rotating and translating. In the
previous I-frame, the surface is visible at the pixel but if one sub-
tracts the motion vector one falls off the object, and in the next
I-frame the surface is no longer under the pixel. This can be seen
near the silhouette of the globe in Figure 4.

To address this situation, we introduce one additional starting
point for each of the two iterative searches. The basic idea is to
initialize the search in one I-frame by using the velocity vector re-
trieved from the other I-frame:

p′t,0 = pt+α + αV bt+1(pt+α) , (16)

p′t+1,0 = pt+α + (1− α)V ft (pt+α) . (17)

We follow the same iterative procedure described previously from
this starting position.

Latest-frame initialization The aforementioned strategies
only consider the motion vectors at the current pixel. However, for
all but the first B-frame in any interval, we can exploit the scene’s
temporal coherence and initialize the search using the result di from
the previous B-frame. Note, however, that the offset di must be
scaled according to α in order to account for the elapsed time be-
tween neighboring B-frames.

In this case, the initialization of the forward search becomes:

pt,0 = pt+α − df0 , where df0 =
α

α′
d′fi , (18)

where d′fi is the offset computed in the previous B-frame at time
t+ α′. The initialization of the backward search is similar:

pt+1,0 = pt+α − db0 , where db0 =
1− α
1− α′ d

′b
i . (19)
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Figure 3: The amortized computation of the I-frame at time t takes
place within the [t− 2, t− 1] interval.

where d′bi is the offset computed in the previous B-frame at time
t + α′. We observed the best results if we consider all of the off-
sets within a small fixed neighborhood around the pixel and use
whichever has the smallest depth. In particular, this improves the
robustness of the search near depth discontinuities. For example,
consider the north pole of the globe in Figure 4. Using motion vec-
tors from nearby pixels allows the algorithm to “find” the globe,
and consequently properly initialize the search using a motion vec-
tor that is consistent with the underlying motion of this object.

6 Partitioned rendering and lag
The relatively expensive computation of the I-frames (as compared
to the cost of computing B-frames) results in an uneven rendering
load. To address this problem, we amortize the computation asso-
ciated with the I-frame at time t along the B-frame rendering inter-
val [t−2, t−1]. Note that the rendering associated with the I-frame
at time t must be fully completed by time t− 1, since it is required
to render the B-frames in the interval [t− 1, t] (see Figure 3).

The amortization is achieved by simply partitioning the render-
ing tasks associated with the scene as evenly as possible and in-
terleaving these rendering tasks with the rendering of B-frames in
that interval. This process is application dependent. For scenes
that have a large number of shaded objects with roughly uniform
shading costs, amortization can be achieved by simply uniformly
partitioning the objects across the B-frames in the [t−2, t−1] inter-
val, shading them according to rendering parameters of the I-frame,
and accumulating the results on the appropriate render targets. It is
important to note that most of the rendering cost of the B-frames
comes from the amortized shading of the I-frames.

Lag In this amortized scenario, the lag is two I-frames, as illus-
trated in Figure 3. In practice, this lag is acceptable for interactive
applications such as mesh visualization, procedural animation, and
most computer games. If immediate feedback is desired (e.g., a
shooting scene in a first-person shooter game), any additional lag
could be problematic, and therefore this system may not be appli-
cable. However, it is worth noting that, in a traditional rendering
applications, there is typically a lag of at least one I-frame: the
time between when the scene information is gathered for rendering
until the time when the frame is ready for display. With v-sync en-
abled, this lag is increased by up to one additional frame since the
system has to wait for the refresh interval before swapping buffers.
Finally, real-time rendering systems often queue frames inside the
driver and on the GPU for added efficiency (e.g., Direct3D buffers
3 frames by default).

7 Results
In this section we discuss different usage scenarios for bidirectional
reprojection along with the quality/speed trade-offs associated with
using the proposed techniques. All results were generated on an
Intel Core Duo 3GHz CPU with 2GB of RAM and an NVIDIA
GeForce 8800 GTX graphics card.

The simple globe scene in Figure 4 demonstrates that both the
scene-assisted and image-based methods can properly handle an
animation that involves translation, rotation, and scaling. As the
model animates, our algorithms for rendering the three intermedi-
ate B-frames It+0.25, It+0.5, and It+0.75 correctly pull information

It It+1It+0.25 It+0.5 It+0.75

Linear Blending Scene-assisted Reference

Image-based (Basic)                                  Image-based (Dual Init.)                 Image-based (Dual+Latest frame Init.)

Figure 4: Bidirectional reprojection on an animation that involves
translation, rotation, and scaling.

from It, and It+1. In this simple animation, all surface points ren-
dered in the B-frames were visible in at least one of the I-frames,
thereby allowing the scene-assisted algorithm to always locate the
correct pixel in the I-frame(s). The basic image-based algorithm
was unable to find the appropriate surface points for some of the
pixels close to the globe’s silhouette. However, after employing the
additional search initializations described in Section 5.3, the search
succeeds.

7.1 Applications
Figures 5–8 present results for both scene-assisted and image-based
bidirectional reprojection for several different scenes. We have
found that using three iterations of the image-based algorithm suf-
fices for convergence on all scenes we tested. For each scene, we
compared our approach with two variants of traditional reprojec-
tion: one that reshades disoccluded regions (i.e., it reshades cache
misses) and one that doesn’t. Traditional reprojection with reshad-
ing can either be performed in a single pass or in multiple passes
that take advantage of early-Z culling [Sitthi-amorn et al. 2008a].
We always used whichever method was fastest for the given ap-
plication (single-pass for the vertex-bound terrain scene and multi-
pass for the walking scene). We also show comparisons with naive
linear blending, which causes clear ghosting artifacts. For each re-
sult, we show graphs measuring rendering time and quality (in MSE
and SSIM) compared to the reference images over a given anima-
tion sequence. We also show close-ups and difference images for
three B-frames It+0.25, It+0.5, and It+0.75. Note that one out of
every four frames is an I-frame and therefore has no error. Hence
the periodic pattern visible in the quality measurement graphs.

In some applications, partitioned rendering achieved a more sta-
ble framerate than others (see scenario descriptions below). Never-
theless, even in the scenes where a perfectly uniform amortization
is not achievable, the rendering time of each B-frame using our ap-
proach is substantially faster than reshading the scene anew.

Next we describe each result in greater detail. Please refer to the
accompanying video for animated renderings of these results.

Fill-bound scenes The walking scene of Figure 5 is an exam-
ple of a fill-bound scene consisting of moving characters over a
floor that is shaded by an expensive procedural noise function. Fill-
bound scenes are common in real-time applications (e.g., computer
games), and bidirectional reprojection can significantly reduce their
rendering cost by reducing the number of expensive pixels that need
to be processed. The bottom row of Figure 5 shows quality and
performance results of this technique for a representative animation
segment. Note that bidirectional reprojection is nearly 3× faster
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Figure 5: Results of our algorithm on the walking scene. The lines in the plots are colored according to the color of the frame around the
insets of the corresponding method.

than shading the scene anew while producing high quality results.
Even with severe disocclusion, it is clear from the inset difference
images that our image-based technique is able to properly reproject
the samples without any aid from the scene geometry. The results
are only slightly inferior to our scene-assisted technique. Since our
methods do not reshade any pixel in the intermediate frames, they
are nearly as fast as the low-quality naive linear blending. Most of
the cost in these frames come from the amortized shading of the
I-frames (the characters were uniformly partitioned for amortized
rendering). Using traditional single-direction reprojection results
in cache misses for every disoccluded region from the previous I-
frame. Therefore, it produces significantly worse results unless the
pixels are shaded anew, in which case performance deteriorates sig-
nificantly.

Vertex-bound scenes For large meshes, such as the 1M-
triangle terrain scene of Figure 6, most of the rendering budget is
consumed during vertex processing. For these types of scenes, we
can also provide a framerate improvement when using the image-
based interpolation approach, which achieves nearly a 3× speedup
for the terrain. Note that the errors are higher in this scene due to the
use of a high-frequency “noisy” pixel shader. In practice, however,

these differences are indistinguishable in the real-time animation
(see accompanying video), and such shaders present no problems
with our bidirectional reprojection framework. With our technique,
all vertex processing is only performed when rendering the I-frames
rather than for all frames in the animation. For this example, the
terrain is partitioned into a square grid of cells for amortized ren-
dering. Since the bottleneck is on vertex processing, our scene-
assisted approach and traditional single-direction reprojection with
reshading on cache misses are slow and therefore not applicable. It
is interesting to note that, when using an inexpensive pixel shader
as in this example, the scene can be shaded anew at each B-frame
by simply computing and reprojecting the pixel shader inputs (e.g.,
surface normal and texture coordinates) rather than the final color.
The B-frames can then shade these pixels with dynamic lighting
conditions without incurring the expensive additional vertex pro-
cessing.

Multi-pass rendering effects Many computer graphics ren-
dering effects require multiple rendering passes to intermediate
temporary textures prior to generating the final rendered result. The
NVIDIA human head demo in Figure 7 is such an example. It uses
a sum-of-Guassians formulation of subsurface scattering which is
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Figure 6: Results of our algorithm on the terrain scene. The lines in the plots are colored according to the color of the frame around the
insets of the corresponding method.

computed in texture-space using a series of render-to-texture passes
(Refer to d’Eon and Luebke [2007] for details.) The key advan-
tage of bidirectional reprojection in such multi-pass scenes is that
since it does not reshade on a cache miss, none of the intermediate
passes need to be rendered at each B-frame. They are only needed
when shading the I-frames. Therefore traditional single-direction
reprojection with reshading is not suitable, whereas single-direction
reprojection without reshading is unable to properly handle disoc-
cluded regions. For this example, the more accurate motion flow
from the scene-assisted approach yields results that are a bit better
than the image-based method. The rendering costs are similar since
geometry processing is not a bottleneck in this application.

Motion blur Our technique can also be used to render scenes
with motion blur. B-frames immediately before and after a given
I-frame are composited together to generate a motion blurred scene
with little added cost. We use the walking scene again for this ex-
ample, although using a different animation segment. Accumulat-
ing ten B-frames per I-frame (Figure 8), we achieve a 5× speedup
relative to brute-force, with negligible quality loss. The choice
between using scene-assisted and image-based interpolation repre-
sents a (smaller) trade-off between speed and quality in this case,

as illustrated by these graphs. Single-direction reprojection with re-
shading achieves better results, but it is significantly slower since it
has to reshade on cache misses. Single-direction reprojection with-
out reshading is very fast, but again suffers from significant artifacts
at disoccluded regions.

7.2 Comparison to frame upsampling
Figure 9 shows example B-frame renderings of our approach com-
pared to that of Didyk et al. [2010]. We must stress that this is
not a completely fair comparison, since the method of Didyk et al.
[2010] is targeted at higher-frame-rate displays, where the indi-
vidual B-frames are hardly perceived. We included this compari-
son to demonstrate that our image-based bidirectional reprojection
technique is the first real-time technique that interpolates frames
in image-space with high enough quality for rendering on standard
displays with common refresh rates.

8 Conclusion
We have introduced a new real-time technique for temporally up-
sampling rendered image sequences. As compared to single-
reprojection methods, our approach reduces artifacts due to disoc-
clusion by using information from both the previous and the fol-
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Figure 7: Results of our algorithm on the NVIDIA human head scene. The lines in the plots are colored according to the color of the frame
around the insets of the corresponding method.

lowing rendered frames. We presented two algorithms to transfer
the information from these I-frames to the interpolated frames. One
computes the correspondence robustly using geometry reprojection.
The other uses an image-space search. We also described how to
amortize the computation of these I-frames over multiple rendered
frames, and presented results of having successfully applied our
method to significantly speed-up rendering of scenes that are fill-
bound, vertex-bound, and contain motion blur.

For future work, we would like to consider automatically par-
titioning the scene for amortization using a measure of expected
rendering cost for the scene partitions and load balancing across
frames. We also would like to consider a multi-layer extension of
the approach in order to handle semi-transparent geometry.
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