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This paper introduces an optimization approach for modeling and render-
ing impossible �gures. Our solution is inspired by how modeling artists
construct physical 3D models to produce a valid 2D view of an impossi-
ble �gure. Given a set of 3D locally possible parts of the �gure, our algo-
rithm automatically optimizes a view-dependent 3D model, subject to the
necessary 3D constraints for rendering the impossible �gureat the desired
novel viewpoint. A linear and constrained least-squares solution to the opti-
mization problem is derived, thereby allowing an ef�cient computation and
rendering new views of impossible �gures at interactive rates. Once the op-
timized model is available, a variety of compelling rendering effects can be
applied to the impossible �gure.
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1. INTRODUCTION

Impossible �gures (Figures 1–2) have long been used in applica-
tions such as computer games, non-photorealistic rendering, im-
age synthesis, and photo-montage [Alexeev 2008]. They are often
blended with geometrically possible scenes to create special effects
in computer graphics applications.

Modeling and rendering impossible �gures has received much less
attention in computer graphics, however, possibly due to the fol-
lowing dif�culties. First, typically only a single view of an im-
possible �gure (or its image) is provided. Second, it is impossi-
ble to build a 3D model that corresponds to the impossible �gure
without severe structure disconnection or deformation. One exam-
ple is shown in Figure 3. Even when such a 3D model is meticu-
lously constructed, it can provide one view only [Elber 2002; Lip-
son 2002]. This is because an impossible �gure is a special kind
of 2D drawing that captureslocally possible3D parts, but the over-
all geometry isglobally inconsistentwithout structure deformation.
See in particular Figure 2(b) for the nine-cube arrangement that was
�rst drawn by Reutersvard in 1934. When we view the entire draw-
ing altogether, inconsistency in the global structure confuses our
visual perception on the model geometry.

In this paper, we present an interactive system for modeling and
rendering impossible �gures. Refer to Figure 1: the user �rst seg-
ments a 2D view of the impossible �gure and models a set of locally
possible 3D parts. The segmentation makes it easy to model each
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(a) (b) (c) (d) (e)

Fig. 1. (a) The impossible �gure is segmented into parts (as shown in (b)), which are possible in 3D. (c) When the camera viewpoint is changed, the �gure
starts to collapse. Our system automatically optimizes at interactive rate aview-dependent3D model for rendering the impossible �gure at the novel view.
Such a model looks distorted, as shown in (d), except at the camera viewpoint speci�ed by the user, as shown in (e). Shown in the top isPenrose Triangleand
the bottom isImpossible Staircase.

part, which is often rectilinear, using existing modeling tools. On
the same 2D view, a few connection and collinearity constraints are
then speci�ed. This segmentation and constraint speci�cation step
is done only once. As the user changes the camera viewpoint, the
system automatically optimizes aview-dependent3D model that
connects the parts and produces the impossible �gure at the desired
novel viewpoint.

Our main technical novelty lies in the automatic optimization algo-
rithm (Section 4.2) which connects individual 3D parts to generate
the 2D impossible �gure. To guarantee the output to be an impos-
sible �gure, all the computations performed on the 3D parts are
subject to the constraints which maintain straight connections on
the 2D projected view. For example, similar to Figure 3, although
the 3D geometry may be severely deformed in the 3D space after
optimization, the rendered impossible �gure still looks plausible
speci�cally at the novel camera viewpoint.

Interestingly, the automatic optimization turns out to have a
straightforward andlinear least-squares solution, thereby allowing
ef�cient computation to support interactive modeling and render-
ing (see the accompanying video). In this paper, we show examples
on how to model and render the following classes of impossible
�gures [Ernst 1987]:

—Depth interposition See the impossible cuboid in Figure 2(a),
where the optical illusion is caused by structural inconsistency
due to the problematic depth ordering.

—Depth contradiction Refer to the nine-cube arrangement in
Figure 2(b), and also the Penrose triangle by the Penroses [1958]
in Figure 1, where propagation of local 3D information gives rise
to global structural inconsistency.

—Disappearing normals See Figure 2(c) for an example of the
impossible staircase, where the planeABCDdepicted in the �g-
ure could appear to be horizontal at one side while vertical at the
other, making it impossible to assign a consistent normal across
the whole plane.

—Disappearing space See Figure 2(d) where the silhouette of
the impossible trident is not closed.

M.C. Escher [M.C. Escher Foundation ; Schattschneider and Em-
mer 2003] was a renowned art master who popularized impossi-
ble �gures by skillfully embedding models of impossible �gures
in architectural drawings. Figure 4 presents more impossible �g-
ures used in this paper:Ascending and Descending, Double Pen-
rose Triangles, Waterfall andConstructionwere created based on
depth contradiction.Belvederewas created based on the depth in-
terposition technique demonstrated in the impossible cuboid.

2. LITERATURE REVIEW

A plausible approach to rendering an impossible �gure is to skip
the 3D modeling step and generate a novel view by 2D warping
of the input view, as typically only one view of the impossible
�gure is given. In fact, 2D artists have experimented with simple
tricks such as 2D scaling and stretching. However, when the novel
view is far from the reference view, 2D warping fails in making
the transformed �gure look like a 3D solid. Another advantage of a
3D approach is that temporal coherence in animating an impossible
�gure is automatically and smoothly maintained, as a 3D model is
available for animation.

Recognizing the importance of operating in the 3D space, 3D geo-
metric approaches have been proposed. Elber [2002] created phys-
ical models for impossible �gures, including those by M.C. Escher.
Lipson [2002] made use of LEGO bricks to build physical mod-
els of various impossible �gures rendered by Escher. Manual con-
struction of such 3D model can be a tedious process. Moreover,
the resulting model only allows rendering the impossible �gure at
restrictive viewpoints. In contrast, our general approach takes both
2D and 3D into consideration, which can be used to render im-
possible �gures in any one of the four classes. Also, our ef�cient
optimization algorithm models and renders impossible �gures at
interactive speed.

2.1 Approaches

Technically, our work is closely related to [Rademacher 1999]
where view-dependent geometry was introduced. The work was
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Fig. 2. Representative examples of the four basic classes of impossible �gures: (a) the impossible cuboid, (b) the nine-cube arrangement, (c) the impossible
staircase, and (d) the impossible bar.

Fig. 3. Only one view of the impossible �gure can be produced from the
corresponding 3D model with heavily twisted structure.

originated from cel animation application where a cartoon char-
acter drawn by an artist exhibits some extent of distortion in suc-
cessive keyframes. Since there are no consistent 3D models capa-
ble of representing exactly the object at the corresponding view-
points, deformations are needed to match the input geometry (base
model) and the drawings. In addition to the base model, however,
their method requires the user to input a set of key deformations
and a set of key viewpoints for each keyframe. Using this system,
even if it is possible to produce novel views for an impossible �g-
ure, specifying the two sets of information is tedious. If it is indeed
impossible, then the artist needs to imagine and draw up the novel
views (keyframes) of the impossible �gures. This is dif�cult as we
have no idea how many keyframes are required for different types
of impossible �gures.

One may also relate our work to multi-perspective rendering [Yu
and McMillan 2004]. In fact, we share somewhat the same spirit,
but we work on a different problem domain and operate with differ-
ent techniques: multi-perspective rendering blends different views
of images into a single one so that the user can see the whole ob-
ject/scene in a single picture. Our method blends possible 3D parts
by non-rigid transformation with the consideration of local struc-
ture consistency (against the constraints) to produce the optical il-
lusion subject to viewpoint changes.

For artwork of impossible �gures, Simanek [1996] presented a
proposal to create false perspectives on impossible �gures; sim-
ple tricks such as prolonging the horizontal dimension were used
to create stereo pairs of impossible �gures. Savransky [1999] de-
scribed impossible 3D scenes by encoding linear transformations
between neighboring 3D parts in the impossible 3D world, and
then by solving for a correct viewpoint (a modelview transforma-
tion with respect to the camera) that optimally projects the impos-

Fig. 4. Top: Ascending and Descending (left) and Double Penrose Trian-
gles (right). Bottom: Construction (left), Waterfall (middle), and M. C. Es-
cher's original Belvedere (right).

sible scene. Uribe [2001] proposed to use a set of triangular tiles to
design and create 2D impossible �gures. This method was applied
in rendering one of the levels in the computer game Diablo II by
Blizzard.

2.2 Related Work

Khoh and Kovesi [1999] generated novel views of impossible �g-
ures by using two complementary halves, which are 3D models re-
lated by an inversion transform in the image plane. The thickness of
the two complementary halves need to be adjusted after inversion
transform. Their approach works for a particular subset of impossi-
ble �gures. A similar approach was adopted by Tsuruno [1997],
where a 3D model was constructed to create different views of
Belvedere. Sugihara [1986; 1997] provided a foundation for inter-
preting line drawing for possible objects. Unfolded surfaces that
are geometrically possible can be generated for allowing one view
of an impossible �gure to be projected. The main goal of this pa-
per is to produce physical toys from impossible �gures. Owada and
Fujiki [2008] proposed a system for modeling impossible �gures.
They also implemented a constraint solver to seamlessly combine
multiple 3D parts in a projected 2D domain, by considering 3D
line orientations to render an impossible �gure at novel viewpoints.
Their working prototype however used non-linear optimization and
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Table I. A comparison between various rendering and modeling approaches.
Geometric User Camera

Method Classes Input Input Optimization Path Rendering
Tsuruno [1997] 1 3D meshes unknown unknown designated PR
Savransky [1999] 1,2 3D meshes transformation linear estimated and �xed NPR, PR
Khoh and Kovesi [1999] 1 3D lines unknown linear unrestricted LA
Owada and Fujiki [2008] 1,2,3,4 3D meshes stroke/dragging/dialog non-linear restricted LA
Our Method 1,2,3,4 3D meshes point/line of correspondence linear restricted LA, NPR, PR

Classes indicate the type of impossible �gures that the methods could handle – 1: depth interposition, 2: depth contradiction, 3: disappearing normals and 4: disappearing
space; LA, NPR and PR stand for Line-Art, Non-Photorealistic Rendering and Photorealistic Rendering, respectively.

(a) (b) (c) (d)

Fig. 5. (a)Nine-cube Arrangement. (b) and (c) are the two possible parts of (a). (d) A tilted plane is placed as shown in the 3D model. This plane serves as
the image plane where (c) is projected to produce the impossible �gure in (a).

only allowed a narrow range of viewpoints. Our optimization, on
the other hand, has a linear least-squares solution that can be ef�-
ciently computed. Moreover, as we will explain in the sequel, our
approach can quantitatively identify the subset of viewpoints where
the impossible �gure ceases to exist.

An ideal system should allow the user to model different classes of
impossible �gure within a uni�ed framework and using minimal ef-
fort. Because impossible �gures still look plausible under speci�c
viewpoints, we should still categorize impossible �gures in ways
similar to conventional graphics rendering such as line-art (LA),
non-photorealistic (NPR), and photorealistic (PR). Table I summa-
rizes the characteristics of the approaches designed to model and
render impossible �gures.

It can be noticed that Tsuruno [1997]1 and Khoh and Kovesi [1999]
are capable of handling one class of impossible �gures only; specif-
ically, they showed only one instance in their respective publica-
tion.

On the other hand, our method outperforms previous methods in
terms of input (the type of impossible �gures that can be handled)
and output (the type of rendering techniques that can be applied).
While Owada and Fujiki [2008] proposed a competitive method,
we show that our stable and linear optimization method (using
constrained thin-plate spline warping) can provide a much higher
frame rate (several versus� 40 frames per second) and support
interactive rendering, which are instrumental to game and movie
applications.

Regarding to user input, Savransky [1999] requires the user to man-
ually specify local and rigid transformations (rotation and transla-
tion) for every pair of relating 3D parts. Owada and Fujiki [2008]

1Tsuruno [1997] is published in the form of a video clip, and the technical
detail for producing this video is not published anywhere else. Moreover,
no follow-up from the same group has appeared afterward. So, we have no
information on the technique they used.

requires the user to perform edge deletion (via brush stroke), 3D
part stitching (via mouse dragging) and depth and orientation con-
trol (via dialog). Different from these two approaches, we employ
point and line correspondences to specify the necessary constraints
in a static view in the modeling stage. Such a speci�cation need
only be done once and no further editing is required after that. We
will discuss the advantages of our user inputs as compared with the
two approaches mentioned above in Section 5.2.

One drawback of our system is that, similar to Owada and Fu-
jiki [2008], the set of viewpoints is restricted. This is possibly
due to the fact that impossible �gures are only feasible at a �-
nite set of viewpoints. Although the method proposed by Khoh and
Kovesi [1999] does not have viewpoint restriction, the rendered ob-
ject suffers from severe distortion especially at some degenerate
viewpoints.

3. ANALYSIS

The human has a remarkable ability to make instant connection to
3D on seeing 2D drawings. This connection, however, can lead to
interesting problems. When presented an impossible �gure before
our eyes, we can perceive local 3D structure of individual parts in
the drawing. When we view the entire drawing as a whole, struc-
tural inconsistency arises and we become aware that the �gure is
invalid as we attempt to mentally build a globally consistent 3D
structure from the impossible �gure.

3.1 Dissecting an Impossible Figure

We believe that the visual confusion caused by viewing an impos-
sible �gure lies in the presence of multiple 3D structures projected
by usingdifferenttransformations, while some of them violate the
laws of rigid camera transform whereas the resulting projected 2D
structures still retain 3D semantics.
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Fig. 6. Rendering possible and impossible �gures.

For example, if we separate the upper three cubes from the rest
in Figure 5(a), as shown in (b) and (c), the two sub�gures corre-
spond to 3D rectilinear structures and can be respectively obtained
using an orthographic camera. Now, suppose we put a tilted plane
between the two cubes in the 3D model of Figure 5(b), thereby
producing (d). Then, we project orthographically the 3D model of
Figure 5(c) onto the plane. Combining the resulting image with Fig-
ure 5(b), we now obtain Figure 5(a), the nine-cube arrangement.

In addition to using a rigid standard camera, this example demon-
strates that non-standard or unconventional projective transforma-
tion is needed to create the impossible �gure. While the ortho-
graphic camera is one form of rigid transformation, the above
tailor-made procedure (that is, the usage of a tilted plane and com-
bination of images) can be characterized by a more general, non-
rigid transformation.

To our knowledge, there is no camera model available to gener-
ate an impossible �gure by appropriately combining rigid and non-
rigid transformation.

3.2 Rigid and Non-rigid Transformation

The above analysis suggests that a reconciliation process is re-
quired of rigid and non-rigid transformation in producing an im-
possible �gure. Speci�cally, while a novel view should be speci-
�ed with respect to a rigid camera, it is necessary to incorporate
non-rigid transformation to connect multiple 3D structures so as to
produce global structural inconsistency. The non-rigid transforma-
tion, on the other hand, must be constrained so that straight line
connections are maintained at the novel view. We term such con-
strained non-rigid transformview-dependent modeling.

Figure 6 illustrates the differences between the possible and impos-
sible �gure in terms of modeling and rendering. Note that the for-
mer is a standard image formation process, while the latter (view-
dependent modeling) involves the projected 2D view with con-
straints on how the 3D model should be transformed to achieve
global structure inconsistency.

Enforcing appropriate constraints in non-rigid transformation is es-
sential in constructing impossible �gures. Figure 7 illustrates the
situations where either rigid (projective camera) transformation
or non-rigid transformation dominates the rendering process. Fig-
ure 7(a) shows the impossible staircase rendered at a novel view-

(a) (b)

Fig. 7. Two renderings respectively dominated by (a) rigid transformation
and (b) non-rigid transformation.

point that maximizes the size of the rigid parts. The 3D perception
is strong but the �gure is no longer impossible at the novel view. On
the other hand, Figure 7(b) shows a novel view generated by free-
form warping of the input �gure. Though preserving the topology,
the �gure is curved and does not plausibly resemble a novel view
derived from the same solid object that produces the original draw-
ing.

4. VIEW-DEPENDENT MODELING

Typically, we are only given a single view of an impossible �gure
as input. In this case, after segmentation, the user constructs a 3D
model for each possible part (Section 4.1). Then, the user marks
up 3D constraints in the form of points and lines on the 2D �gure.
A view-dependent model will be automatically optimized for ren-
dering the impossible �gure at the novel view (Section 4.2). Please
also refer to the real-time capture of the submitted video.

4.1 Segmentation and Modeling of 3D Possible Parts

We provide one simple segmentation strategy for each of the four
classes of impossible �gures. The goal is to produce a set of locally
possible parts that can be modeled using existing modeling tools
such as Maya and 3D Studio Max, or systems like [Ju et al. 2007;
Nealen et al. 2007; Wu et al. 2007]. In some demonstrated exam-
ples, a height �eld rather than a full 3D model was used. The tools
used in segmentation and modeling are not the focus of our work2.

Refer to Figure 1. The Penrose triangle is decomposed into two
possible polyhedral parts. The problematic plane is segmented from
the impossible staircase, making both the resulting polyhedron and
the plane feasible in 3D. To make the 3D model consistent with
the original view, for the Penrose triangle, we need curved surfaces
but �at normals, while for the impossible staircase, we need a �at
surface but curved normals.

Next, refer to Figure 8. The problematic corner of the impossible
cuboid (the inverted Y-shaped component) is disconnected from the
cuboid, making the two independent parts simple 3D models. This
corner will be treated as the foreground layer, and the rest of the
cuboid as background layer. For the impossible trident, the prob-
lematic bars are disconnected from the object body, making all seg-
mented parts individually possible in 3D.

2In fact, automatic detection of global impossibility and performing
“proper” segmentation remains elusive and limited to line drawings. Inter-
ested reader may refer to [Huffman 1971; Sugihara 1982; Heyden1996] for
more detail.
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trident parts cuboid parts background layer foreground layer

Fig. 8. Parts segmentation for impossible trident and impossible cuboid. See Figure 1 for Penrose triangle and impossible staircase.

One may notice that multiple segmentation strategies exist for a
given impossible �gure. Ideally, we seek one which contains at
least one region whose size is the maximum. This largest region
will be considered as the rigid part where rigid transformation will
be applied. The rationale behind for this strategy is that non-rigid
transformation of other parts, which may reduce the effect of 3D
solid perception, will thus be minimized as much as possible. The
tradeoff between rigid and non-rigid transformation was illustrated
in Figure 7. While more than one segmentations are feasible, our
ef�cient and automatic optimization system makes it easy for the
user to experiment with different strategies.

4.2 Automatic Optimization

Refer to Figure 1. The user selects one part as thereference part
(shown in red), and moves the rigid camera to the desired view-
point. The selected reference part is rendered as a rigid body in the
novel view and no non-rigid deformation is applied to it.

The other parts will undergo non-rigid transformation to optimize
a connected 3D model that produces the impossible �gure at the
desired novel viewpoint. Because a view-dependent model can pro-
vide only one view, to render a sequence of novel views, the com-
putation needs to be automatic and ef�cient.

In this section, we describe our ef�cient algorithm which connects
the 3D segmented parts so as to create the impossible �gure at the
novel view. We propose to implement such parts connection by ap-
plying Thin-Plate Spline (TPS) warping [Bookstein 1989] in the 3D
domain, subject to the criteria necessary for a 2D impossible �gure.
We choose TPS because it minimizes the Laplacian (or curvature)
of the warping energy, where a natural and smooth deformation can
be obtained. This smoothness property also allows graceful degra-
dation when the solution does not exist at certain viewpoints (more
detail in the discussion section). Besides, it is well known that the
deformation of TPS is smooth and stable with respect to changes in
input even without explicitly enforcing temporal coherence, so we
have less degree of freedom to consider. Moreover, the TPS model
is computationally ef�cient. Also, note that we warp the 3D parts
in the 3D space instead of warping in the projected 2D domain be-
cause, as we will see, operating in 3D allows us to readily handle
depth ordering.

In the following, we �rst provide a concise review of TPS, and
then de�ne the constraints to the TPS solution to achieve view-
dependent modeling.

4.2.1 Review of Thin-Plate Spline Warping.Let p = ( x;y;z)T and
f (p) : R3 7�! R3 be a mapping function, TPS warping in 3D is
de�ned by:

f (p) = a1 + xa2 + ya3 + za4 +
s

å
i

wiU(jjpi � pjj ) (1)

whereU(r) = �j rj in 3D [Wahba 1990],s is the number of in-
put sites which is equal to the number of matching point pairs3.
f a j 2 R3j j = 1;2;3;4g andf wi 2 R3ji = 1; � � � ;sg are the model
parameters to be estimated.

DenoteT = ( a1;a2;a3;a4;w1; � � � ;ws), which is a 3� (s+ 4) ma-
trix, to be the unknown parameters. Denotev = ( 1;pT ;U(jjp1 �
pjj ); � � � ;U(jjps � pjj ))T , which is a(s+ 4) column vector, to be
the known input. Eqn (1) can be written as the following matrix
form:

f (p) = Tv: (2)

Suppose that we have a discrete set of matching samplesf (pi ;mi)g
such thatpi 2 R3 �! mi 2 R3, wheref pig is the set of input sites
andf mig is the set of mapping targets, andvi = ( 1;pT

i ;U(jjp1 �
pi jj ); � � � ;U(jjps � pi jj ))T , we can estimate the model parameterT
by solving the following set of linear equations:

T
�

v1 � � � vs
�

=
�

m1 � � � ms
�

: (3)

Standard TPS considers the null space of the input sites [Bookstein
1989]; that is, Eqn (3) has to be solved subject to the following
condition:

T
�

O p0
1 � � � p0

s
� T = 0 (4)

whereO is a 4� 4 zero matrix andp0
i =

�
1
pi

�
. Given the matrix

forms shown in Eqns (3, 4), we are ready to derive the conditions
for our view-dependent modeling.

4.2.2 Connection Constraint.The resulting impossible �gure
must be connected in the rendered 2D view. Without loss of gener-
ality, suppose we have a set ofn matching point pairsf (pik;pig)ji =
1; � � � ;ng that corresponds to partsk andg. After TPS transforma-
tion, pik andpig have to be connected in 3D, which automatically
enforces 2D connection in the projected camera view.

3From a user's perspective, input sites are the user-clickedpoints, see Sec-
tion 5.2.
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(a) (b) (c) (d) (e) (f)

Fig. 9. (a)Impossible staircase. (b) Segmentation. (c) A novel view before optimization. (d) Anovel view optimized subject to the connection constraint,
where the yellow region deforms severely while the red regiondoes not. (e) A novel view optimized subject to both the connection and collinearity constraints.
Compared with (a), the two highlighted structures should be parallel. (f) A novel view optimized subject to the connection, collinearity, and parallel constraints.
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Fig. 10. Connection constraint. (a) case 1: the points in the blue region
approach to the points in the red region (the reference part). (b) case 2: the
corresponding points approach toward each other.

Let Tk andTg be the model parameters corresponding to the map-
ping functions for partsk and g. We have two cases to consider
as shown in Figure 10: 1) the connection between the reference
part and a deformable part, and 2) the connection between two de-
formable parts.

Case 1 Suppose that partg is the reference part, according to Eqn
(3), we have:

Tk
�

v1k � � � vnk
�

=
�

p1g � � � png
�

: (5)

Case 2 When no reference part is involved in the connection, we
cannot assume eitherpik or pig to be the mapping target, as in Case
1. This is because partsk andg will be deformed simultaneously.
Instead, we minimize the 3D distance between these two points:

Tk
�

v1k � � � vnk
�

� Tg
�

v1g � � � vng
�

= 0 : (6)

Similar to the derivation of Eqn (4), we need to consider the null
space of these input points:

TL
�

O p0
1L � � � p0

sL
� T = 0 (7)

whereL 2 f k;gg. Eqns (5, 6, 7) together constitute a set of linear
equations that enforces the basic connectivity in the optimized 3D
model. Figure 9(c) and (d) respectively show the results before and
after applying the connection constraint at a novel view.

4.2.3 Collinearity Constraint.Since each part may be deformed
by different mapping functions, the resulting deformation can be
biased to a certain part, resulting in uneven deformation and un-
wanted distorted appearance. Speci�cally, there is no guarantee
that after TPS warping the transformed points in the contact area
will have the same gradient. For example, in Figure 9(d), the corre-
sponding yellow region shown in Figure 9(b) undergoes large dis-
tortion while the red region undergoes small deformation.

Fig. 11. Parallel (line) constraint. The pair of red lines are corresponding.

To eliminate such artifact on the resulting 2D �gure, we need to
minimize the changes of the mapping functions at the matching
points. LetC = ( c1;c2;c3)T be the known 3� 4 camera projec-
tion matrix corresponding to the novel viewpoint. Then, for each
matching point pair(pik;pig), we have:

¶
¶x

cT
1

�
fk(pik) � fg(pig)

0

�
= 0

¶
¶y

cT
2

�
fk(pik) � fg(pig)

0

�
= 0 (8)

where fk(�) is the mapping function for partk. This equation ex-
plicitly minimizes the difference in the 2D gradient across the con-
tact area of the mapping functions on the screen space. Figure 9(e)
shows the result after applying the collinearity constraint, where
the deformation is not biased to any of the two non-reference parts
(colored yellow and blue in (b)).

4.2.4 Parallel Constraint. Since TPS warping is used, the under-
lying structure of the parts can be deformed severely. While this
is allowed in 3D, we need to constrain the projected 2D structures
to protect the shape from apparent distortion while achieving the
global structure inconsistency. To this end, we impose the parallel
constraint during TPS warping. For example, there is apparent dis-
tortion in the �gure shown in Figure 9(e) when compared with the
input: the circled structures in (e) should be parallel to each other,
similar to (a).

Recall that the selected reference part remains rigid throughout the
optimization; otherwise, enforcing parallelism will be elusive in
TPS warping when all parts are allowed to deform simultaneously.
To specify the parallel line constraint, the user marks up on the
2D view a pair of corresponding lines between the reference part
(rigid) and the deformable parts (non-rigid). An example is shown
in Figure 11. Along the pair of corresponding lines, similarity in 2D
gradients will be maximized. Mathematically, we set up the follow-
ing set of linear equations for achieving this goal:

cT
s

�
fk(la) � fk(lb)

1

�
= cT

s

�
l0a � l0b

1

�
(9)
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6.615 4.612 0.079 2.613 5.682 8.557 11.304

Fig. 12. Error measurement of sample novel views of theImpossible staircase. The errors shown here are calculated by applying Eqn (11), followed by
multiplying the result by 1000.

Fig. 13. Novel views of basic impossible �gures.

whereC = ( c1;c2;c3)T is the 3� 4 camera projection matrix and
s2 f 1;2g, la andlb are the two endpoints of a line in partk, l0a andl0b
are the two endpoints of the line in the reference region. Figure 9(f)
shows the �nal result after applying the parallel constraint.

4.2.5 Optimization. Mathematically, the set of linear equations
in Eqns (5, 6, 7, 8, 9) can be combined into the following form:

Ah = b (10)

where alinear least-squares solution exists.A is the matrix con-
taining the set of coef�cients for calculating the Gram matrix4 (i.e.,
ATA). For the dimensions,A is anN� 3(s+ 4) matrix whileh and
b are 3(s+ 4) column vectors, whereN is the number of constraint
equations formed using Eqns (5–9) ands is the number of input
sites.

Directly expanding the linear system expressed by Eqn (10), on the
other hand, is complicated and unnecessary: in our implementation,
we derive the Gauss-Seidel solutions directly from Eqns (5–9) and
combine them, which is a common strategy adopted for a simpler
and faster implementation requiring less memory storage. To make

4In general, given a set of vectorsG, the Gram matrixG that corresponds to
G is the matrix of all possible inner products ofG, i.e.,[G]i j = gT

i g j , where
gi andg j 2 G.

the solution more stable, all the 3D inputs are normalized in the
range of[� 1;+ 1] before the computation.

The Gauss-Seidel method provides two advantages over the direct
method: 1) it can be used to handle very large linear system when
the direct method is not practical (e.g., the Gram matrix can be a
10002 � 10002 matrix, which is very typical in imaging problems
such as Poisson matting [Sun et al. 2004]); and 2) it is capable of
constraining the solution space by imposing inequality, which is
useful for handling depth ordering:

As mentioned in Section 4.2, we may need to handle objects like
the impossible cuboid which has two depth layers. To restrict the
depth of a region within some range, for example, the center portion
of the inverted Y-shaped component has to be displayed in front of
the background layer, we can imposerange constraintson thez-
coordinate (e.g.,z > q whereq is a constant) in the solver when
solving Eqn (10). This can easily be done when a Gauss-Seidel
solver (with/without successive over-relaxation) is used. In doing
so, the center of the inverted Y-shaped component will always be
located in front of the background layer, while the three extreme
ends will be connected to the background layer.

4.2.6 Error Measurement.Different from standard TPS, our so-
lution is a least-squares solution with an over-constrained system.
As a result, for some viewpoints, the optimized solutionh to Eqn
(10) may not maintain the strict equality. This means that some of
the constraints may not be adequately satis�ed, which causes the
impossible �gure to collapse.

In practice, we can quantify the validity of the optimized result
by computing the root-mean-square (RMS) error between the opti-
mized 3D model and the constraints encoded in Eqn (10), that is,

r
jjAh � bjj2

N
(11)

whereN is number of rows inA, which is equal to the number
of constraint equations formed using Eqns (5–9). As mentioned, it
is not necessary to expand the matrixA. To calculate the numer-
ator of Eqn (11), we sum up the squared errors of each equation
formed using Eqns (5–9). The RMS errors for some sample novel
views of the impossible staircase are shown below the sub�gures
in Figure 12. At extreme viewpoints, we may not be able to main-
tain the straight-line structure in the result where the impossible
�gure ceases to exist (indicated by Eqn (11)). The viewpoints cor-
responding to large errors can therefore be pruned away and labeled
as invalid.
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Table II. Average modeling and rendering computing time
(in seconds).

modeling (FPS) rendering (FPS) total
cuboid 0.05 (18.60) 0.02 (44.61) 0.08 (13.13)
penrose 0.07 (15.01) 0.02 (41.08) 0.09 (10.99)
staircase 0.04 (24.76) 0.03 (39.39) 0.07 (15.20)
trident 0.14 (7.32) 0.01 (87.56) 0.15 (6.76)

All times are measured on a PC (Intel Core 2 Quad CPU Q9400 running at
2.66GHz), with 4GB RAM and Geforce 9800 graphics board. The correspond-
ing frame rates per second (FPS) are also shown.

4.3 Basic Impossible Figures

Figure 13 shows four novel views for the basic impossible �gures.
Table II tabulates the running time of our system on modeling and
rendering basic impossible �gures. Note again that the user marks
up constraints only once. The view-dependent models are then au-
tomatically generated at the novel views.

For the Penrose triangle, the collinearity constraint is instrumental
in preserving the structure linearity in the projected �gure, because
the parts segmentation cuts the two silhouette edges as shown in
Figure 1. We have demonstrated how the three constraints operate
using the impossible staircase as the running example.

For the impossible cuboid, the foreground layer is optimized with
the range constraint described in Section 4.2.5. Similar to the Pen-
rose triangle, the collinearity constraint is essential to the impossi-
ble trident in preserving the linear structure during TPS warping,
because its parts segmentation cuts across the three bars (Figure 8)
to produce the corresponding locally possible parts. In addition, the
parallel constraint preserves the parallelism of the three bars in the
resulting novel views.

4.4 Survey

Human's visual perception on impossible �gures can be subjective
and varies widely. We conducted a user survey to investigate the
quality of novel views of impossible �gures generated by our sys-
tem.

After an explanation of impossible �gures is given, the subjects
were �rst presented the original input of the four basic impossi-
ble �gures (Penrose triangle, impossible cuboid, impossible stair-
case, and impossible trident). The order of showing was random-
ized across different subjects to avoid bias. If they can articulate
why the input �gure is impossible in 3D, the experiment would
proceed to the next phase, where they were presented four novel
views of the respective four basic impossible �gures generated by
our system (some of them are shown Figure 13). Again, the order
of showing was randomized. The users were asked to label them
either as “impossible,” “possible,” or “not sure” within a time limit
of 20 seconds.

A total of 47 persons in different age groups and genders partici-
pated in our survey; 39 persons proceeded to the next phase. Fig-
ure 14 shows the result: we found that over 76% of users label our
�gures as “impossible.” A vote of “not sure” is cast when the user
cannot decide within the time limit. In general, we found that if the
user were able to articulate why the original �gure is impossible in
3D, they would be able label the novel views as impossible as well.

Among the four cases, it requires the least effort for participants to
label the impossible cuboid, which also scores the highest on being

“impossible” among all the �gures. On the other hand, a participant
requires on average the most time in labeling the Penrose triangle,
which also scores the lowest on being “impossible.” Some users
commented after the survey that the �gures are “fantastic” and “in-
teresting to view”; some are intrigued by the confused 3D percep-
tion (because they were actually seeing an image of a 3D model,
albeit a view-dependent one optimized by our system), while oth-
ers even proposed how to use overlay photography to create an im-
possible cuboid �gure.

5. DISCUSSION

5.1 Viewing Range of Impossible Figures

We have already demonstrated in Figure 12 that we can use our ef-
�cient system to stretch the rendering limit of the impossible stair-
case, by modeling and rendering the �gure at viewpoints far away
from the input view, which is quite dif�cult previously without a
tedious modeling step.

When the �gure starts to collapse, the degradation is observed to
be quite graceful. This is due to the use of thin-plate spline in our
constrained optimization. We have the same observation for other
examples as well. The RMS error gives a quantitative measure on
the distance between the result and the model, or in other words,
how bad the failure cases are.

Figure 15 plots the RMS errors (inversely proportional to
black/white (i.e., grey-scale) ) for all examples shown in this paper
at all possible viewpoints. We may use these error plots to restrict
the viewing positions of our system (e.g., by simple thresholding)
where the impossible �gure remains feasible without disconnection
or severe deformation.

While the extent of feasible camera viewpoints is partially depen-
dent on the choice of method (e.g., Savransky [1999] and Owada
and Fujiki [2008]), we believe that the nature and behavior of an
impossible �gure also play a signi�cant role. This explains why
Khoh and Kovesi [1999] produced severe distortion at some of the
views in the respective examples. In other words, Figure 15 also
re�ects the dif�culty of each example. Future work should expand
the extent of feasible viewpoints and thus the coverage of bright
region of these plots.

Similar to how 3D modeling artists build a scene to render im-
possible �gure, the optimized view-dependent model can in fact
be severely deformed, although at the user-speci�ed novel camera
view where the model is optimized, we observe an impossible �g-
ure with straight connections. Figure 16 shows the optimized 3D
models viewed at other camera viewpoints.

5.2 User Inputs Comparison

As our system only requires user-supplied point and line correspon-
dences on the input �gure, the form of user input in our system
is more user-friendly than Savransky [1999] and Owada and Fu-
jiki [2008] (see Table I).

Savransky [1999] requires the user to input the so-calledrelation,
which is actually the rotation and translation between each pair of
3D parts, therefore, the user needs to have some basic knowledge
on af�ne transformation and the proposed algorithm (e.g., the struc-
ture of thescene graph) in order to specify the relations. Thus, cre-
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Fig. 14. Survey results. For each basic impossible �gure, �ve views were presented: the original view (Figure 2) and four novel views derived fromthe
original view using our system. Users were asked to label eachimage as eitherimpossible(i), possible(p) or not sure(n).
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Fig. 15. The RMS error at all possible viewpoints.q andf denote respectively the altitude and azimuth (in degree) of the camera orientation (we assume that
the image center is the principal point). (q, f ) = (0� , 0� ) is where the input impossible �gure is observed. The color ateach pixel ranges from black to white
(i.e., grey-scale), which is inversely proportional to theRMS error. That is, smaller error is mapped to higher value (i.e. the color is closer to white), and vice
versa. Note that the RMS error is normalized to[0;255] by considering the maximum and minimum errors in each �gure, where all RMS errors are computed
using Eqn (11) at the respective camera viewpoint.

ating an impossible �gure using this system is a more dif�cult and
less intuitive task for general users.

On the other hand, Owada and Fujiki [2008] proposed an improved
interface that is more user-friendly than Savransky [1999]: by lim-
iting the target output to line-art, their interface allows the user to
experiment with an impossible scene by deleting 3D lines with
brush strokes, stitching 3D parts with mouse dragging, and con-
trolling depth and normal orientation of the surfaces with dialogs.
This system provides a large degree of freedom on editing. On the
downside, the user should understand the notion of constructing an
impossible �gure before s/he can effectively utilizes the provided
tools for creating novel impossible �gures.

Different from Owada and Fujiki [2008], our system avoids any
possibility that the user edits the input 3D geometry in a haphazard

manner. Rather, we showed that by only marking up 2D points and
lines correspondence, an impossible �gure at a novel viewpoint can
be readily produced. The user only needs to be concerned about
connectivity and parallelism which are easier to understand than
the principles underlying the construction of impossible �gures

Here, we show a complete rundown on how a user operates using
our user interface:

(1) The user examines the input 3D geometry by changing camera
viewpoint and observes that some 3D parts are disconnected in a
novel view (Figure 17(a)).

(2) The user resets back to the original viewpoint and speci�es
points correspondence to connect the 3D part(s) (Figure 17(b)).
Note that a single mouse click is suf�cient for the system to pro-
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Fig. 16. View-dependent models. While they look distorted when viewed at othercamera viewpoints, the generated 2D impossible �gures consist of straight
lines when such models are viewed at the speci�ed viewpoint.

(a) (b) (c)

Pair 2

Pair 1

Pair 3

(d) (e) (f)

Fig. 17. A rundown for demonstrating typical user interaction: (a) User changes camera viewpoint and observes discontinuity. (b) User speci�es points
correspondence to connect 3D parts (indicated by the red circles). (c) User observes that parallelism is not preserved.(d) User speci�es lines correspondence
to enforce parallelism (indicated by the blue arrows). (e)–(f) Novel views are generated.

Table III. Number of user-supplied points/lines
correspondence for the examples shown in this paper.

Example # of point pairs # of line pairs
Penrose Triangle 6 5

Impossible Staircase 10 1
Impossible Cuboid 9 3
Impossible Trident 15 6

Construction 17 3
Waterfall 45 2

Ascending and Descending 5 3
Double Penrose Triangles 30 6

duce a pair of points, because the projected 3D parts are con-
nected to each other at this viewpoint.

(3) The user changes the viewpoint again and �nds that parallelism
is not preserved (Figure 17(c)).

(4) The user resets to the original viewpoint and speci�es line cor-
respondence to enforce parallelism (Figure 17(d)).

(5) Now, the user can enjoy the novel views generated by changing
camera viewpoints (Figure 17(e) – (f)).

This typical rundown demonstrates that our system provides instant
feedback for the user to evaluate the results, and that editing the
constraints is an easy task. No knowledge is needed on the notion
how impossible �gure is constructed. Table III tabulates the num-
ber of points/lines of correspondence that was marked up for the
examples shown in this paper.

Finally, we believe that our approach is not at odds with the two
aforementioned approaches (Savransky [1999] and Owada and Fu-
jiki [2008]). By integrating relevant techniques a more versatile
system might be achieved.

6. RESULTS

Existing approaches for constructing 3D models for rendering im-
possible �gures are expensive and provide limited views of the �g-
ure. Using our automatic modeling and rendering system, for the
�rst time we are able to produce complex illumination effects on
different classes of impossible �gures in animation.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 106, Publication date: August 2010.



12 � Wu et al.

Fig. 18. Top: directional lighting. Bottom: point source lighting with variable viewpoint changes.

Fig. 19. Dressing the impossible cuboid with an isotropic BRDF.

Fig. 20. Viewing the impossible �gure under a rotating distant environment.

6.1 Shading an Impossible Figure

Normals are a core component in shading. However, the surfaces
optimized by our system are deformed. If we shade the normals ob-
tained directly from the deformed surface produced after the TPS-
optimization, we will perceive an unnatural surface. To tackle this
problem, the normals used for shading are sampled from the origi-
nal 3D model. These normals are rotated by the same amount that
is applied to the rigid reference part. In doing so, the shaded sur-
face will still look natural even when the model has been deformed
severely. Figure 18 shows a series of renderings depicting a direc-
tional (and point) light source being moved from left to right across
the Penrose triangle and impossible cuboid.

6.2 BRDF

Using the optimized model, isotropic BRDF data (Matusik et
al. [2003]) can be arranged on impossible �gures. More speci�-
cally, we �rst compute the light and view vectors for each pixel

fragment on the impossible �gure, and then compute the angles be-
tween: 1) the light vector and pixel's normal; 2) the view vector
and pixel's normal; and 3) the projected light and view vectors (af-
ter projection onto the tangent plane of the pixel). Thus, we can
look up the re�ectance value in the isotropic BRDF data and shade
each pixel accordingly. See Figure 19 for a rendering example with
the specular blue phenolic BRDF covering the impossible cuboid.
In the image sequence shown, we move a search light around the
impossible cuboid.

6.3 Environment Lighting

In addition, we can also put an impossible �gure and re-render it
under a distant environment. Speci�cally, we employ the impor-
tance sampling approach [Agarwal et al. 2003] by approximating
the illumination of a distant environment using a limited number
of directional lights. Ef�cient sampling algorithms have been pro-
posed, and in our implementation, around 200 lights are extracted.
Then, for each sample (directional light), we render the impossible
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Segmentation Markup

Novel View 1 Novel View 2

Fig. 21. Ascending and Descending.

Segmentation Markup

Novel View 1 Novel View 2

Fig. 22. Double Penrose Triangles.

Segmentation Markup Novel View

Fig. 23. Construction.

Segmentation Markup Novel View

Fig. 24. Waterfall.

�gure by local illumination, and produce the �nal result by sum-

ming up the rendering results from multiple passes of such local
illumination. Figure 20 presents the composed rendering results of
the Penrose triangle under the GRACE environment. Here, we grad-
ually change the viewpoint on the Penrose triangle while simulta-
neously rotating the distant environment.

6.4 Rendering Artworks of Impossible Figures

Refer to Figures 21–25 of the paper. The input �gures were shown
in Figure 4. High resolution images are available in the supplemen-
tal material. The live captures shown in the accompanying video
depict the modeling and rendering results of the following artworks
of impossible �gures. The video also demonstrates the ease of spec-
ifying the constraints (connection and collinearity constraints are
shown as green points while parallel constraints are shown as pink
lines in the paper and the video).

6.4.1 Ascending and Descending.Like the Penrose triangle, this
�gure belongs to the class ofdepth contradiction. Refer to Fig-
ure 21 which shows the parts segmentation, constraint markups,
and novel views. The red part is chosen as the reference, which un-
dergoes rigid transform under normal camera projection (which can
be perspective or orthographic). The connection constraints main-
tain the connectivity of the two parts at the novel view. The paral-
lel constraints reduce the distortion effect on the blue part, which
undergoes structure deformation for connecting to the transformed
red part.

6.4.2 Double Penrose Triangles.Using our system we can com-
pose and render new impossible �gures by blending existing im-
possible �gure parts, where the view-dependent geometry will be
optimized in exactly the same fashion, that is, by connecting the
input parts in 3D to produce an impossible �gure at the chosen
view. In Figure 22, we juxtaposed two Penrose triangles. In the op-
timization process, the red part is the reference part. Constraints
are speci�ed to bind the two triangles together while all straight
and parallel connections are maintained among the pertinent parts.
This example is dif�cult because of the severe structural con�ict
within and between the two Penrose triangles.

6.4.3 Construction.Similar to the Penrose triangle,Construction
was constructed using two locally possible parts, and each part was
modeled as a height-�eld. Figure 23 shows the constraint markup,
parts segmentation, and novel views. The lower part (the red part)
is chosen as the reference part which undergoes rigid body trans-
formation. Non-rigid transformation is applied to the upper part in
the constrained-TPS optimization. The collinearity constraints pro-
tect the overall shape from severe distortion, while the parallel con-
straints enforce the left and right sides of both parts to be straight
and parallel in the rendered novel views. Note that the �gure only
starts to collapse at novel views far from the input view. At these
viewpoints, the rate of collapse is accelerated by the use height-
�eld, which is not a full 3D representation.

6.4.4 Waterfall. Similar to Ascending and Descending, this �g-
ure also belongs to the class of depth contradiction. This is one
of the most dif�cult examples where the two “penrose-triangle”-
structures are shackled together with multiple pillars. Figure 24
shows the parts segmentation, constraints, and novel views. The red
part is chosen as the reference. The connection constraints are used
to enforce the necessary connectivity to hold the �gure as one fully
connected component at the novel view. The parallel constraints are
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Fig. 25. Novel views ofBelvedere. Using the optimized view-dependent model, we can relightBelvedereunder different lighting con�gurations.

Fig. 26. Modeling and animating 3D scenes with possible and impossible objects. See the submission video for the complete animation.

used to preserve the overall shape of the top roof. Note that while
the novel views still preserve all straight connections, the waterfall
model looks skewed at the novel view due to the severe structural
inconsistency inherent in this impossible �gure.

6.4.5 Belvedere.This impossible �gure belongs to the class of
depth interposition. The height-�elds of the possible parts, namely,
the upper level and the lower level, are available. Connection con-
straints are used to enforce the pillars to be connected to both
the upper and lower levels. Similar toConstruction, parallel and
collinearity constraints are speci�ed to maintain the overall shape
of the entire architecture. Figure 25 shows some novel views gen-
erated. Notice that we inpainted the background layer to further
enhance the rendering effect of this masterpiece by M. C. Escher.

6.4.6 Possible and Impossible.Finally, we blend our impossible
object (that is, the optimized view-dependent model) into a geo-

metrically possible 3D scene to create special effects. Figure 26
(top and middle row) shows several snapshots of the animation se-
quence of such scenes. The novel viewpoints are speci�ed using a
rigid camera, where standard perspective transformation is applied
to the possible objects and also to the rigid part of view-dependent
model. Constrained-TPS optimization is applied to the non-rigid
parts of the model as described in the paper. Using previous 3D
approaches it is dif�cult to produce these animations, because con-
structing per-frame 3D model was done by hand or else required
expensive computation.

Note in particular the bottom row of Figure 26 where we show the
zoom-in views of a possible object (a ball) bouncing on an impos-
sible object (Ascending and Descending). This involves collision
detection and response handling. The problem is non-trivial when
impossible objects are involved: a possible and an impossible ob-
ject cannot interact directly in the same 3D space because the latter
is highly deformed. While this is a future work to pursue, here we
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adopt a simple approach to produce this visual effect, by rendering
each frame in two layers: the bouncing ball and the remainder of
the scene.

7. CONCLUSION

Impossible �gures have long been used in applications such as
computer games, non-photorealistic rendering, and image synthe-
sis. This paper investigates a practical approach for modeling and
rendering impossible �gures. Our approach is motivated by how
a 3D modeling artist builds view-dependent models for rendering
impossible �gures. Modeling and rendering of impossible �gures
are coupled. This led to ourview-dependent modelingapproach
which connects possible 3D parts for rendering novel views of im-
possible �gure. Our mathematical formulation shows that a linear
least-squares solution exists for view-dependent modeling, thus al-
lowing us to implement an ef�cient system to model and render
novel views of impossible �gures at interactive speed. This for-
mulation also provides a numerical mean for pruning away invalid
viewpoints where the impossible �gure ceases to exist. Once opti-
mized, the 3D model can be used to create compelling visual effects
previously restricted to possible 3D graphics models.
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