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Deep Speaker Representation Learning in Speaker Verification

Abstract

Speaker verification (SV) is the process of verifying whether an utterance belongs to the
claimed speaker, based on some reference utterances.

Learning effective and discriminative speaker embeddings is a central theme in the
speaker verification task. In this thesis, we focus on the speaker embedding learning
issues in text-independent SV tasks, and present three methods to learn better speaker
embeddings.

The first one is the self-attentive speaker embedding learning method. Usually, speaker
embeddings are extracted from a speaker-classification neural network that averages the
hidden vectors over all the spoken frames of a speaker; the hidden vectors produced
from all the frames are assumed to be equally important. We relax this assumption and
compute the speaker embedding as a weighted average of a speaker’s frame-level hidden
vectors, and their weights are automatically determined by a self-attention mechanism.
The effect of multiple attention heads is also investigated to capture different aspects of
a speaker’s input speech.

The second method generalizes the multi-head attention in the Bayesian attention
framework, where the standard deterministic multi-head attention can be viewed as a
special case. In the Bayesian attention framework, parameters of each attention head
share a common distribution, and the update of these parameters is related, instead of
being independent. The Bayesian attention framework can help alleviate the attention
redundancy problem. It also provides a theoretical understanding of the benefits of ap-
plying multi-head attention. Based on the Bayesian attention framework, we propose a
Bayesian self-attentive speaker embedding learning algorithm.

The third method introduces channel attention to the embedding learning framework,
and analyzes the channel attention from the perspective of frequency analysis. Frequency-
domain pooling methods are then proposed to enhance the channel attention and produce
better speaker embeddings.

Systematic evaluation of the proposed embedding learning methods is performed on
different evaluation sets. Significant and consistent improvements over state-of-the-art
systems are achieved on all the evaluation datasets.
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Chapter 1

Introduction

Human voices contain personal traits of a human being given his/her unique organs
used for pronunciation and speaking manner, such as larynx size, vocal tract shape and
speaking accent. Therefore, identification and authentication technologies based on voice
biometrics have been developed. Speaker verification (SV) is the task of accepting or
rejecting the identity claim of a speaker based on some given speech. It is one of the fun-
damental tasks of speech processing and has been widely used in real-world applications.
For example, devices authentication based on voice, such as smart phones, smart homes
and vehicles. It can also serve to help solve telecommunication fraud cases by identifying
scammers.

Figure 1.1: Illustration of speaker verification tasks.

The standard speaker verification process consists of three stages: training, enrollment
and evaluation. In the training stage, a large amount of speech data from many speakers
are used to learn a speaker embedding extractor and build a scoring function. In the
enrollment stage, a few utterances of a speaker are provided to estimate his/her speaker
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model. Finally, in the evaluation stage, a new unknown utterance is scored against the
speaker model estimated in the enrollment stage. The unknown utterance is considered to
be produced by the claimed speaker if the evaluation score is above a pre-defined threshold,
otherwise the claim is rejected. Figure 1.1 illustrates a general speaker verification task.

Speaker verification can be categorized into two broad categories according to the
speech content in the enrollment and evaluation stages: text-dependent and text-independent.
In text-dependent SV tasks, the speech content employed during the enrollment and eval-
uation stages is limited to a fixed scope. While in text-independent SV tasks, speech
content is entirely unconstrained.

1.1 Speaker Verification

Speaker verification systems can be divided into two architectures based on the working
criteria: end-to-end and stage-wise. A typical stage-wise system consists of a front-end
module for speaker representation learning and a back-end module for speaker represen-
tation comparison. The front-end and back-end modules are trained separately. On the
other hand, an end-to-end system takes a set of speech utterances as input, and directly
produces the similarity scores of utterance pairs.

Figure 1.2: Workflow of speaker verification systems.

Figure 1.2 depicts the workflow of speaker verification systems.

• Pre-processing: It includes voice activity detection, speech parameterization, etc.
The voice activity detection removes the non-speech portions from the input speech
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signal. Speech parameterization converts speech signals to sets of feature vectors
through signal processing algorithms. Filterbanks features and Mel-frequency Cep-
stral Coefficients (MFCC) are some widely used features.

• Speaker Modeling: It takes feature vectors as input, and produces representa-
tions for every speaker. These representations are also called “speaker embeddings”.
Statistical methods like Gaussian Mixture Model (GMM) have been predominant
over a long period of time. With the development of deep learning, a wide range
of deep neural networks are developed for speaker modeling recently, such as time-
delay neural networks (TDNN), long short-term memory networks (LSTM), residual
networks (ResNet), etc.

• Stage-wise systems: In the stage-wise systems in Figure 1.2, the black parts are
shared at all stages, and the red and blue parts are two subflows that are deployed at
different stages. At the training stage, speaker embeddings are learned in a speaker
classification task. After that, the classification layers are removed, and the learned
speaker embeddings are used to train an embedding matching model. During the
enrollment and evaluation stages, speaker embeddings only go through the blue part.
The embedding matching module computes the similarity of embedding pairs, and
decision is made according to the similarity score.

• End-to-end systems: End-to-end systems contain only black and blue parts in
Figure 1.2. The input to the system is a set of speech utterances, and the speaker
modeling module and embedding matching module are optimized together through-
out the training stage.

1.2 Speaker Modeling

Speaker Modeling is an essential module in all the speaker verification systems. The goal
of speaker modeling is to learn compact and effective embeddings for speakers given the
speech data.

Figure 1.3 illustrated the speaker modeling module in typical speaker verification
systems. It can be divided into two stages with the pooling step as the boundary: frame-
level modeling before the pooling step and utterance-level modeling after the pooling
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Figure 1.3: The speaker modeling module in typical speaker verification systems.

step. The inputs are a set of feature vectors computed from the speech signals at time
{1, 2, · · · , T}. The frame-level modeling part deals with these feature vectors sequen-
tially, and learns high-level representations {h1, · · · , hT } for every input feature vector
{x1, · · · , xT }. Then the pooling step gathers all the frame-level representations and pro-
duce a compact utterance-level embedding. After that, utterance-level modeling deals
with utterance-level representations and produces the final speaker embeddings.

Pooling is an indispensable step in speaker modeling. Since the duration of utterances
varies a lot, the length of frame-level representations can be different for every input
utterance. The pooling step converts frame-level representations with various lengths to
a fixed-length utterance-level representation for subsequent processing.

For a long time in the past, the pooling step simply averages over the frame-level
features to produce utterance-level representations. It is simple and effective, but it
also discards a large amount of information. Later, statistical pooling [1] is proposed to
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utilize second-order statistics. Compared to average pooling which only reserves the first-
order statistic, the statistical pooling computes mean as well as standard deviation from
the frame-level features. Recent research [2] also investigated more high-order statistics
information to enhance the pooling step.

While people are digging into high-order statistics of frame-level features, an under-
lying assumption when producing the utterance-level features keeps unchanged: all the
frame-level features are equally important. In practice, a frame carries signal within a
very short period of time, and different frames carry different acoustic information. Some
of them may contain silence or environmental noises which can be useless when deter-
mining the identity of speakers, and some may contain distinctive phonetic information
which can help speaker verification. Therefore, we propose to consider the importance of
frame-level features in the pooling step. We first introduce the self-attention mechanism
into the pooling step, and frame-level features are assigned with different weights when
producing utterance-level representations.

By introducing the self-attention mechanism into the pooling step, we are able to weigh
different frame-level features, and emphasize the frames that contain more distinctive
information from a certain perspective. Apparently, speakers can be discriminated in
many different aspects, especially when the speech utterances are long and contain a
large amount of information. Thus, a natural extension is to explore different weighting
schemes. It can be easily achieved by using multiple attention heads in the self-attention
mechanism. However, we find that the system performance does not get improved when
introducing more attention heads. The reason is that during the training process, there
is no constraint or guidance on the weights produced by different attention heads, so they
can be similar to each other and resulting in information redundancy. To avoid this issue,
we investigate various techniques to improve the multi-head mechanism. We generalize
the self-attention mechanism in the Bayesian framework, and propose an algorithm to
encourage different attention heads to produce different weighting schemes.

Besides introducing the weighting mechanism in the pooling step, we further investi-
gate frame-level modeling. Frame-level modeling aims to learn high-level representations
for input features, and convolutional neural networks (CNNs) are the most commonly used
networks. One shortcoming of CNN is its ability to model long-term interdependencies,
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as the convolution operators are designed to learn only local relations. To capture long-
term interdependencies, various attention modules are incorporated into the intermediate
layers of CNNs. We investigate channel attention in frame-level modeling, and analyze
the channel attention from the perspective of frequency analysis. Based on the frequency
analysis, we propose frequency-domain pooling approaches in channel attention.

1.3 Thesis Summary and Outline

In this thesis, we focus on speaker embedding learning in text-independent SV tasks and
present three learning methods.

The first one is the self-attentive speaker embedding learning method. Usually, speaker
embeddings are extracted from a speaker-classification network that averages the hidden
vectors over the frames of a speaker; the hidden vectors produced from all speech frames
are assumed to be equally important. We relax this assumption and compute the speaker
embedding as a weighted average of a speaker’s frame-level hidden vectors, and their
weights are automatically determined by a structured self-attention mechanism. The
effect of multiple attention heads is also investigated to capture different aspects of a
speaker’s input speech.

The second method generalizes the multi-head attention in the Bayesian attention
framework, where the standard deterministic multi-head attention can be viewed as a
special case. In the Bayesian attention framework, parameters of each attention head
share a common distribution, and the update of these parameters is related, instead
of being independent as in deterministic multi-head attention. The Bayesian attention
framework can help alleviate the attention redundancy problem, and it also provides a
theoretical understanding of the benefits of applying multi-head attention.

The third method introduces channel attention into the speaker embedding learning
framework. We analyze channel attention from the perspective of frequency analysis, and
propose frequency-domain learning methods to enhance the channel attention.

The organization of this dissertation is as follows.
In Chapter 2, the current SV systems and technologies are reviewed. After an intro-

duction to general SV system architectures, different modules are discussed.
In Chapter 3, we describe the baseline text-independent speaker verification system,
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the performance of which is used as a benchmark throughout this thesis. All aspects of the
system like pre-processing, speaker modeling, embedding matching, evaluation datasets
and evaluation metrics will be discussed.

Chapter 4 presents the self-attentive speaker embedding learning method. We intro-
duce the self-attention mechanism to the speaker modeling module. The effect of the
self-attention mechanism and multiple attention heads will be studied and evaluated.

In Chapter 5 we generalize the self-attentive speaker embedding learning in the Bayesian
framework. An algorithm to learn repulsive attention based on Stein variational gradi-
ent descent in the Bayesian framework is proposed. The effect of Bayesian self-attentive
speaker embeddings will be evaluated in various benchmark corpora.

In chapter 6 we introduce channel attention to the speaker embedding learning frame-
work. Analysis on the channel attention module is performed. We first verify that the
global average pooling in the channel attention module is a special case of frequency-
domain pooling where only the lowest frequency component is utilized. Then the global
average pooling is generalized to the frequency-domain pooling. Two method are pro-
posed to utilize multiple frequency components and enhance the representation ability of
channel attention.

In Chapter 7, we summarize our embedding learning methods and our contributions.
We also discuss some future work in the area of speaker embedding learning.
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Chapter 2

Review of Speaker Verification
Systems

Figure 2.1: A roadmap of speaker verification systems.

In this chapter, we introduce a variety of approaches used in speaker verification
systems, especially milestones in the development of speaker verification.

GMM-UBM-MAP, short for Gaussian Mixture Model-Universal Background Model
with maximum a posteriori, has dominated speaker recognition area for decades. It trains
a strong UBM using massive speech data first, and then derives a certain speaker’s model
from the UBM with MAP adaptation given the speaker’s enrollment speech. However,
the GMM-UBM-MAP suffers from the data sparsity issue. To solve this problem, the
concept of “supervector”, or “speaker embedding”, is proposed. Since then representing
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a speaker by a fixed-length vector receives more and more interest. We divide all the SV
systems that represent speakers by fixed-length vector representations into stage-wise and
end-to-end architectures according to their working criteria.

The literature review is conducted on each part based on the roadmap in Figure 2.1.

2.1 GMM-UBM-MAP

Given a piece of speech Y and a hypothesized speaker S, the aim of speaker verification is
to determine if Y is produced by S. Here we always assume that Y contains speech from
only a single speaker. The task is basically a hypothesis test between two hypotheses:

• H0: Y is produced by the hypothesized speaker S

• H1: Y is not produced by the hypothesized speaker S

A likelihood ratio test is computed as follows to decide between the two hypotheses:

p(Y|H0)
p(Y|H1)






> θ, accept H0,

< θ, accept H1,
(2.1)

here p(Y|H0) is the likelihood of hypothesis H0 given the speech Y, and θ is the decision
threshold.

After pre-processing and feature extraction on speech Y, a sequence of feature vectors
can be obtained: X = {x1, · · · , xT }, where xt is a feature vector at time t ∈ [1, 2, · · · , T ].
We use Ωhyp to denote a model satisfying H0, and Ωhyp to denote a model satisfying the
alternative hypothesis H1. The likelihood ratio statistic then becomes p(X|H0)

p(X|H1) . In practice,
the logarithm version is often used instead:

Λ(X) = log p(X|Ωhyp)− log p(X|Ωhyp). (2.2)

The model for H0 is well defined, it can be estimated using the speech data from
hypothezied speaker S, while Ωhyp is hard to define since it represents the entire space of
possible alternatives to the hypothezied speaker. There are two strategies to model this
alternative hypothesis. The first one is to select a limited set of speaker models except
the hypothesis speaker to represent the space of the alternative hypothesis. This set of
speaker models is denoted as background speaker models. Given N background speaker
models {Ω1, · · · , ΩN}, the alternative hypothesis model can be formulated as
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p(X|Ωhyp) = f(p(X|Ω1), · · · , p(X|ΩN)), (2.3)

where f(·) is an aggregation function such as average or maximum. The selection of
the background speakers has been studied in many works [3–6]. One major limitation
of this approach is that it requires the speaker-specific background speaker sets, and has
difficulty in tasks containing a large number of hypothesized speakers.

The second approach is to collect speech from a large number of speakers and train a
single model, which is denoted as the universal background model (UBM) [7]. The UBM
is used to cover the alternative hypothesis space. The major advantage of this approach
is that the UBM is trained only once and can be used for all speakers in the evaluation
stage. Based on the UBM concept, people also have investigated to use more than one
background models tailored to certain sets of speakers [8, 9]. The use of a single UBM
has been the predominant approach in the statistical SV models.

Besides the definition of p(X|Ωhyp) and p(X|Ωhyp), another important step is to select
a proper likelihood function p(X|Ω). The choice is highly dependent on the application
types and features. For text-independent speaker verification, GMM is the most successful
likelihood function.

For a F -dimensional feature vector xt at time t , the mixture density is defined in the
following way:

p(xt|Ω) =
C∑

c=1
wcpc(xt). (2.4)

The density is a weighted linear combination of C unimodal Gaussian densities pc(xt),
and every Gaussian density is parameterized by a F × 1 mean vector µc and a F × F

covariance matrix Σc. The weights wc have to satisfy the constraint of summing up to
1: ∑C

c=1 wc = 1. In practice, to improve computation efficiency, only diagonal covariance
matrices are used. Compared to full covariance GMMs, diagonal-matrix GMMs also
achieve better system performance in practice. The parameters of the density model are
denoted as Ω = (wc, µc, Σc), where c = (1, · · · , C).

We assume that the feature vectors at each time step are independent. The log-
likelihood of a model Ω for a sequence of feature vectors X = {x1, · · · , xT } can be com-
puted as:

log p(X|Ω) = 1
T

T∑

t=1
log p(xt|Ω), (2.5)
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where log p(xt|Ω) is computed according to Equation 2.4.
The iterative expectation-maximization (EM) algorithm [10] is adopted to estimate the

parameters given a collection of training vectors. The EM algorithm iteratively updates
the model parameters, with the objective that increases the likelihood of the estimated
model given the observed data, i.e., p(X|Ωk+1) ≥ p(X|Ωk) for iteration k and k + 1.

In the training stage, a UBM, which is a high-order Gaussian Mixture Model, is trained
on utterances from a large number of speakers. It learns a distribution of features which is
not dependent on the speakers, and is used in the alternative hypothesis when computing
the likelihood ratio.

In the enrollment stage, the system builds one Gaussian Mixture Model for every
speaker. Since the speech data from a speaker in the enrollment stage is limited, a
common strategy is to adapt the well-trained speaker-independent UBM to the speaker
model using Maximum a Posteriori (MAP) adaptation.

We run the EM algorithm on the well-trained UBM. In this step, we keep the covari-
ance fixed, and only adapt the mean, because the amount of speaker data is limited. In
practice, people have also tried with updating the covariance, but no further improvements
are obtained. The update on mean is performed via maximum a posteriori adaptation :

µMAP
c = αcµc + (1− αc)µUBM

c , (2.6)

where:

• µc represents the mean of the c-th mixture component

• αc = nc
nc+τc

is a coefficient for the adaptation on mean

• nc is the amount of data used for adaptation

• τc is a fixed relevance factor

Finally for a testing utterance, the log likelihood ratio can be computed using Equation
2.2, where Ωhyp is the adapted speaker model of the claimed speaker, and Ωhyp is the UBM
model.

A major limitation of GMM-UBM-MAP is the data sparsity issue in the enrollment
stage. Since only very limited speech data is available for every speaker during the en-
rollment stage, only a limited part of the parameters in UBM are well adapted. Besides,
the system is sensitive to the speaker and channel variability.
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To solve these problems, researchers tend to find methods to connect all the Gaussian
components in the UBM and apply some “global transform”. The concept of “super-
vector” is then proposed. Basically the super-vector of an input utterance is the concate-
nation of means of mixture components in the adapted model {µMAP

1 , · · · , µMAP
C }. By

the introduction of the super-vector, every input utterance can be represented by a fixed-
length vector, and models for classifying these super-vectors and computing similarity
between super-vectors can be developed separately [11, 12].

Since then, learning fixed-length vector representations for speakers becomes main-
stream in speaker verification. The representation is also called “speaker embeddings”.
All the work in the following sections are developed upon the speaker embedding learning
concept.

2.2 Stage-wise Systems

Stage-wise systems consist of a front-end model and a back-end model. The front-end
model takes speech utterances as input and produces speaker embeddings, while the
back-end model takes speaker embeddings as input and computes the similarity of pairs
of embeddings. The front-end model and the back-end model are trained separately.

2.2.1 Front-end

The front-end model converts speech utterances into fixed-dimensional representation vec-
tors, or, speaker embeddings. In the scope of statistical modeling, the “i-vector” method
has been predominant for many years. With the development of deep learning, deep neu-
ral networks are adopted in speaker embedding learning. “d-vector” and “x-vector” are
the millstones of deep learning-based approaches in SV. Besides, more and more speaker
embedding learning models are proposed based on different neural architectures.

I-Vector

The GMM-UBM based systems performance can be affected by the intra-speaker vari-
ations and channel variations of utterances. [13] proposed the i-vectors based on joint
factor analysis [14] to address this issue.
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Given an utterance, the speaker- and channel-dependent GMM supervector can be
written as:

M = m + T w, (2.7)

where m is a super-vector obtained from the UBM, which is speaker-independent and
channel-independent; T is a rectangular matrix containing all the speaker variabilities
and channel variabilities, and w is a random vector which follows a standard normal
distribution. The components of the vector w are total factors, and w is named as
identity vectors or i-vectors for short.

Given a sequence of feature vectors X = {x1, · · · , xT } and an UBM Ω consists of C

mixture components defined in a certain feature space of dimension F , the zero order,
first order and centralized first-order Baum-Welch statistics for the given speech feature
X can be obtained by:

Nc =
T∑

t=1
P (c|xt, Ω)

Fc =
T∑

t=1
P (c|xt, Ω)xt

F̃c =
T∑

t=1
P (c|xt, Ω)(xt −mc),

(2.8)

where c is the Gaussian mixture index and P (c|xt, Ω) represents the probability of c-
th mixture component which produces the vector xt. The i-vector for the given speech
feature X can be computed as follows:

w = (I + T T Σ−1N(X)T )−1T T Σ−1F̃ (X), (2.9)

where N(X) is a diagonal matrix with dimension CF × CF . F̃ (X) is a super-vector
with dimension CF × 1, and it is computed by concatenating all first-order Baum-Welch
statistics F̃c for a given input X. Σ is a diagonal covariance matrix with dimension
CF × CF ; it is estimated during the factor analysis and models the additional potential
variability that is not covered by the matrix T .

d-Vector

The i-vector-based systems have been the dominant solution for speaker verification since
they were proposed. In these systems, every utterance is represented by a compact feature
vector, i.e., i-vector. Statistical methods such as joint factor analysis are employed to
extract i-vectors.
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With the great success of deep learning in various research areas, deep neural networks
(DNNs) are also investigated in SV. [15] first proposed a DNN architecture to learn a
compact representation of speakers.

Figure 2.2: Diagram of the d-vector front-end framework

The architecture of the d-vector system is illustrated in Figure 2.2. Before feeding into
the network, the input frames are stacked with its neighboring frames within a context
window. The output size of the network equals to the total number of speakers in the
training dataset. The overall model is trained under a speaker classification task which
aims to classify speakers in the training dataset.

After the network has been trained, the accumulated activations output from the last
hidden layer are used as the speaker embedding. That is, for a given utterance, the
network computes the output activations of the last hidden layer for every frame, and
then accumulates these activations to form the speaker embedding, the d-vector. The
reasons to use the last hidden layer outputs include: 1. the DNN model size can be
reduced by removing the output layer after training; 2. it allows using a large number of
training speakers while keeping the DNN size at enrollment and evaluation time stable;
3. the output from the last hidden layer generalizes better to unseen speakers.
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x-Vector

x-vector framework [16] is a milestone in speaker verification because it greatly improves
the performance on various publicly available corpora. It introduces a time-delay neural
network architecture to learn a high-level representation of input speech. Long-term
speaker characteristics are captured by a statistical pooling method which aggregates
over the input speech.

Figure 2.3: Diagram of the x-vector front-end model

The architecture of the x-vector front-end model is illustrated in Figure 2.3. The early
layers of the network have a time-delay architecture, and they work at the frame level.
At a certain time step t, frames are spliced together at time {t− 2, t− 1, t, t + 1, t + 2} in
the input layer. The following layers splice together the output from the previous layer
at time {t− 2, t, t + 2} and {t− 3, t, t + 3}, respectively. The layers before the statistics
pooling layer has a total temporal context of 17 in this case. After that, the statistics
pooling layer aggregates the output from the last frame-level layer over the whole input
utterance, and computes their statistics, which are mean and standard deviation in the
x-vector model. The concatenation of these statistics is then forwarded to upper layers.

The whole framework is trained to classify training speakers. After training, the
output layer is removed, and output from two segment-level layers can be used as speaker
embeddings, namely x-vectors. “X” means the place to extract speaker embeddings is not
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fixed. In Figure 2.3, both “embedding a” and “embedding b” can be used as the speaker
embedding.

Compared to d-vectors, x-vectors framework provides a larger temporal context utiliz-
ing the time-delay neural network (TDNN). Besides, the statistics pooling layer computes
the second-order statistic in addition to the mean, which enriches the information con-
tained in the segment-level features.

There are a lot of extension works based on the x-vector framework. For example,
[17] proposed an extended TDNN architecture, namely E-TDNN, which provides a wider
temporal context than TDNN, and it also inserts dense-connected layers between the
time-delay layers to enhance the representation ability of the network. [18] developed a
factorized TDNN (F-TDNN) that aimed at reducing the size of the model. The idea is
to factorize the weight matrix of original TDNN layers into the product of two low-rank
matrices, and the first low-rank matrix is constraint to be semi-orthogonal.

Other Deep neural network based approaches

Besides d-vector and x-vector frameworks, there are many other front-end models based on
different deep neural networks such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), etc.

Residual network (ResNet) [19] is a popular architecture in speaker embedding learn-
ing. The trunk structure can be a 1-dimensional CNN with convolutions in the frequency
domain, or a 2-dimension CNN with convolutions in both the time and frequency domains.
Various standard ResNet architectures can be directly used as the front-end model to ex-
tract speaker embeddings [20–22]. Some work employed ResNet and its variants as the
basic architecture [23–26]. For example, [23] modified the ResNet-34 to a smaller network
by reducing the channel sizes in the residual blocks. [26] combined the ResNet with long
short-term memory (LSTM) into a unified architecture, where LSTM was used to learn
long temporal context. [27] introduced the squeeze-and-excitation block into the residual
blocks, and they were combined with the TDNN architecture.

Besides ResNets, other CNN architectures have also been investigated for speaker
embedding learning, such as VGGNet [28, 29], Inception Net [30], etc.
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2.2.2 Back-end

The back-end model is used in the evaluation stage. It takes speaker embeddings as input
and compute the similarity of pairs of embeddings.

Probabilistic Linear Discriminant Analysis

Probabilistic Linear Discriminant Analysis (PLDA) is a probabilistic version of Linear
Discriminant Analysis (LDA).

LDA is a dimension reduction technique which is performed in a supervised man-
ner. It projects the data to a lower-dimensional subspace such that in the projected
subspace, data belonging to different classes are more spread out (maximizing between-
class covariance) as compared to the spread within each class (minimizing the within-class
covariance).

LDA works well in classification when the test data only come from the seen classes.
However, in the speaker verification tasks, we want to find whether two utterances belong
to the same speaker even though the model has not seen any utterances of that speaker
before. If we use LDA, it will project two utterances into a subspace learned from the
training data and hence will not be optimal. Probabilistic LDA is a way to address this
problem.

Assume for a speaker, there are totally R utterances produced by him/her. The
speaker embedding extracted from each utterance can be denoted as

ηr = m + Φβ + Γαr + σr, (2.10)

where r is the utterance index. The expression consists of two parts:

• the speaker-specific part m + Φβ: it models the inter-speaker variability and is
utterance-independent;

• the channel-specific part Γαr + σr: it represents the channel variability, which
depends on particular utterances and models the intra-speaker variability.

In detail, m represents an offset estimated globally; the columns of Φ and the columns
of Γ comprise the basis for the speaker-specific subspace and channel-specific subspace,
respectively ; β an αr are random vectors that follow a standard normal distribution; and
σr is a residual term, it is supposed to follow the Gaussian distribution N (0, Σ).
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In practice, we mainly focus on distinguishing speaker embeddings from different
speakers, and the channel term may be removed. A simplified version of PLDA can
be written as

ηr = m + Φβ + σr. (2.11)

The parameters {m, Φ, Σ} of the PLDA model are estimated from the training dataset
with an EM algorithm [31].

Given two vectors x1 ∈ Rn and x2 ∈ Rn, the verification task can be formulated as a
hypothesis test between the following two hypothesis:

• Hs: x1 and x2 belong to the same speaker

• Hd: x1 and x2 belong to different speakers

The verification score based on likelihood ratio test log p(x1,x2|Hs)
p(x1,x2|Hd) can be computed as:

PLDA_score = log N
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(2.12)

Euclidean Distance

Given two vectors x1 ∈ Rn and x2 ∈ Rn, the Euclidean distance ||x1 − x2||2 is defined by
[32]:

||x1 − x2||2 =
√√√√

n∑

i=1
(xi

1 − xi
2)2. (2.13)

Cosine Similarity

Cosine similarity [33] is defined between two non-zero vectors. It computes the cosine
result of the angle between two vector. Given two vectors x1 ∈ Rn and x2 ∈ Rn, the
cosine similarity can be calculated as:

cos(x1, x2) = x1 · x2
||x1||× ||x2||

=
∑n

i=1 xi
1xi

2√∑n
i=1(xi

1)2
√∑n

i=1(xi
2)2

(2.14)
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2.3 End-to-end Systems

End-to-end SV systems take a set of utterances as input, and produce similarity scores of
input pairs directly. Compared to stage-wise systems, end-to-end systems complete the
front-end task and back-end task within a single architecture, and the whole system is
optimized together.

Some representative end-to-end speaker verification systems include Deep speaker,
SincNet, RawNet, etc.

Deep speaker

Deep speaker is a neural speaker embedding system proposed in [34]. The input to
the system is usually a collection of utterances, and two neural networks are deployed to
produce frame-level features: deep residual CNN and stacked gated recurrent unit (GRU).
Then a pooling layer is used to produce utterance-level speaker representations followed
by a length normalization layer. The system is trained with the triplet loss [35], which
maximizes the distance between utterance pairs that are produced by different speakers,
while minimizing the distance between embedding utterance pairs that are produced by
the same speaker.

Triplet loss takes in three samples as one input tuple, including an anchor, a positive
sample and a negative sample. An anchor is an utterance from a certain speaker; positive
samples and negative samples are the utterances produced by the same speaker and
a different speaker, respectively. During training, model parameters are updated in a
way that the similarity between the negative sample and the anchor is smaller than the
similarity between the positive sample and the anchor . It can be formulated as:

sap
i − α > san

i , (2.15)

where sap
i represents the similarity between the positive sample p and the anchor a in

triplet i; san
i represents the similarity between the the negative sample n and the anchor

a in triplet i; α is a pre-defined similarity margin. The final loss function for N triplets
can be formulated as:

L =
N∑

i=0
[san

i − sap
i + α]+, (2.16)

where the operator [·]+ = max(·, 0)
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The speaker embeddings produced by deep speaker can be directly used for various
upstream applications, such as verification, identification, etc.

SincNet

In most neural-network-based SV systems, inputs to the networks are hand-crafted fea-
tures obtained from specific signal processing algorithms. SincNet proposed in [36] is a
CNN-based architecture that directly takes raw waveform as network input. It learns
low-level representations from raw waveforms, and provides the network the possibility
to capture narrow-band speaker characteristics, e.g., formants and pitch.

The first convolutional layer in SincNet consists of a set of parameterized sinc func-
tions, which convolve with the waveform and perform as band-pass filters. Different from
traditional CNNs that learn all the parameters for filters, the first layer of SincNet only
learns the low and high cutoff frequencies from the training data. It offers considerable
flexibility, while forcing the network to focus on a limited set of parameters that have
great impact on the filters in terms of bandwidth and shape.

The major advantage of SincNet is that it greatly reduces the number of parameters in
the early stage of the network, and the learned filters are more interpretable and human-
readable compared to other approaches.

RawNet

RawNet [37] is another model that directly models raw waveforms. The model comprises
residual blocks, a GRU layer and fully connected layers. The residual blocks in the
framework are used to process inputs and produce frame-level features. After that, a
GRU is employed to gather all the frame-level features, and produce a utterance-level
embedding. The model is trained with the combination of three objective functions:
center loss [38], speaker basis loss [39] and categorical cross-entropy loss.

Center loss LC is to minimize the intra-class covariance:

LC = 1
2

N∑

i=1
||xi − cyi||22, (2.17)

where xi represents the embedding of i-th input utterance, cyi represents the center of
class yi, and N is the batch size.

The weight vector connecting the last hidden layer of the network and a node of
the final output layer can be viewed as the basis vector for a speaker. Based on this
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observation, the speaker basis loss is proposed to maximize the inter-speaker covariance.
The speaker basis loss can be formulated as:

LBS =
M∑

i=1

M∑

j=1,j "=i

cos(wi, wj), (2.18)

where M is the number of speakers in the training dataset, and wi is the basis vector of
the i-th speaker. The loss function for overall training is:

L = LCE + LC + LBS, (2.19)

where LCE refers to cross-entropy loss.

2.4 Score Normalization

The last step in all speaker verification systems is the decision making. A decision thresh-
old has to be decided and used to compare the likelihood computed from the unknown
speech and the claimed speaker model. The claimed speaker will be accepted if the like-
lihood is higher than the decision threshold, otherwise rejected.

2.4.1 Aims and Basics of Score Normalization

The decision threshold is difficult to decide since the scores vary a lot between trials. The
variability of scores comes from three major sources:

• the enrollment speech can vary between speakers because of environmental condi-
tions, speech contents, different speech duration, etc;

• the mismatch between enrollment and test speech because of intra-speaker variabil-
ity;

• the quality of the test speech also have influence on the scores.

The aim of score normalization is to deal with score variability, making the decision
threshold easier to decide and stable across speakers.

The basic idea of score normalization is to normalize the impostor score distributions.
Given a piece of speech X and a speaker mode λ, we use Lλ(X) to denote the similarity
score of X and λ. The score normalization is applied in the following way:

L̃λ(X) = Lλ(X)− µλ
σλ

, (2.20)
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where µλ and σλ are the normalization parameters, and they are estimated from the
data.

The reason to choose normalizing the impostor score distribution instead of the target
score distribution is that computing impostor distributions using pseudo-impostors is easy,
but obtaining real target score distributions is difficult. Besides, impostor distribution
can cover the most part of the score distribution variance.

2.4.2 Score Normalization Techniques

Here we summarize some commonly used score normalization techniques.

World-model and cohort-based normalizations

It is proposed in [40], the normalization takes the form as follows:

L̃λ(X) = Lλ(X)
Lλ(X) . (2.21)

Lλ is the likelihood computed from a cohort of speaker models. The cohort of speakers can
be a set of speakers close to speaker λ. Later this cohort of impostor models is replaced by
a unique model trained on the same sets of data. This unique model is named as world-
model, and the aim of introducing the world-model is mainly to reduce the computation
costs.

All the score normalization methods discussed below are applied on top of this world-
model normalization method.

Znorm

Znorm represents the zero normalization, and it is derived from [41]. The aim of Znorm
is to scale and shift the distribution of scores between a target speaker λ and a set of
impostors to the standard normal distribution. Speaker-dependent mean and variance are
estimated. One advantage of Znorm is that we can estimate the normalization parameters
offline.

Hnorm

Hnorm represents handset normalizaiton; it is a variant of Znorm proposed in [42]. It
is especially developed for telephone speech. For telephone speech, the target speaker
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models usually have different responses depending on the handset type used during speech
recording. Therefore, all the speaker models are tested against handset-dependent speech
produced by impostors, and the parameters of Hnorm are estimated during this process.
In the evaluation time, parameters used for score normalization are decided by the type
of handset used in the incoming speech.

Tnorm

Tnorm is short for test-normalization, and is proposed in [43]. It performs impostor score
normalization based on the mean and variance estimations. During the evaluation stage,
the testing speech is evaluated against the claimed speaker model and a set of impostor
models, and the normalization parameters are then estimated. Compared to Znorm which
estimates speaker-dependent mean and variance, Tnorm only depends on the test data.
The same test data is used in evaluation as well we normalization parameter estimation.

HTnorm

HTnorm is a variant of Tnorm based on the handset-type information, similar to the idea
of Hnorm. The normalization parameters are handset-dependent, and they are estimated
by comparing every incoming speech to handset-dependent impostor models. In the
evaluation stage, parameters used for score normalization are decided by the type of
handset related to the claimed speaker.

Dnorm

Dnorm is proposed in [44]. It generates the pseudo-impostor data using a world model,
and a Monte-Carlo-based method is used to generate a collection of targets as well as
impostor data. The normalization score is computed by:

L̃λ(X) = Lλ(X)
KL2(λ,λ) , (2.22)

where KL2(λ,λ) is the symmetrized Kullback-Leibler distance between the target model
and the world model. The estimation of the KL distance is performed with the data
generated by Monte-Carlo method. The advantage of Dnorm is that it does not require
any data for normalization parameter estimation.
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Chapter 3

The Baseline Speaker Verification
System

Throughout this dissertation, our proposed methods are evaluated on a text-independent
speaker verification task under noisy and unconstrained conditions. The task is chosen
for two reasons: Firstly, speaker verification under noisy and unconstrained conditions is
a challenging but meaningful task; methods developed for the task can be applied in real-
life applications. Secondly, the datasets used in the task contain millions of utterances
for over thousands of speakers, and all the data are publicly available.

In this chapter, we describe the task in detail, including various components of the
baseline system, as well as its benchmark performance.

3.1 The Speaker Verification Task

The speaker verification task is text-independent and all utterances are spoken in English.
The training corpora, evaluation datasets and evaluation metrics are the same for all the
systems developed in this thesis.

3.1.1 Training Corpora

The training dataset used in our system is VoxCeleb2 [21]. VoxCeleb2 consists of over 1
million utterances for over 6000 celebrities extracted from YouTube videos. It is gender-
balanced, and the speakers have a large variability in terms of accents, ages, professions
and ethnicities. Audios in the dataset are obtained in a variety of challenging acous-
tic environments, including celebrity interviews on red carpets, speeches given to large
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Table 3.1: Dataset statistics for VoxCeleb2

# of speakers 6112
# videos 150,480
# of hours 2442
# of utterances 1,128,246
Avg # of videos per speaker 25
Avg # of utterances per speaker 185
Avg length of utterances (s) 7.8

audiences in outdoor stadiums and indoor studios, excerpts from professionally shot mul-
timedia, and even videos shot by hand-held devices. All speech data are corrupted with
different kinds of noises, for example, laughter, background chatter, overlapping speech.
Besides, the quality of recording equipment varies from utterance to utterance, and chan-
nel noise is also included in the recodings. Figure 3.1 shows length, gender and nationality
distributions of VoxCeleb2, and Table 3.1 gives the general statistics of the dataset.

Figure 3.1: Length, gender and nationality distribution of speakers in VoxCeleb2.

To increase the diversity as well as the amount of the data for training, augmentation
techniques are applied. Our strategy employs reverberation and additive noises.

Reverberation is the process of convolving room impulse responses (RIR) with audio.
The RIRs simulated under different room conditions dataset [45] are used.

For additive noises, the MUSAN dataset [46] is used. MUSAN contains over 900 types
of noises, 42 hours of music with different genres and 60 hours of speech collected in twelve
languages.

3.1.2 Evaluation Datasets

The systems are evaluated on two public datasets: VoxCeleb1 and SITW.
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Table 3.2: Dataset statistics for VoxCeleb1

# of speakers 1251
# videos 690
# of hours 352
# of utterances 153,516
Avg # of videos per speaker 18
Avg # of utterances per speaker 116
Avg length of utterances (s) 8.2

VoxCeleb1

VoxCeleb1[28] is collected using the same pipeline as VoxCeleb2. It has a smaller size
compared to VoxCeleb2, with over 100,000 utterances from 1251 celebrities. The dataset
is roughly gender-balanced with 55% male speakers, and speech segments are corrupted
with various real-world noises. Table 3.2 gives the general statistics of the VoxCeleb1.

When used as an evaluation dataset, VoxCeleb1 can be further split into three different
subsets:

• VoxCeleb1-O: The original Voxceleb1 dataset is partitioned into a development set
and an evaluation set. VoxCeleb1-O refers to the original evaluation set.

• VoxCeleb1-E: It refers to the entire VoxCeleb1 dataset, including the development
set and evaluation set.

• VoxCeleb1-H: It refers to a difficult partition of VoxCeleb1 dataset, which consists
of data pairs with the same nationality and gender.

SITW

The Speakers in the Wild (SITW) is a database containing speech samples from YouTube
and is well hand-annotated. It contains both single- and multi-speaker audios collected
under unconstrained conditions. In our tasks, we concentrate on the single-speaker tests,
where each utterance contains speech from only one speaker.

The database consists of recordings of 299 speakers, with an average of eight dif-
ferent sessions per person. The SITW data have a large variance in terms of speaking
conditions, such as outdoor interviews, monologues, and conversational dialogues with
dominant back-channels. Speeches for each speaker is acquired both from high-quality
interviews and from raw audio captured on camcorders. Noises, reverberation, vocal effort
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and compression artifacts in the corpus are natural characteristics of the original audio.
The duration of speech is unconstrained. Table 3.3 gives the general statistics of the
SITW.

Table 3.3: Dataset statistics for SITW

# of speakers 299
# of utterances 4841
Length of utterances for enrollment(s) 6 - 180
Length of utterances for testing (s) 6 - 180

3.1.3 Evaluation Metrics

Two kinds of errors may occur in speaker verification systems: false rejection and false
acceptance. A false rejection error represents the situation when an identity claim from
the target speaker is rejected. A false acceptance error represents the situation when
an identity claim from an impostor is accepted. Both types of errors highly depend on
the decision threshold. If we set the threshold relatively low, the system will accept all
identity claims resulting in a lot of false acceptances. In contrast, if the threshold is set
relatively high, the systems tends to reject most incoming claims and therefore make a
lot of false rejections.

The couple (false acceptance error rate, false rejection error rate) is defined as the
operation point of a speaker verification system. In other words, the determination of the
threshold is a trade-off between these two kinds of errors.

Two evaluation metrics are used to evaluate our systems.

Equal Error Rate

Let Pfa denotes the false acceptance error rate and Pfr denotes the false rejection error
rate. Equal error rate (EER) represents the operating point where Pfa = Pfr. The EER is
a measurement of speaker verification systems in terms of their ability to separate target
speakers from impostors.
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Detection Cost Function

Detection cost function (DCF) can be used for comparing speaker verification systems.
It takes both error rates into consideration, and weights their importance by their pre-
defined costs and the prior target probability:

Cdet = Cfr × Pfr × Ptarget + Cfa × Pfa × (1− Ptarget), (3.1)

where Ptarget is the prior probability of the target speaker; Cfr and Cfa are costs given
to false rejection and false acceptance, respectively. Given an SV system, Cdet can be
calculated at all operation points, and the minimum among them is denoted as minCdet.

We use minCdet as a metric to evaluate systems. We assume a prior target probability,
Ptarget, of 0.01, and equal costs between false acceptance and false rejection, that is, Cfa

and Cfa are set to be 1.

3.2 Baseline System

This section describes our baseline system based on the ResNet framework.

3.2.1 Pre-processing

The raw input utterances are pre-processed through speech parameterization that converts
signals to feature vectors, voice activity detection (VAD) which removes the non-speech
parts in the utterances, and data augmentation which increases the amount and diversity
of the data.

Speech Parameterization

Speech parameterization is the process that transforms a speech signal into a sequence of
acoustic feature vectors. This step aims at producing a more suitable and compressed rep-
resentation for subsequent learning. In our systems, filterbank-based spectral parameters
are used as input to subsequent models. Figure 3.2 shows the filterbank-based spectral
parameterization process, and the output are filterbank features.

The speech signal is first pre-emphasized. Since the high frequencies of the spectrum
are often reduced in the speech production process, here a filter is applied to enhance
these high frequencies in the spectrum.
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Figure 3.2: The process of filterbank-based parameterization process.

After pre-emphasis, the signals are split into short-time frames. The spectral char-
acteristics of a signal are quasi-stationary over a short period of time, so the frequency
analysis over short-time frames can obtain a good spectral representation of the signal
in each frame. A common frame size in speech processing is 25ms with a 10ms stride
between consecutive frames.

After framing, a window function is applied to frames. The windowing step is mainly
to counteract the assumption made by the fast Fourier transform that the input is infinite
long. We use a Hamming window, which is a common choice in speech processing.

Once the speech signal is windowed, the fast Fourier transform (FFT) is performed
on each frame to get its power spectrum.

The final step is to apply a bank of triangular filters on a Mel-scale to the power
spectrum. The basic idea of Mel-scale is having the spectral analysis more discriminative
at lower frequencies while less discriminative at higher frequencies. It mimics the human
perception of sound. At the end, we obtain a mel-spectrum for each frame of speech.

Voice Activity Detection (VAD)

Voice activity detection, also known as speech activity detection, is a process that detects
the presence or absence of human speech. In speaker verification, silence or non-speech
parts are removed after VAD since they do not contain any vocal or speaker information.

We use the energy-based VAD, which is the most commonly used method in speaker
verification. We compute the energy for each frame in the spectrogram obtained in the
speech parameterization step. Then a frame is considered as “non-speech” if the total
energy within a window centered on the frame is smaller than a pre-defined threshold.
All the non-speech frames are removed before further processing.
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Data Augmentation

To increase the data diversity and improve the robustness of the model, data augmentation
is often employed. In our systems, the following augmentation strategies are used:

• babble: Several speakers are randomly sampled from the MUSAN corpus They are
then aggregated and added to the original speech signal at 13-20dB SNR.

• music: A music file is picked from MUSAN and added to the original signal at
5-15dB SNR. In order to match the duration, the music file may be repeated or
trimmed.

• moise: Noises files randomly sampled from MUSAN are added at one second in-
tervals in the entire recording at 0-15dB SNR.

• reverberation: The training sample is artificially reverberated via convolution
with simulated RIRs.

• SoX1 : Each training recording is augmented with the tempo up and tempo down
methods provided in SoX.

• FFmpeg library2 : Each training sample is augmented by alternating Opus codec
or AAC codec provided in the FFmpeg library.

• SpecAugment [47]: It randomly masks 0 to 5 frames in the time domain and 0 to
10 channels in the frequency domain in the spectrogram of a speech segment.

The first six augmentation methods will generate new augmented samples from a given
training sample, while the last method directly modifies the training sample. Totally six
extra training sets are generated with these augmentation techniques.

3.2.2 Speaker Modeling

Model Architecture

The speaker modeling is based on the ResNet architecture consisting of 34 layers. The
model architecture is depicted in Fig 3.3, and the detailed configuration of the network is
depicted in Table 3.4.

30



Figure 3.3: Overview of the network structure in the baseline system.

The layers before statistical pooling are constructed with residual blocks; these layers
work at the frame level. The statistics pooling layer gather all the frame-level output
vectors of the network, and computes their statistics: mean and standard deviation in
this case. This pooling mechanism enables the network to produce a fixed-length repre-
sentation from variable-length speech segments. The mean and standard deviation are
concatenated together and forwarded to two additional hidden layers, and finally an ad-
ditive margin softmax output layer. All neural units are rectified linear units (ReLUs).
The network is trained to classify speakers in the training set.

Loss Function

Additive margin softmax [48] is used as the loss function.
The standard softmax loss is defined as follows:

LS = 1
N

N∑

i=1
− log ewT

yi
xi+byi

∑c
j=1 ewT

i xi+bj
, (3.2)

where xi is the input to the last fully connected layer of sample i; yi ∈ {1, · · · , c} is the
class label of sample i; c represents the total number of classes; N represents the total

1http://sox.sourceforge.net/
2http://www.ffmpeg.org/
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Table 3.4: Architecture of the speaker discriminative ResNet. T is the utterance length.

Layer Kernel size Stride Output shape
Conv1 3× 3×32 1×1 T× 64× 32
Res1 3× 3× 32 1×1 T× 64× 32
Res2 3× 3× 64 2× 2 T

2× 32× 64
Res3 3× 3× 128 2× 2 T

4× 16× 128
Res4 3× 3× 256 2× 2 T

8× 8× 256
Flatten - - T

8× 2048
Pooling - - 4096 or 4096*heads
Linear 512 - 512
Linear 256 - 256

AM-Softmax - - num. of speakers

number of samples; wj and bj are the weight vector and bias of the last fully connected
layer related to class j.

In Equation 3.2, wT x can be written as ‖w‖‖x‖cos(θ), where θ is the angle between
w and x. Therefore Equation 3.2 can be rewritten as:

LS = 1
N

N∑

i=1
− log e‖wyi ‖‖xi‖cos(θyi,i)+byi

∑c
j=1 e‖wi‖‖xi‖cos(θj,i)+bj

, (3.3)

By normalizing weight w and input x, setting the bias b to zero and using a tighter
function ψ(θ) < cos(θ) to replace the cosine function, the softmax formulation can be
modified to a margin softmax:

LMS = 1
N

N∑

i=1
− log eψ(θyi,i)

eψ(θyi,i) + ∑c
j=1,i"=yi

ecos(θj,i)
. (3.4)

Additive margin softmax adopts the following additive margin function ψ(θ):

ψ(θ) = s · (cosθ −m), (3.5)

where m represents the margin. The additive margin softmax is finally formulated as:

LAMS = 1
N

N∑

i=1
− log es·(cosθyi,i−m)

es·(cosθyi,i−m) + ∑c
j=1,i"=yi

es·(cosθj,i)
. (3.6)

In our systems the margin is set to 0.2.

Training Setup

The input features are 80-dimensional filterbank features computed from a 25 ms window
with a 10 ms frame shift; the energy is also included. The features are mean-normalized

32



over a sliding window of up to 2 seconds. VAD and data augmentation are applied before
feeding the input samples to the network.

The system is trained with the stochastic gradient descent (SGD) optimizer. The
initial learning rate is set to 0.01, and it is reduced when the accuracy on the development
set stops improving. Weight decay is applied to all parameters in the model: the decay
rate is 2e-4 for the parameters of additive margin softmax and 2e-5 for all the other
weights. The mini-batch size is 512, and the training runs for 8 epochs.

3.2.3 Embedding Matching

After training, speaker embeddings are extracted from the last fully connected layer. The
system uses cosine similarity back-end for embedding matching, and similarity scores are
normalized using adaptive s-norm [49].

3.3 Baseline Performance

The baseline system performance is summarized in Table 3.5 and Table 3.6, they are used
as a benchmark throughout the thesis.

Table 3.5: Baseline system performance on VoxCeleb1, VoxCeleb1-E and VoxCeleb1-H.

System VoxCeleb1 VoxCeleb1-E VoxCeleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

baseline 1.12 0.151 1.34 0.143 2.38 0.222

Table 3.6: Baseline system performance on SITW evaluation set.

System EER minDCF
baseline 1.73 0.166
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Chapter 4

Self-attentive Speaker Embedding
Learning

In this chapter, we present our work on learning self-attentive speaker embeddings. Usu-
ally, speaker embeddings are extracted from a speaker-classification neural network that
averages the hidden features over the frames of a speaker; the hidden features produced
from all the frames are assumed to be equally important. We relax this assumption
considering that different speech frames carry different acoustic information. For ex-
ample, the frames with only silences or background noises are less useful while frames
containing discriminative phonetic information contributes more when determining the
speaker identities. We introduce the self-attentive mechanism into the pooling step of
speaker verification systems. Speaker embeddings are computed as a weighted average of
a speaker’s frame-level hidden features, and their weights are automatically determined
by the self-attention mechanism.

We conjecture that the weighting scheme can emphasize frames that carry more dis-
tinctive information from a certain perspective. Since speakers can be discriminated in
many different aspects, we further investigate the self-attentive mechanism with multiple
attention heads. Each attention head is supposed to capture different aspects of the input
speech and thus enhance speaker embedding learning. However, we find that with more
attention heads, different attention heads tends to produce similar weighting patterns.
To alleviate this attention redundancy issue, we investigate various techniques including
the introduction of a penalty term, and splitting the input to each attention head.
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4.1 Pooling in Speaker Verification

In all neural network-based SV systems, for an input utterance, the network first learns
a sequence of frame-level feature vectors of variable lengths, depending on the input
utterance length. Then an utterance-level speaker embedding of a fixed dimension from
these frame-level features is obtained through a pooling layer. The pooling step aggregates
information over the whole utterance. How to learn a better utterance-level speaker
embedding through the pooling step is an essential issue in speaker verification.

In early developed systems, simple averaging was used to aggregate the frame-level
features over the whole utterance [15, 50]. Suppose a speech segment of duration T

produces a sequence of T frame-level features H = {h1, h2, · · · , hT }, where ht is the
hidden representation of input frame xt captured by the hidden layer before the pooling
layer. The mean pooling can be formulated as:

e = 1
T

T∑

i=1
ht (4.1)

Later in [1, 16], statistical pooling was proposed. It computes the mean as well as
standard deviation from the frame-level features. The statistics vectors are then con-
catenated together to form the utterance-level representation. Statistical pooling obtains
significant improvement by utilizing second-order information. It can be formulated as:

e = 1
T

T∑

i=1
ht,

d =
√

1
T

ht & ht − e& e,

(4.2)

where & represents Hadamard product. The mean vector e and standard deviation vector
d are concatenated to form the statistical pooling result.

In all the prior work, both average pooling and statistical pooling assigns equal weight
to each frame-level feature. That is, the features produced from all frames are considered
equally important.

4.2 Attention Mechanism

Attention mechanism has been a notable topic in deep representation learning. It is
inspired by human biological system that focuses on only relevant information which is
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helpful in solving a task at hand. In the early stage, the attention mechanism is usually
embedded in recurrent networks to deal with sequential data. It has been proved to be
effective in various deep learning tasks such as computer vision [51, 52], natural language
processing [53, 54], and speech recognition [55, 56].

Self-attention is an attention mechanism that can capture long-range dependencies
within an input sample itself. It does not require extra information and learns high-
level representation by aggregating features at different positions in the input sample.
The self-attention mechanism is also widely used in a variety of tasks including machine
translation, reading comprehension and embedding learning [57–60]. In this thesis, we
focus on the use of the self-attention mechanism in speaker verification.

There are two common ways to compute self-attention, namely, additive self-attention
and dot-product self-attention.

4.2.1 Additive self-attention

The additive self-attention proposed in [59] used a one-layer feed-forward neural network
to compute the alignment weights. Given an input X ∈ Rn×d, where n is the input
sequence length and d is the input feature dimension, the alignment weights vector a and
output representation vector z are calculated as:

a = softmax(vT tanh(WXT )),

z = aX,
(4.3)

where W ∈ Rda×d and v ∈ Rda×1 are trainable attention parameters, and da is a hyper-
parameter. The output z is a sequence representation vector that is the sum of the input
features weighted by the attention alignment a.

4.2.2 Dot-product self-attention

Dot-product self-attention was proposed in [57]. An input feature X is first mapped to
three different representations: query Q, key K and value V, then the attention alignment
a is calculated from the dot product of the query and key:

Q = XWQ, K = XWK , V = XWV ,

A = Softmax(QKT

√
dk

),
(4.4)
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and the output representation z is calculated as:

Z = AV, (4.5)

where WQ, WK , WV are trainable attention parameters and dk is the dimension of query
and key.

4.3 Self-attentive Speaker Embeddings

4.3.1 Introduction of self-attention to pooling layers

Inspired by the structured self-attention mechanism proposed in [59] for sentence em-
bedding, we replace the statistical pooling layer with a self-attention layer as shown in
Fig.4.1. The new pooling module derives weighted means and standard deviations from
the outputs of the previous hidden layer over each speech segment. The weights are
learned with the self-attention mechanism to maximize speaker classification performance
for the whole system.

We have compared dot-product and additive self-attention and got better results with
the latter; so additive self-attention is chosen in this work.

Figure 4.1: Structure of the self-attention layer.

Suppose a speech segment of duration T produces a sequence of T feature vectors
H = {h1, h2, · · · , hT } ∈ Rdh×T , where ht is the hidden representation of input frame xt

captured by the hidden layer before the pooling layer. Let the dimension of ht be dh.
Thus, the size of H is dh × T . The self-attention mechanism takes the whole hidden

37



representation H as input, and outputs an annotation matrix A as follows:

A = softmax(g(HT W1)W2), (4.6)

where W1 is a matrix of size dh×da; W2 is a matrix of size da×dr; da is a hyperparameter
which is usually smaller than dh; dr represents the number of attention heads; g(·) is some
activation function and ReLU is chosen here. The softmax(·) is performed column-wise.

Each column vector of A, denoted by Ar, is an annotation vector computed from the
r-th attention head, and it represents the weights for different ht. Finally the weighted
mean Er ∈ Rdn obtained from the r-th attention head is computed as:

Er = HAr, (4.7)

and the weighted standard deviation of the r-th attention head Dr ∈ Rdn is defined as:

Dr =
√

H2Ar − (Er)2, (4.8)

where (·)2 represents the element-wise square operation. The concatenation of weighted
mean Er and weighted standard deviation Dr forms the pooling output of the r-th atten-
tion head.

4.3.2 Multi-head self-attentive speaker embeddings

When the number of attention heads dr = 1, the pooling output is expected to reflect an
aspect of discriminative speaker characteristics in the given speech segment. Apparently,
speakers can be discriminated in many different aspects, especially when a speech segment
is long. Here we construct multiple attention heads to learn different aspects from a
speaker’s speech by increasing dr.

To encourage diversity in the annotation vectors so that each attention head may ex-
tract dissimilar information from the same speech segment, a penalty term P is introduced
when dr > 1;

P = ‖(AT A− I)‖2
F , (4.9)

where I is the identity matrix and ‖·‖F represents the Frobenius norm of a matrix.
It uses dot product of A and its transpose as the measure of redundancy. Every

column annotation vector Ai in A can be seen as a discrete probability distribution since
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the softmax function makes all the elements in an annotation vector sum up to 1. Any
non-diagonal element aij(i (= j) in the AT A matrix corresponds to a summation over the
dot product of two distributions:

aij =
T∑

k=1
Ak

i Ak
j (4.10)

where Ak
i is k-th element in the annotation vector Ai. In the extreme case when the

two probability distributions Ai and Aj are orthogonal, the corresponding aij will be 0;
otherwise, it will have a positive value. The penalty term forces the non-diagonal elements
to 0, and punishes redundancy between different annotation vectors. In the meantime, the
diagonal elements are forced to be 1 so as to encourage each annotation vector Ai to focus
on as few number of frames as possible. The penalty term is similar to L2 regularization
and is minimized together with the original cost of the whole system.

4.3.3 Fixed-sized multi-head self-attentive speaker embeddings

When we have multiple attention heads, the output from every single head is concatenated
together to form the final output embedding. Therefore, the dimension of the final output
increases linearly with the number of heads if we follow the mechanism in Equation 4.7
and Equation 4.8. Suppose the original dimension of hidden representation ht is dh, and
the concatenation of weighted mean and weighted standard deviation is used as the output
of each attention head, the final output size of a multi-head pooling module with dr heads
will be 2× dh × dr.

Here we proposed an alternative of the aforementioned multi-head self-attentive mech-
anism which can produce fixed-dimensional output with different numbers of attention
heads. To control the output dimension, after computing the annotation matrix A with
Equation 4.7, the original hidden representation H ∈ Rdh×T is transformed by:

C = WcH, (4.11)

where Wc is a matrix of size dh
dr
× dh. Then the weighted mean Er ∈ R

dn
dr and weighted

standard deviation Dr ∈ R
dn
dr of the r-th attention head are computed as follows:

Er = CAr

Dr =
√

C2Ar − (Er)2
(4.12)
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Under this mechanism the output size of every attention head is 2× dh
dr
. Therefore the

final output size of the multi-head module is always 2× dh, which is the same as that in
a single-head self-attention module.

4.3.4 Sub-vector multi-head self-attentive speaker embeddings

In the standard multi-head self-attention mechanism discussed in section 4.3.2, every head
takes the same hidden representation H as input, and a penalty term is introduced to
encourage diversity of heads. Sub-vector multi-head self-attention employs a different
strategy to learn dissimilar heads: it makes different heads focus on different parts of the
hidden vector H.

Suppose we have dr > 1 attention heads. Similar to Equation 4.6, the hidden repre-
sentation H of size dh × T is equally split into dr sub-matrices {H1, · · · , Hdr}, where the
size of Hr is dh

dr
× T . The output annotation vector of the r-th head is computed as :

Ar = softmax(g(HT
r W1)w2,r), (4.13)

where W1 is a matrix of size dh
dr
× da; w2,r is a vector of size da for the r-th head. The

weighted mean and weighted standard deviation are then obtained in the same way as
Equation 4.7 and Equation 4.8

In sub-vector multi-head self-attention, every head takes different part of the hidden
representation as input, so their output embeddings are dissimilar by nature.

4.4 Performance

The proposed self-attentive speaker embedding learning methods are deployed using the
same architecture and training scheme as in the baseline system. The performance of
various embedding learning methods are summarized in Table 4.1 and Table 4.2.

In the following results, ‘baseline’ refers to the ResNet baseline described in Section
3. The label ‘attn-k’ denotes the self-attentive embedding systems described in Section
4.3.2 with k attention heads. Label ‘fs-attn-k’ denotes the systems described in Section
4.3.3 with k fixed-sized attention heads. Label ‘sub-attn-k’ denotes the systems described
in Section 4.3.4 with k sub-vector attention heads.

Compared to the baseline system without any attention modules, the single-head
attention model obtains consistent improvement on all evaluation sets.
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Table 4.1: Results on VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-H with various self-
attentive embedding learning methods.

System Penalty VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

baseline - 1.12 0.151 1.34 0.143 2.38 0.222
attn-1 - 1.12 0.125 1.33 0.140 2.33 0.228
attn-2 ! 1.14 0.116 1.31 0.136 2.33 0.220
attn-4 ! 1.17 0.121 1.33 0.141 2.39 0.227
attn-8 ! 1.22 0.118 1.34 0.135 2.38 0.230
attn-2 " 1.10 0.112 1.28 0.133 2.31 0.217
attn-4 " 1.07 0.109 1.24 0.130 2.26 0.206
attn-8 " 1.02 0.105 1.22 0.125 2.16 0.205

fs-attn-2 ! 1.16 0.119 1.34 0.137 2.32 0.215
fs-attn-4 ! 1.20 0.124 1.33 0.136 2.37 0.231
fs-attn-8 ! 1.22 0.124 1.37 0.139 2.41 0.230
fs-attn-2 " 1.12 0.120 1.32 0.136 2.33 0.212
fs-attn-4 " 1.10 0.118 1.28 0.134 2.31 0.210
fs-attn-8 " 1.10 0.115 1.25 0.133 2.26 0.208
sub-attn-2 - 1.04 0.117 1.31 0.132 2.32 0.212
sub-attn-4 - 0.99 0.110 1.24 0.126 2.23 0.217
sub-attn-8 - 0.93 0.112 1.20 0.124 2.12 0.203

Multi-head systems

For the standard multi-head attention systems without the penalty term, the 2-head
system achieves comparable performance to the single-head system, and the performance
becomes progressively worse when the number of heads increases on the VoxCeleb dataset.
Similar results are also obtained on the SITW dataset.

After introducing the penalty term, the standard multi-head systems obtain significant
improvements with more attention heads. The 2-head system is 2% better in EER and
10% better in minDCF on VoxCeleb. The best performance is achieved by the 8-head
system, which outperforms the single-head system in EER by 9% on VoxCeleb and 6%
on SITW.

From the results of standard multi-head systems, we can see that the penalty term
plays an important role, especially when the number of heads increases. It also confirms
the existence of the redundancy problem in the standard multi-head mechanism. The
penalty term explicitly encourages each head to produce dissimilar weights, leading to
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Table 4.2: Results on SITW evaluation set with various self-attentive embedding learning
methods.

System Penalty EER minDCF
baseline - 1.73 0.166
attn-1 - 1.72 0.156
attn-2 ! 1.72 0.162
attn-4 ! 1.77 0.166
attn-8 ! 1.75 0.168
attn-2 " 1.70 0.158
attn-4 " 1.61 0.157
attn-8 " 1.62 0.152

fs-attn-2 ! 1.73 0.166
fs-attn-4 ! 1.78 0.167
fs-attn-8 ! 1.77 0.163
fs-attn-2 " 1.72 0.164
fs-attn-4 " 1.72 0.162
fs-attn-8 " 1.68 0.158
sub-attn-2 - 1.77 0.164
sub-attn-4 - 1.69 0.157
sub-attn-8 - 1.64 0.156

more informative embeddings and improving the multi-head systems’ performance.

Fixed-sized multi-head systems

The fixed-sized multi-head mechanism uses the same way as the standard multi-head
mechanism to compute the attention weights. When producing embeddings, it adjusts
the input feature dimension to make the size of the final aggregate output fixed regardless
of the number of attention heads.

The penalty term is still crucial in the fixed-sized multi-head mechanism. On most
VoxCeleb evaluation datasets, 4 and 8-head systems without penalty terms are worse than
the 2-head system, and even worse than the single head system. Similar results are also
obtained on the SITW dataset. By introducing the penalty term, 4 and 8-head systems
outperform the 2-head system on all evaluation datasets. The best 8-head system is 5%
better in EER than the 2-head system on VoxCeleb, 3% better in EER and 5% better in
minDCF than the 2-head system on SITW.

Compared to the standard multi-head systems, the fixed-sized multi-head systems
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perform worse on all evaluation datasets. When the multi-head systems are trained with
the penalty term, standard 2, 4 and 8-head systems are 2%, 3% and 8% better than
the corresponding fixed-sized multi-head systems respectively in EER on the VoxCeleb
datasets.

Sub-vector multi-head systems

Sub-vector multi-head attention systems obtain consistent improvement over the single-
head attention system with an increasing number of heads on all evaluation datasets.
The best sub-vector multi-head attention system with 8 heads outperforms the single-
head system by 17% on VoxCeleb1, 10% on VoxCeleb1-E, 9% on VoxCeleb1-H, and 5%
on SITW in terms of EER.

The sub-vector multi-head mechanism provides different information to each head and
guarantees that the heads learn different embeddings from different information.

Speaker classification performance

Table 4.3: Speaker classification results of various self-attentive embedding learning meth-
ods.

System Penalty Accuracy(%)
baseline - 93.75
attn-1 - 94.31
attn-2 ! 94.53
attn-4 ! 93.75
attn-8 ! 94.12
attn-2 " 95.02
attn-4 " 96.09
attn-8 " 96.09

fs-attn-2 ! 94.33
fs-attn-4 ! 93.66
fs-attn-8 ! 93.61
fs-attn-2 " 94.66
fs-attn-4 " 94.61
fs-attn-8 " 95.13
sub-attn-2 - 93.71
sub-attn-4 - 95.08
sub-attn-8 - 95.82
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We also report the system performance on the speaker classification task. In the
training stage, the models are trained under the speaker classification framework, and the
classification accuracy is reported on the validation dataset, containing 110,000 utterances
from 6112 speakers. The results are summarized in Table 4.3.

The classification accuracy is consistent with the speaker verification performance in
general. The incorporation of the self-attention module helps improve the classification
results compared to the baseline. For multi-head and fixed-sized multi-head systems,
when the number of attention heads increases, the classification accuracy drops without
the penalty term. After introducing the penalty term, the accuracy keeps growing. For
sub-vector multi-head systems, the classification performance is gradually improved with
more attention heads.

Model complexity

Table 4.4: Model complexity of various self-attentive embedding learning methods.

System Size(M) FLOPs(G)
baseline 33 4.26
attn-1 34 4.26
attn-2 39 4.27
attn-4 50 4.29
attn-8 72 4.33

fs-attn-2 35 4.26
fs-attn-4 35 4.26
fs-attn-8 35 4.26
sub-attn-2 33 4.26
sub-attn-4 33 4.26
sub-attn-8 33 4.26

We measure the model complexity with two metrics: model size and the number of
floating point operations (FLOPs). Model size is the total number of parameters, and
FLOPs represent the amount of computation required in a forward pass. The statistical
results are shown in Table 4.4.

For the standard multi-head attention systems, the model size grows quickly as the
number of attention heads increases. Fixed-size multi-head systems and sub-vector multi-
head systems keep a relatively stable model complexity level with more attention heads.
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Table 4.5: Average O(A) of various multi-head systems.

System Penalty Average O(A)
attn-2 ! 0.691
attn-4 ! 0.514
attn-8 ! 0.313
attn-2 " 0.713
attn-4 " 0.582
attn-8 " 0.549

In general, all the sub-vector multi-head systems maintain similar model complexity com-
pared to the baseline system, while greatly improving the performance on speaker classi-
fication and speaker verification tasks.

4.5 Analysis

4.5.1 Orthogonality of attention weights

In multi-head self-attention systems, we have adopted various strategies to learn dissimilar
representations from different heads, such as introducing penalty terms, and using sub-
vector attention. To illustrate the diversity of heads learned in these multi-head systems,
here we introduce a metric to measure the orthogonality of the weight vectors. Given
a weight matrix A, where every column of A represents a weight vector produced by a
single attention head, the gram matrix of A can be computed with G = AT A, and the
metric is defined as:

O(A) = Trace(G)
∑

i,j |Gij|
, (4.14)

where | · | represents the absolute value. When weight vectors of A are orthogonal, O(A)
achieves its maximum value of 1; when all weight vectors are the same in A, O(A) achieves
its minimum value of 1

dr
, where dr is the number of weight vectors in A.

Since heads in the sub-vector attention system are computed from different inputs,
computing the diversity of heads makes little sense. Here we only compute the mean
O(A) over the whole training dataset and the results are summarized in Table 4.5.

From the results, we can see that penalty terms can improve the orthogonality of the
attention weights compared to the standard multi-head systems. Besides, for systems
with the same number of heads, larger O(A) is, (i.e., more diverse attention weights),
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better performance on the evaluation datasets is obtained.

4.5.2 Attention weights versus phonetic classes

The attention mechanism learns frame-level weights and produces weighted statistics as
speaker embeddings. It is a powerful technique that offers a way to obtain a more dis-
criminative utterance-level representation. The effectiveness of self-attentive embeddings
has been demonstrated in the previous evaluation tasks, but there have been few studies
explaining what the attention mechanism learns and how it helps to improve SV system
performance.

Here we further investigate what is learned in the attention model. It is intuitive to
assume that frames assigned with higher weights are related to certain phonetic classes
which can be more discriminative among speakers. We generate the phonetic alignments
using an English automatic speech recognition (ASR) model and visualize the attention
weights distribution over the phonemes of Table 4.6 in a heat-map in Fig.4.2. The x-axis
represents phonemes and the y-axis represents speaker indices.

Table 4.6: Phonemes

Vowels

Front ae; ah; eh; iy; ih
Middle aa; aw; er
Back ow; uh; uw

Semivowels
Glides w; y
Liquids l; r

Diphthongs ay; ey; oy

Consonants

Nasals m; n; ng
Plosives Voiced b; d; g

Unvoiced k; p; t
Fricatives Voiced dh; dx; v; z

Unvoiced f; hh; s; sh; th
Affricates ch; jh

The data used in the visualization include train-clean-100 and train-clean-360 sets
from Librispeech [61], for a total of 460 hours of speech from 1172 speakers. The ASR
model is the DNN model trained by following the Kaldi recipe1 . The SV model used for
illustration is the single head attention model.

For each utterance, the ASR model is used to align the phoneme label for every frame,
and the attentive SV model is used to compute the weight for each frame. We can get a

1https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5

46



Figure 4.2: Heat-map of phonemes in the attentive speaker verification system.

list of phonemes and their corresponding weights for every utterance. Then we collect all
the phonemes appearing in all utterances of a speaker, and compute the average weight
for each phoneme for the speaker. The head-map is constructed as follows: the i-th row
represents the average attention weights of the 39 phonemes for the i-th speaker.

Lighter parts in the heat-map mean higher weights assigned by the attention model.
The complete black columns correspond to phonemes that are not present in the training
data. We can see that the positions of the lighter part in each column are quite consistent
across different rows. It means the attention model tends to focus on some phonemes in
verifying speakers’ identity. Vowels such as ae, ah, eh, aw, ay, uh and semivowels such
as r, y are among the most attended phonemes. Vowels and semivowels are assigned
larger weights in the attention system, meaning that they are more discriminative when
determining the identity of a speaker.
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Chapter 5

Bayesian Self-attentive Speaker
Embedding Learning

In this Chapter, we generalize the multi-head attention in the Bayesian framework, where
the standard deterministic multi-head attention can be viewed as a special case. In the
Bayesian attention framework, parameters of each attention head share a common distri-
bution, and the updates of these parameters are related, instead of being independent as
in deterministic multi-head attention. Based on our framework, the attention redundancy
problem is alleviated by performing Bayesian inference on attention parameters with the
Stein variational gradient descent [62, 63]. During the optimization process, each atten-
tion head is forced to be far from each other in the parameter space. Besides, the Bayesian
attention framework also provides a theoretical understanding of the benefits of applying
multi-head attention.

5.1 Theory of Stein Variational Gradient Descent

Variational inference approximates the target distribution using a parameterized distri-
bution by minimizing their Kullback-Leibler (KL) divergence. Current optimization tech-
niques such as stochastic gradient descent can solve variational methods efficiently on
large datasets. However, the choice of parameterized distribution for the approximation
is critical. Simple distribution sets may not suffice to approximate the real posterior
distributions, while sophisticated choices lead to high computation cost and optimiza-
tion difficulties. Therefore, the parameterized distribution sets and the corresponding
optimization algorithms have to be designed on a case-by-case basis.
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[62] proposed a general variational inference algorithm that can be applied in various
machine learning tasks. It performs a form of functional gradient descent on a set of
particles to minimize the KL divergence between a tractable distribution and the target
distribution, and drives the particles to fit the true posterior distribution. When there are
multiple particles, the algorithm is a full Bayesian approach, and it degrades to gradient
descent for maximizing the posterior distribution when only a single particle is used.

In this section, we briefly introduce the theory of variational inference with Stein
variational gradient descent.

5.1.1 Stein’s identity and Stein discrepancy

The Bayesian self-attention framework in this work is based primarily on the Stein’s
identity and Stein discrepancy.

Let p(x) be a continuously differentiable distribution defined on X ⊆ Rd, and φ(x) =
[φ1(x), · · · ,φd(x)]T a smooth vector function. The Stein operator Ap of the distribution
p is defined as:

Apφ(x) = φ(x)∇x log p(x)T +∇xφ(x). (5.1)

The Stein operator of the distribution p takes the function φ(x) as the input variable,
and for certain sufficiently regular φ(x), its expectation under x ∼ p equals to zero:

Ex∼p[Apφ(x)] = 0, s.t. lim
‖x‖→∞

φ(x)p(x) = 0. (5.2)

Equation 5.2 is the Stein’s identity statement. When the Stein identity holds, the
function φ(x) is considered to be in the Stein class of distribution p.

If there is a different smooth distribution q(x) also defined on X , then the expectation
of the Stein operator of the distribution p under x ∼ q, Ex∼q[Apφ(x)], would no longer
equal to zero for general φ. The magnitude of Ex∼q[Apφ(x)] can be used to demonstrate
the difference between distributions p and q. Based on this property, the Stein discrepancy
is defined as the maximum violation of the Stein’s identity for φ in some proper function
set F :

S(q, p) = max
φ∈F

{[Ex∼qtrace(Apφ(x))]2}. (5.3)
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The choice of the function set F is critical. Simple functions will restrict the discrim-
inative ability of the discrepancy measure, while complex choices will make subsequent
computation difficult. To avoid this issue and simplify the optimization process, [64] uses
kernelized Stein discrepancy (KSD) that maximizes φ in the unit ball of a reproducing
kernel Hilbert space (RKHS). Following [64], KSD is defined as

S(q, p) = max
φ∈Hd

{[Ex∼qtrace(Apφ(x))]2}, s.t.‖φ‖Hd≤1, (5.4)

where the kernel k(x, x′) of RKHS H is in the Stein class of distribution p for any x′ ∈ X .
The optimal solution of Equation 5.4 has a closed form as follows:

φ(x) =
φ∗

q,p(x)
‖φ∗

q,p(x)‖Hd

φ∗
q,p(x) = Ex∼q[Apk(x, ·)],

(5.5)

where k(x, ·) is the kernel. S(q, p) = 0 if and only if p = q once k(x, x′) is strictly positive
definite, and the condition is satisfied by common kernels.

5.1.2 Variational inference with Stein variational gradient de-

scent

The standard variational inference process can be formulated in the following way:

q∗ = arg min
q∈Q

{KL(q||p)}, (5.6)

where p(x) is the target distribution, and q∗(x) is a simpler distribution found in a pre-
defined distribution set Q = q(x). The pre-defined set Q needs to satisfy the need to
approximate a large class of target distributions, meanwhile it should be tractable so that
the optimization problem can be solved efficiently.

Here we choose the set Q to be the set of distributions of random variables with the
form z = T (x), where T : X → X is a smooth one-to-one transformation, and x is
drawn from a tractable initial distribution q0(x). If we consider an incremental transform
T (x) = x + εφ(x), which is a perturbation of the identity map, where φ(x) is a smooth
function that decides the perturbation direction and the scalar ε decides the magnitude.
According to the inverse function theorem, the map T is a one-to-one mapping if |ε| is
sufficiently small.
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Let q[T ](z) be the density function of z = T (x) when x ∼ q(x). The derivative of the
KL divergence w.r.t the perturbation magnitude ε can be calculated as

∇εKL(q[T ]||p)|ε=0 = −Ex∼q[trace(φ(x)∇x log p(x)T +∇xφ(x))]. (5.7)

According to the Stein operator definition in Equation 5.1, Equation 5.7 can be re-
formulated as

∇εKL(q[T ]||p)|ε=0 = −Ex∼q[trace(Apφ(x))]. (5.8)

To find the optimal perturbation direction that gives the deepest descent on the KL
divergence, we need to minimize the left part of Equation 5.8, or to maximize the following:

max
φ

Ex∼q[trace(Apφ(x))]. (5.9)

If we restrict the optimization of Equation 5.9 in zero-centered balls of Hd, it is exactly
the same as the KSD Equation 5.4. So the optimal solution has the form in Equation 5.5,
for which the gradient equals to the negative KSD, i.e., ∇εKL(q[T ]||p)|ε=0 = −S(q, p).

This finding reveals a procedure that an initial reference distribution q0 can be iter-
atively transformed to the target distribution p. We can start with an initial transform
T ∗

0 = x + ε0φ∗
q0,p(x) applied on q0, where ε0 is the step size, and the KL divergence is

decreased by an amount of ε0S(q0, p). After that a new distribution q1(x) = q0[T′](x) is
generated, and we can continue applying a new transform T ∗

1 = x + ε0φ∗
q1,p(x) on q1(x),

and the KL divergence is further decreased by ε1S(q1, p). By repeating this process, we
can construct a sequence of distributions {ql}n

l=1 between the initial distribution q0 and
the target distribution p:

ql+1 = ql[T ∗
l ]

T ∗
l (x) = x + εl · φ∗

ql,p
(x).

(5.10)

This eventually converges to the target distribution p with sufficiently small step-size,
under which φ∗

q∞,p(x) ≡ 0, and the transform T ∗
∞(x) reduces to the identity map.

In summary, the Stein variational gradient descent method takes a target distribu-
tion with density function p(x) and a set of initial particles {x0

i }n
i=1 as inputs, and then

produces a set of particles {xi}n
i=1 that approximate the target distribution by iteratively

updating the particles as follows:

xl+1
i ← xl

i + εlφ̂
∗(xl

i)

φ̂∗(x) = 1
n

n∑

j=1

[
k(xl

j, x)∇xl
j
log p(xl

j) +∇xl
j
k(xl

j, x)
] (5.11)
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where l is the iteration index and εl is the step size at the l-th iteration.
The procedure transports a set of points to match the target distribution p(x), and

does not depend on the initial distribution q(0). There are two terms in φ∗(x) of Equation
5.11. The first term is a weighted sum of gradients of all the points, and it drives the
particles towards the high probability areas of p(x). The second term drives x away from
its neighboring points, preventing all the points to collapse together. For the extreme case
when we have only a single particle, i.e., n=1, the procedure in Equation 5.11 reduces
to the conventional gradient ascent for maximum a posteriori (MAP) estimation for any
kernel that satisfies ∇xk(x, x) = 0.

5.2 Generalization of Self-attentive Speaker Embed-

ding Learning under the Bayesian Framework

In this section, we interpret the attention mechanism from the Bayesian inference per-
spective, and propose an optimization method that learns repulsive multi-head attention
under the Bayesian framework.

5.2.1 Bayesian inference perspective of the attention mechanism

Let x be the input feature and e be the output embedding of the attention model. In
single-head attention, we have e = fattn(x; θ), where θ represents the attention parame-
ters. In multi-head attention, we have multiple attention mappings, each computed from
independent parameters. Attention mapping from different heads finally aggregate via a
function g(·) as

ei = fattn(x; θi),

e = g(e1, · · · , eM),
(5.12)

where M is the number of heads, and θi represents independent parameters for each
attention head.

We generalize the deterministic transformation of e into a stochastic generative pro-
cess:

e = fattn(x; θ),with θ ∼ p(θ|D) (5.13)
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where D is the training data set. Bayesian inference for attention computes the distri-
bution of the output embedding p(e|x, D) for a new input x and the training data set D

by
p(e|x, D) =

∫
δfattn(x,θ)(e)p(θ|D)dθ, (5.14)

where δx(·) is the delta function with point mass at x. In practice, we adopt sampling
methods to approximate Equation 5.14 instead of computing the integral. p(e|x, D) is
approximated by a set of M samples initialized from p(θ|D):

ei = fattn(x; θi),with θi ∼ p(θ|D),

e = g(e1, · · · , eM).
(5.15)

Equation 5.15 provides a Bayesian perspective of the multi-head attention framework.
It is a more general formulation: if all parameters θi are independent of each other (that
is, if they do not share a distribution p(θ|D)), then Equation 5.15 is reduced to the
deterministic multi-head attention as described in Equation 5.12.

5.2.2 Repulsive multi-head attention learning

In the standard deterministic multi-head attention framework, parameters of each at-
tention head are treated independently. One long-standing challenge is making each
attention head learn distinct representations, thus, reducing the information redundancy
among the heads.

In the Bayesian attention framework, the attention parameters share a common dis-
tribution p(θ|D) defined over the observed dataset D = {Di}N

i=1, and we adopt the Stein
variational gradient descent method to develop repulsive attentions. The Stein variational
gradient descent takes a target distribution with density function p(x) and a set of initial
particles {x0

i }n
i=1 as inputs, and produces a new set of particles {xi}n

i=1 that approximate
the target distribution by iteratively updating the particles in a principled procedure.

In our case, parameters of each head θi are considered as one particle. Thus, in a
multi-head system with M heads, there will be M particles, {θi}M

i=1, which are updated
iteratively to approximate the posterior distribution p(θ|D) according to Equation 5.11.
The learning algorithm is illustrated in Algorithm 1.

Algorithm 1 is basically the same as standard stochastic gradient descent (SGD) except
that the update for attention parameters is replaced by the Stein variational gradient
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Algorithm 1: Repulsive multi-head attention learning
Data: D = {(xi, yi)}N

i=1
Input: Initial attention parameters with M heads Θ0 = {θ0

m}M
m=1, all other

model parameters Ω0

Output: Optimized parameters Θ̂ and Ω̂
1 for iteration l do
2 forward the input data (xi, yi) and get the prediction ŷi

3 calculate the loss L(ŷi, yi) and the gradient of loss w.r.t Ωl: ϕ(Ωl)← ∇ΩlL
4 for attention head m do
5 φ(θl

m) = 1
M

∑M
j=1

[
k(θl

j, θ
l
m)∇θl

j
log p(θl

j) +∇θl
j
k(θl

j, θ
l
m)

]

6 ϕ(θl
m)← εlφ(θl

m)
7 end
8 update parameters
9 Θl+1 ← Optimizer(Θl,ϕ(Θl))

10 Ωl+1 ← Optimizer(Ωl,ϕ(Ωl))
11 end

descent in Equation 5.11. Therefore, the learning algorithm can be easily integrated into
existing optimizers and used to train the model efficiently.

By adopting the Stein variational gradient descent, the updates of the attention pa-
rameters of different heads are related to each other. We have discussed the two terms of
φ∗(x) in Equation 5.11: the first term pushes the particles to the high probability areas of
p(θ|D), while the second term performs repulsive constraint and prevents all the particles
from collapsing together into the local mode of p(θ|D). Therefore, the algorithm explicitly
encourages repulsiveness between heads during the training process.

Besides, when the number of head M=1 and the kernel satisfies ∇xk(x, x) = 0 such
as the RBF kernel, Algorithm 1 reduces to the standard SGD.

5.3 Performance

The Bayesian self-attentive speaker embedding learning systems have the same architec-
ture as the deterministic multi-head self-attentive systems described in Section 4.3.3 and
4.3.4. The only difference is that when training Bayesian systems, Stein variational gra-
dient descent method described in Algorithm 1 is applied to optimize the systems, while
the deterministic multi-head self-attentive systems use standard SGD for training. The
reason we choose only fixed-sized and sub-vector multi-head systems is that their model
complexity remain stable with more attention heads, which is preferred in practice.
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In the following results, ‘baseline’ refers to the ResNet baseline described in Section
3. The label ‘attn-1’ denotes the self-attentive embedding systems with single attention
head. Labels ‘Bayesian fs-attn-k’ and ‘Bayesian sub-attn-k’ denote the Bayesian version
of multi-head self-attentive speaker embedding systems with k attention heads described
in Section 4.3.3 and sub-vector multi-head self-attentive speaker embedding systems with
k attention heads described in Section 4.3.4, respectively.

The performances are summarized in Table 5.1 and Table 5.2.

Table 5.1: Results on VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-H with Bayesian self-
attentive embedding learning methods.

System VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

baseline 1.12 0.151 1.34 0.143 2.38 0.222
attn-1 1.12 0.125 1.33 0.140 2.33 0.228

Bayesian fs-attn-2 0.99 0.112 1.25 0.126 2.26 0.210
Bayesian fs-attn-4 0.91 0.113 1.18 0.122 2.18 0.205
Bayesian fs-attn-8 0.83 0.106 1.16 0.124 2.06 0.196
Bayesian sub-attn-2 1.02 0.117 1.26 0.127 2.26 0.211
Bayesian sub-attn-4 0.99 0.116 1.20 0.124 2.22 0.203
Bayesian sub-attn-8 1.03 0.108 1.20 0.125 2.10 0.202

Table 5.2: Results on SITW evaluation set with Bayesian self-attentive embedding learning
methods.

System EER minDCF
baseline 1.73 0.166
attn-1 1.72 0.156

Bayesian fs-attn-2 1.71 0.161
Bayesian fs-attn-4 1.61 0.158
Bayesian fs-attn-8 1.57 0.152
Bayesian sub-attn-2 1.74 0.159
Bayesian sub-attn-4 1.70 0.157
Bayesian sub-attn-8 1.66 0.157

The Bayesian self-attentive embeddings greatly improve the performance compared to
the baseline and self-attentive embeddings with a single attention head.

The Bayesian system with two heads improves the baseline by 12% in EER and 26%
in minDCF on VoxCeleb1. When the number of heads increases, the performance of
Bayesian fixed-sized multi-head systems keeps improving, and the best system with 8
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heads is 26% better in EER and 30% better in minDCF on VoxCeleb1, 9% better in EER
and 8% better in minDCF on SITW.

Similar results are also obtained in the sub-vector multi-head case. In general, the
performance of Bayesian sub-vector multi-head systems keeps improving with increasing
number of attention heads. The best Bayesian sub-vector multi-head system with 8 heads
improves the baseline by 8% in EER and 28% in minDCF on VexCeleb1, 4% in EER and
5% in minDCF on SITW.

We also find that Bayesian fixed-sized multi-head systems consistently outperform
sub-vector systems when they have the same number of attention heads.

Speaker classification performance

Table 5.3: Speaker classification results of Bayesian self-attentive embedding systems.
System Accuracy(%)
baseline 93.75
attn-1 94.31

Bayesian fs-attn-2 94.88
Bayesian fs-attn-4 96.05
Bayesian fs-attn-8 96.88
Bayesian sub-attn-2 94.33
Bayesian sub-attn-4 94.86
Bayesian sub-attn-8 95.33

Besides the speaker verification performance, we also report the performance on the
speaker classification task. The accuracy is computed on the validation dataset, containing
110,000 utterances from 6112 speakers. The results are summarized in Table 5.3.

The speaker classification performance is consistent with the verification performance.
Under the Bayesian fixed-sized multi-head attention framework, the system obtains better
classification accuracy with more attention heads. And when the number of heads are the
same, the Bayesian fixed-sized multi-head systems have better performance than Bayesian
sub-vector multi-head systems. The best Bayesian fixed-sized multi-head system with 8
attention heads reduces the classification error rate by over 50% compared to the baseline.
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Model complexity

The model complexity measured in model size and floating point operations (FLOPs) are
summarized in Table 5.4. Since the Bayesian learning algorithm only affects the back-
propagation pass in the training stage, the model size and FLOPs of all the Bayesian
models are the same as their corresponding deterministic versions.

We can see that Bayesian self-attentive embedding learning methods greatly improve
the performance of multi-head systems on speaker classification and verification tasks. In
the mean time they maintain comparable model complexity in the evaluation stage.

5.4 Comparison to Deterministic Self-attentive Speaker

Embeddings

We summarize the performance of all the self-attentive speaker embedding systems in
Table 5.5 and Table 5.6. Note that in Table 5.5, “Pen.” stands for “penalty” and “B.”
stands for “Bayesian”.

By adopting Stein variational gradient descent, Bayesian multi-head attention systems
achieve significant improvements compared to their corresponding deterministic multi-
head systems. When the number of heads increases to 4 and 8, the performances of
the deterministic attention systems degrade on all VoxCeleb1-O evaluation datasets com-
pared to the single-head attention system, while the 4-head Bayesian system outperforms
the single-head attention system by 19% on VoxCeleb1-O, 11% on VoxCeleb1-E and
6% on VoxCeleb1-H in terms of EER, and the 8-head Bayesian system outperforms the
single-head attention system by 26% on VoxCeleb1-O, 13% on VoxCeleb1-E and 12% on

Table 5.4: Model complexity of Bayesian self-attentive embedding learning systems.
System Size(M) FLOPs(G)
baseline 33 4.26
attn-1 34 4.26

Bayesian fs-attn-2 35 4.26
Bayesian fs-attn-4 35 4.26
Bayesian fs-attn-8 35 4.26
Bayesian sub-attn-2 33 4.26
Bayesian sub-attn-4 33 4.26
Bayesian sub-attn-8 33 4.26
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Table 5.5: Overall results on VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-H.

System Pen. VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

baseline - 1.12 0.151 1.34 0.143 2.38 0.222
attn-1 - 1.12 0.125 1.33 0.140 2.33 0.228
attn-2 ! 1.14 0.116 1.31 0.136 2.33 0.220
attn-4 ! 1.17 0.121 1.33 0.141 2.39 0.227
attn-8 ! 1.22 0.118 1.34 0.135 2.38 0.230
attn-2 " 1.10 0.112 1.28 0.133 2.31 0.217
attn-4 " 1.07 0.109 1.24 0.130 2.26 0.206
attn-8 " 1.02 0.105 1.22 0.125 2.16 0.205

fs-attn-2 ! 1.16 0.119 1.34 0.137 2.32 0.215
fs-attn-4 ! 1.20 0.124 1.33 0.136 2.37 0.231
fs-attn-8 ! 1.22 0.124 1.37 0.139 2.41 0.230
fs-attn-2 " 1.12 0.120 1.32 0.136 2.33 0.212
fs-attn-4 " 1.10 0.118 1.28 0.134 2.31 0.210
fs-attn-8 " 1.10 0.115 1.25 0.133 2.26 0.208
sub-attn-2 - 1.04 0.117 1.31 0.132 2.32 0.212
sub-attn-4 - 0.99 0.110 1.24 0.126 2.23 0.217
sub-attn-8 - 0.93 0.112 1.20 0.124 2.12 0.203
B. fs-attn-2 - 0.99 0.112 1.25 0.126 2.26 0.210
B. fs-attn-4 - 0.91 0.113 1.18 0.122 2.18 0.205
B. fs-attn-8 - 0.83 0.106 1.16 0.124 2.06 0.196
B. sub-attn-2 - 1.02 0.117 1.26 0.127 2.26 0.211
B. sub-attn-4 - 0.99 0.116 1.20 0.124 2.22 0.203
B. sub-attn-8 - 1.03 0.108 1.20 0.125 2.10 0.202

VoxCeleb1-H in terms of EER. On the SITW evaluation dataset, the best deterministic
8-head system is 6% better in EER than the single-head attention system, while Bayesian
systems with 4 and 8 heads achieve 6% and 9% relative improvement in EER, respectively.

In general, Bayesian fixed-sized multi-head attention systems consistently outperform
deterministic attention systems. The proposed algorithm helps learn repulsive attention
heads, thus improving the speaker representation in multi-head attention systems.

For sub-vector systems, the Bayesian systems obtain comparable performance with
their deterministic counterparts. Since every head in a sub-vector system already has a
different input, the repulsive multi-head learning strategy is not deemed necessary.

Table 5.7 shows the performance of recent state-of-the-art SV systems on VoxCeleb1.
Among all the systems, our proposed Bayesian fixed-sized multi-head attentive system
achieves the best performance in most evaluation corpora.
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Table 5.6: Overall results on SITW evaluation set.
System Penalty EER minDCF
baseline - 1.73 0.166
attn-1 - 1.72 0.156
attn-2 ! 1.72 0.162
attn-4 ! 1.77 0.166
attn-8 ! 1.75 0.168
attn-2 " 1.70 0.158
attn-4 " 1.61 0.157
attn-8 " 1.62 0.152

fs-attn-2 ! 1.73 0.166
fs-attn-4 ! 1.78 0.167
fs-attn-8 ! 1.77 0.163
fs-attn-2 " 1.72 0.164
fs-attn-4 " 1.72 0.162
fs-attn-8 " 1.68 0.158
sub-attn-2 - 1.77 0.164
sub-attn-4 - 1.69 0.157
sub-attn-8 - 1.64 0.156

Bayesian fs-attn-2 - 1.71 0.161
Bayesian fs-attn-4 - 1.61 0.158
Bayesian fs-attn-8 - 1.57 0.152
Bayesian sub-attn-2 - 1.74 0.159
Bayesian sub-attn-4 - 1.70 0.157
Bayesian sub-attn-8 - 1.66 0.157

Table 5.7: Performance of state-of-the-art systems on VoxCeleb1.

System VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

E-TDNN 1.49 0.160 1.61 0.171 2.69 0.242
ResNet 1.31 0.154 1.38 0.163 2.50 0.233

ECAPA-TDNN 0.87 0.107 1.12 0.132 2.12 0.210
Bayesian attn-8 0.83 0.105 1.16 0.122 2.06 0.196
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Chapter 6

Frequency-domain Pooling in
Speaker Embedding Learning

The previous chapters work on the pooling step which produces utterance-level represen-
tations from a variable-length sequence of frame-level representations. The central idea is
emphasizing on frames with discriminative information and neglecting others by weight-
ing the frames proportionally. The self-attention mechanism is proposed to determine the
weights, and it is further generalized to the Bayesian self-attention framework to learn
effective multi-head attention weights.

In this chapter, we focus on the frame-level representation learning. CNN is the most
commonly used network in frame-level modeling and has achieved great success. However,
it lacks the ability of utilizing global contexts and capturing long-term interdependencies.
We first incorporate channel attention modules into the current frame-level representation
learning framework, and then analyze channel attention from the perspective of frequency
analysis. We adopt discrete cosine transform (DCT) as the frequency analysis tool and
show that global average pooling in channel attention is a special case of frequency-domain
pooling where only the lowest frequency component is used. Finally we generalize the
global average pooling in channel attention to frequency-domain pooling. Two frequency-
domain pooling methods are proposed to utilize multiple frequency components.

The chapter is arranged in the following way: we revisit channel attention in Sec-
tion 6.1 and briefly introduce frequency-domain learning in Section 6.2. In Section 6.3
we analyze channel attention from the perspective of frequency analysis, and propose
two frequency-domain pooling methods for channel attention. Section 6.4 presents the
experimental results and discussions.
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6.1 Channel Attention

Convolutional neural networks (CNNs) have achieved great success in a variety of areas
such as computer vision, natural language processing and speech processing, etc.

Convolution is the basic operation in CNNs. In each convolution layer, a set of filters
are deployed to perform convolution on the inputs. They are trained to capture spatial
and channel correlations by aggregating spatial-wise and channel-wise information within
local receptive fields. By stacking layers and non-linear activation functions, CNNs are
able to obtain broader receptive fields and learn high-level representations from the raw
inputs.

To enhance the representation ability of CNNs, research has been conducted to make
the networks go deeper and wider. [19] proposed to learn residual mappings instead of
unreferenced underlying mappings, and skip connections were introduced to help opti-
mize much deeper networks. [65–67] proposed a multi-path way to get wider networks.
The inputs are split into different processing paths and each path uses filters of different
sizes. The outputs from all paths are then concatenated and sent to subsequent layers.
[68] generalized previous works on multi-path, and introduced a new dimension of CNNs
besides depth and width, namely cardinality. Cardinality represents the size of indepen-
dent paths in the network. The network performance can be improved more efficiently
by increasing the cardinality compared to building deeper and wider architectures.

Another direction of improving CNNs is to investigate larger contexts. In many CNNs,
the receptive fields are theoretically large enough to cover the entire input. However, [69]
found that the effective size of receptive fields is actually much smaller. Besides, CNNs
are inherently inefficient in modeling long-range interdependencies since the convolution
operators are designed to learn local relations. To obtain rich global context information
and learn long-range interdependencies, attention modules are often used in the inter-
mediate layers of CNNs. [70] incorporated channel attention into networks with a new
architecture named “Squeeze-and-Excitation”. It employs global pooling in-between the
network and utilizes holistic information in all stages of a CNN in order to capture the
relationship between channels.

Squeeze-and-Excitation (SE) units [70] have been widely used in various tasks and
achieved significant improvements in performance for CNN. It also has been successfully
applied in speaker verification frameworks [27] and gains great performance improvements.

61



The key idea of the SE units is to explicitly model the inter-dependencies between chan-
nels. It performs a global pooling step followed by a self-attention function on channels
to adaptively recalibrate channel-wise features.

Suppose we have feature maps F ∈ RC×H×W obtained from a 2-dimensional convolu-
tional layer, where C is the number of channels, and H ×W is the size of the 2D feature
map within each channel.

The squeeze step takes F as input, and produces compressed channel descriptors
z ∈ RC by applying global average pooling to each channel feature map:

zc = GlobalPool(Fc) = 1
H ×W

H∑

i=1

W∑

j=1
Fc(i, j), (6.1)

where Fc ∈ RH×W is the c-th channel feature map in F.
The excitation step takes the channel descriptors z as input and produces channel

weights s ∈ RC by employing a channel attention mechanism:

s = σ(W2g(W1z)), (6.2)

where σ is the sigmoid activation and g is the ReLU function, W1 ∈ RC
r ×C , and W2 ∈

RC× C
r . Basically W1 is a dimension reduction transform that reduces the input size from

RC to RC
r where r is a hyper-parameter denoting the reduction ratio, and W2 transforms

the reduced size back to RC .
The final output of the c-th channel in the excitation step is obtained by scaling the

original feature map Fc with the channel weight sc

F̃c = sc ∗ Fc (6.3)

Figure 6.1: SE units with global average pooling.

Figure 6.1 illustrates an SE unit with global average pooling. In conclusion, an SE
unit first applies pooling on channel features to get compressed channel descriptors, and
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then maps the channel descriptors to a set of channel weights. The final output of the SE
unit is obtained by re-scaling channel features with the corresponding channel weights.

Various works have been conducted on top of the channel attention architecture to
obtain further improvement. They can be categorized into two directions: enhance the
channel descriptor computation step, and combine the channel attention with other atten-
tion modules. For the first direction, [71] used max-pooling together with global average
pooling, considering that max-pooling gives information about distinctive features within
a channel. [72] and [73] utilized second-order statistics as the channel descriptors. [74]
parameterized the aggregation step, and used a convolution layer to gather information
in each channel. For the second direction, spatial attention is often used to model spa-
tial dependencies. The channel attention module focuses on “what” is important and
the spatial attention module focus on “where” is important. Therefore, these two types
of attention modules are complementary. [71] placed the two attention modules in a
sequential manner, while [75] built two parallel attention branches.

6.2 Frequency-domain Learning

Frequency analysis is a technique for decomposing functions, waveforms or signals into
different frequency components. It is a powerful tool in signal processing. In speech related
tasks, frequency analysis is commonly used in the feature engineering stage, producing
handcrafted features from the raw input signals for subsequent learning.

Recently frequency analysis has been incorporated as a part of the deep learning
frameworks. [76] formulated deep learning in the JPEG transform domain and provided
a framework to learn from compressed inputs. [77] proposed the idea of learning directly
from block-wise discrete cosine transform (DCT). [78] proposed a method of learning in
the frequency domain. It analyzed the feature maps from the frequency perspective using
DCT and adaptively selected important frequency components for further processing.
The frequency domain learning methods help reduce the communication bandwidth of
the networks without accuracy loss. Besides, frequency analysis has also been applied in
pruning and model compression [79–81].

Frequency domain learning is also introduced to channel attention to produce more
informative channel descriptors. [82] regarded the channel descriptor computation as a
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compression problem, and utilized DCT to produce descriptors. It further generalized
channel attention in the frequency domain, and proposed a multi-spectral channel atten-
tion framework.

6.3 Frequency-domain Pooling in Channel Attention

Channel attention consists of two steps. The first squeeze step aggregates features within
channels and produces channel descriptors. The second step computes a set of weights
according to channel descriptors and uses it to re-weigh channels. The aggregation step
is crucial in channel attention. It needs to summarize information within the channels,
while keeping the computation simple and effective.

In this section, we propose two pooling methods for channel attention based on fre-
quency analysis. We first analyze the relationship between global average pooling and
DCT in Section 6.3.1. Then we generalize the global average pooling to frequency domain
pooling using DCT in Section 6.3.2 and Section 6.3.3.

6.3.1 Discrete Cosine Transform (DCT) and Average Pooling

DCT represents a finite sequence of data points by a sum of cosine functions oscillating
at different frequencies. It has a strong “energy compaction” property. That is, most
energies are concentrated in the lower frequency components. Therefore, DCT is widely
used in signal processing and image compression.

Suppose we have a feature map M ∈ RH×W . The 2-dimensional DCT on M is defined
as:

Bpq = αpαq

H−1∑

h=0

W −1∑

w=0
Mhwcos(π(2h + 1)p

2H
)cos(π(2w + 1)q

2W
) ,

αp = 1√
H

when p = 0, and
√

2
H

otherwise ,

αq = 1√
W

when q = 0, and
√

2
W

otherwise ,

(6.4)

where p and q are frequency domain indices, and h and w are feature map indices, with
0 ≤ p ≤ H − 1, 0 ≤ q ≤ W − 1, 0 ≤ h ≤ H − 1 and 0 ≤ w ≤ W − 1.

If we only consider the lowest frequency component B00 when p = 0 and q = 0, we
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have,

B00 = 1√
H

1√
W

H−1∑

h=0

W −1∑

w=0
Mhw × cos(π(2h + 1) ∗ 0

2H
)cos(π(2w + 1) ∗ 0

2W
)

= 1√
H

1√
W

H−1∑

h=0

W −1∑

w=0
Mhw

=
√

H
√

W ∗GlobalPool(M) .

(6.5)

Equation 6.5 shows that the lowest frequency component of DCT is proportional to
the global average pooling, and we can treat the global average pooling as a special case
of DCT. According to the “energy compaction” property of DCT, it is reasonable to use
only the lowest frequency component to represent the whole feature map.

6.3.2 Multi-branch Frequency-domain Pooling

We have shown that global average pooling is a special case of DCT where only the
lowest frequency component is considered. It is natural to generalize the average pooling
to frequency-domain pooling and utilize more frequency components.

In our work, we consider frequency-domain pooling in 2D-ResNets with SE units.
Within each SE unit, we have feature maps F ∈ RC×H×W as inputs. When computing
the channel descriptors, instead of applying global average pooling within each channel,
we introduce multiple channel attention branches.

Figure 6.2 illustrates an SE unit with multi-branch frequency-domain pooling with K

branches. Let k ∈ {1, 2, · · · , K} be the index of attention branches, and every branch
uses a certain frequency component defined by the 2D frequency domain indices (pk, qk) as
formulated in Equation 6.4, where 0 ≤ pk ≤ H−1 and 0 ≤ qk ≤ W −1. The input feature
map F is forwarded to every branch, and the k-th branch first reduces the channel size
of the original feature map to Fk ∈ R C

K ×H×W using 1×1 convolutional blocks. This step
aims at reducing the channel size of feature maps according to the number of attention
branches, so that the overall network size remains the same. Then 2D-DCT is applied to
every channel of feature map Fk, the component with frequency domain indices (pk, qk)
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is used as the descriptor of each channel:

zk = FreqPool_k = Bpk,qk
(Fk)

= αpk
αqk

H−1∑

h=0

W −1∑

w=0
Fk

:,h,wcos(π(2h + 1)pk

2H
)cos(π(2w + 1)qk

2W
) ,

αpk
= 1√

H
when pk = 0, and

√
2
H

otherwise ,

αqk
= 1√

W
when qk = 0, and

√
2

W
otherwise ,

(6.6)

where zk ∈ R C
K represents channel descriptors obtained from the k-th attention branch.

The output from all the branches are then concatenated together to get the final channel
descriptors z ∈ RC :

z = Concatenate(z1, z2, · · · , zK) (6.7)

Figure 6.2: SE units with multi-branch frequency-domain pooling with K branches.

Then the excitation step takes channel descriptors z as input and produces channel
weights s ∈ RC as formulated in Equation 6.2. The final output of every channel is
obtained by weighting the channel feature map with the corresponding channel weights
following Equation 6.3.
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The multi-branch frequency-domain pooling method makes use of multiple frequency
components by constructing multiple attention branches. It can preserve more information
compared to the global average pooling and thus produce better channel descriptors. But
it has a major drawback: we need to pre-define the frequency components used in every
attention branch, which requires prior knowledge about the effectiveness of every single
frequency component. Besides, the multi-branch pooling method introduces additional
parameters in order to reduce the input channel size before forwarding them to attention
branches.

6.3.3 Max Frequency-domain Pooling

To address the aforementioned shortcomings of multi-branch pooling, we further propose
the max frequency-domain pooling method. Instead of manually selecting the frequency
component for every attention branch, we remove the multi-branch structure, and apply
DCT on every channel feature map, then use the maximum frequency component as the
corresponding channel descriptor. We argue that the maximum frequency component
contains clue about distinctive features and is able to represent the channel.

The max frequency-domain pooling can be formulated in the following way: for an
input feature map F ∈ RC×H×W , 2D-DCT is applied on every channel feature map Fc ∈

RH×W according to Equation 6.4, where c is the channel index. Among all the frequency
components Bpq, the maximum one is selected as the channel descriptor zc:

zc = FreqPool(Fc) = maximum{Bpq(Fc)} (6.8)

Then all the channel descriptors zc are used to compute channel weights sc following
the excitation step in Equation 6.2, and the output of c-th channel can be obtained by
scaling the original feature map Fc with the channel weight sc

F̃c = sc ∗ Fc. (6.9)

Compared to the multi-branch frequency-domain pooling method, the max pooling
strategy does not require any prior knowledge about the frequency components. We
do not need to design the number of attention branches in the system. It also avoid
introducing addition parameters.
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6.4 Performance

In previous chapters, the ResNet framework presented in Chapter 3 serves as the base-
line system. In this chapter, we first incorporate the channel attention mechanism by
introducing SE units into the frame-level modeling part of the ResNet framework, and
then enhance the channel attention with frequency-domain pooling methods. The ResNet
framework with SE units is named as SE-ResNet.

6.4.1 Frequency-domain pooling with a single component

Table 6.1: Architecture of the fast SE-ResNet. T represents the training segment length.

Layer Kernel size Stride Output shape
Conv1 7× 7×16 2×1 16× 20×T
SE-Res1 3× 3× 16 1×1 16× 20×T
SE-Res2 3× 3× 32 2× 2 32 × 10 ×(T/2)
SE-Res3 3× 3× 64 2× 2 64 × 5×(T/4)
SE-Res4 3× 3× 128 1× 1 128 × 5×(T/4)
Flatten - - 640 ×(T/4)

Attentive mean pooling - - 640
Linear 256 - 256

Before making use of multiple frequency components for pooling in the channel atten-
tion module, we first need to verify the effectiveness of every single frequency component.
Since the smallest intermediate feature map in the SE-ResNet is 8× 8, we need to divide
the 2D DCT frequency space into 8× 8 parts, there will be totally 64 frequency compo-
nents. To save time, we conduct these experiments with a smaller SE-ResNet framework
instead. The network architecture is depicted in Table 6.1. Basically it halves the output
channel size in every layer and employs a larger kernel size in the first layer, and we name
it as fast SE-ResNet. With fast SE-ResNet, we divide the 2D DCT frequency space into
5× 5 parts according to the smallest feature map size, and use 25 frequency components
individually in the channel attention.

All the results are shown in Table 6.2 and Table 6.3. FP denotes frequency domain
pooling, and FP(i,j) denotes frequency-domain pooling using the frequency component
Bij in Equation 6.4.

In general, when used alone, many frequency components can achieve performance
comparable to the global average pooling (FP(0,0) component), especially the low-frequency
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Table 6.2: EER results with individual frequency components pooling on Voxceleb1-O with
the fast SE-ResNet framework.

EER FP( ,0) FP( ,1) FP( ,2) FP( ,3) FP( ,4)
FP(0, ) 2.23 2.31 2.42 2.38 2.32
FP(1, ) 2.04 2.33 2.23 2.27 2.40
FP(2, ) 2.06 2.31 2.44 2.41 2.29
FP(3, ) 2.14 2.32 2.26 2.46 2.32
FP(4, ) 2.15 2.31 2.37 2.25 2.38

Table 6.3: minDCF results with individual frequency components pooling on Voxceleb1-O
with the fast SE-ResNet framework.

minDCF FP( ,0) FP( ,1) FP( ,2) FP( ,3) FP( ,4)
FP(0, ) 0.178 0.184 0.192 0.185 0.185
FP(1, ) 0.153 0.188 0.181 0.180 0.193
FP(2, ) 0.159 0.194 0.188 0.196 0.176
FP(3, ) 0.168 0.162 0.169 0.183 0.181
FP(4, ) 0.169 0.167 0.184 0.173 0.186

components. It confirms the feasibility of utilizing more frequency components for pool-
ing, and they indeed contain helpful information.

We further analyze the frequency components along different dimensions. In our exper-
imental settings, the height(h)-dimension is the frequency dimension within each channel,
and the width(w)-dimension is the time dimension. If we look at all the components along
FP( ,0), both EER and minDCF achieve the best results in general. Besides, it is worth
noting that all the high-frequency components along FP( ,0) achieve better performance
than FP(0,0), which is the global average pooling. According to Equation 6.4, FP(p,0)
where 0 ≤ p ≤ 4 is computed by

FP (p, 0) = αp
1√
W

H−1∑

h=0

W −1∑

w=0
Mhwcos(π(2h + 1) ∗ p

2H
)

= αp
1√
W

H−1∑

h=0
cos(π(2h + 1) ∗ p

2H
)

W −1∑

w=0
Mhw,

(6.10)

where αp is a constant. Basically it sums over the time dimension first, then applies
1D-DCT along the frequency dimension and takes different frequency components as the
pooling result. From the results, we can see that when applying 1D-DCT along only the
frequency dimension, all the frequency components give better or comparable performance
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to the average pooling. It reveals that high-frequency information along the frequency
dimension is helpful in the subsequent feature learning.

On the other hand, if we look at all the components along the time dimension, such as
FP(0,q), the EER drops quickly starting from FP(0,1). Similar results can also be found
along FP(1,q), FP(2,q), etc. Here we take FP(0,q) as an example for analysis. According
to Equation 6.4, FP(0,q) where 0 ≤ q ≤ 4 is computed by

FP (0, q) = αq
1√
H

H−1∑

h=0

W −1∑

w=0
Mhwcos(π(2w + 1) ∗ q

2W
)

= αq
1√
H

W −1∑

w=0
cos(π(2w + 1) ∗ q

2W
)

H−1∑

h=0
Mhw,

(6.11)

where αq is a constant. It sums over the frequency dimension first, then applies 1D-
DCT along the time dimension and takes different frequency components for pooling.
The results show that high-frequency information along the time dimension is much less
effective compared to the lowest frequency component. The reason might be that high-
frequency components along the time dimension usually contain noises, which are harmful
for subsequent feature learning.

According to the results on frequency-domain pooling with single frequency compo-
nent, we can conclude that in speaker embedding learning, high-frequency components
from DCT along the frequency dimension is helpful, while high-frequency components
from DCT along the time dimension contain noises information which can be harmful to
subsequent feature learning. Therefore, we can simplify the 2D DCT to the 1D version,
reducing the computation cost without affecting the system performance. In the following
experiments, for every input feature map, we first average over the time dimension, and
then apply 1D DCT to get the frequency components.

6.4.2 Frequency-domain pooling with multiple components

We combined different frequency-domain components for pooling as proposed in Section
6.3.2 and 6.3.3. For multi-branch pooling, we choose the best frequency-components
according to the performance in Table 6.2 and Table 6.3.

Overall results are summarized in Table 6.4. The term Global Avg denotes global
average pooling in the SE units, Adaptive denotes the max frequency-domain pooling,
Multi-branch-k denotes multi-branch frequency-domain pooling with k frequency com-
ponents, and Multi-branch-all denotes multi-branch frequency-domain pooling with all
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Table 6.4: Results with multiple frequency components pooling on Voxceleb1-O with the
fast SE-ResNet framework.

SE pooling EER minDCF
Global Avg 2.23 0.178

Multi-branch-2 2.08 0.165
Multi-branch-4 1.88 0.155
Multi-branch-all 1.83 0.152

Adaptive 1.96 0.156

Table 6.5: Results with multiple frequency components pooling on Voxceleb with the SE-
ResNet framework.

SE pooling Voxceleb1-O Voxceleb-E Voxceleb-H
EER minDCF EER minDCF EER minDCF

Global Avg 1.10 0.087 1.23 0.085 2.39 0.154
Adaptive 1.01 0.085 1.12 0.081 2.12 0.148

Multi-branch-4 0.88 0.081 1.02 0.077 2.07 0.144
Multi-branch-8 0.83 0.080 0.98 0.072 2.04 0.141

frequency components which is five in the fast SE-ResNet framework.
In general, systems with frequency-domain pooling outperform the baselines with

global average pooling. The max frequency-domain pooling is better than average pooling
by 12% in both EER and minDCF. The multi-branch frequency-domain pooling with two
branches improves the EER and minDCF by 7%. By increasing the attention branches,
the system with four branches outperforms the baseline by 16% in EER and 13% in
minDCF.

We further verify the frequency-domain pooling with multiple components in the stan-
dard SE-ResNet framework, and report results on VoxCeleb and SITW evalution datasets.
The experimental results are summarized in Table 6.5 and 6.6.

Similar results are obtained with the larger network architecture. Both frequency-
domain pooling methods outperform the global average pooling consistently. The max
frequency-domain pooling improves the baseline system by 8%, 9%, 11% and 6% in terms
of EER on VoxCeleb1-O, VoxCeleb1-E, VoxCeleb1-H and SITW, respectively. The multi-
branch frequency-domain pooling method with four attention branches achieves around
20% improvement in EER and 7% in minDCF on VoxCeleb1-O, and it also improves the
performance by around 10% on SITW.

We also report the performance on the speaker classification task with the standard
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Table 6.6: Results with multiple frequency components pooling on SITW with SE-ResNet
framework.

SE pooling EER minDCF
Global Avg 1.66 0.105
Adaptive 1.56 0.102

Multi-branch-4 1.50 0.096
Multi-branch-8 1.48 0.093

Table 6.7: Speaker classification results with multiple frequency components pooling with
SE-ResNet framework.

SE pooling Accuracy(%)
Global Avg 98.31
Max-freq 98.73

Multi-branch-4 99.05
Multi-branch-8 99.13

SE-ResNet framework. The classification accuracy is computed on the validation dataset,
containing 110,000 utterances from 6112 speakers. The results are summarized in Table
6.7. The speaker classification performance is consistent with the verification performance.
The max frequency-domain pooling improves the global average pooling by 25%, and the
multi-branch pooling with 8 attention branches is 48% better than the average pooling.

Model complexity

The model complexity measured in model size and floating point operations (FLOPs)
are summarized in Table 6.8. The max frequency-domain pooling method maintains the
same model size and FLOPs. The multi-branch frequency-domain pooling methods bring
larger model sizes and FLOPs, but the model complexity does not increase as the number
of branches increases.

In general, the max frequency-domain pooling method can improve the system per-
formance consistently, and it does not introduce any hyper-parameters. It can be used
as a plug-in module to channel attention and gives performance improvements. For the
multi-branch frequency-domain pooling method, more attention branches bring better
system performance, but in the meantime, the computation cost gets higher.
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Table 6.8: Model complexity with multiple frequency components pooling with the SE-
ResNet framework.

SE pooling Size(M) FLOPs(G)
Global Avg 43 7.66
Max-freq 43 7.66

Multi-branch-4 48 7.84
Multi-branch-8 48 7.84

6.5 Comparison to Self-attentive Speaker Embeddings

In Chapter 4 and Chapter 5 we focus on the pooling step between frame-level model-
ing and utterance-level modeling, and proposed pooling methods utilizing self-attention
mechanism and Bayesian self-attention algorithms. In this chapter, we concentrate on the
frame-level modeling. We first introduce channel attention into the frame-level modeling,
and then enhance the channel attention with frequency-domain pooling methods.

Table 6.9: Overall results on VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-H.

System VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

baseline 1.12 0.151 1.34 0.143 2.38 0.222
attn-1 1.12 0.125 1.33 0.140 2.33 0.228
attn-8 1.02 0.105 1.22 0.125 2.16 0.205

sub-attn-8 0.93 0.112 1.20 0.124 2.12 0.203
B. attn-8 0.83 0.106 1.16 0.124 2.06 0.196

attn-1+ CA 1.10 0.087 1.23 0.085 2.39 0.154
+Multi-branch-8 0.83 0.080 0.98 0.072 2.04 0.141

Table 6.10: Overall results on SITW evaluation set.

System EER minDCF
baseline 1.73 0.166
attn-1 1.72 0.156
attn-8 1.62 0.152

sub-attn-8 1.64 0.156
Bayesian attn-8 1.57 0.152
attn-1 + CA 1.66 0.105

+Multi-branch-8 1.48 0.093

To compare the results of frequency-domain pooling methods to previous self-attentive
speaker embeddings, we summarize the system performance in Table 6.9 and Table 6.10.
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‘baseline’ refers to the system described in Chapter 3; ‘attn-k’ refers to the self-attentive
speaker embedding systems described in Section 4.3.2 with k attention heads; ‘sub-attn-
8’ denotes the system described in Section 4.3.4 with 8 sub-vector attention heads; ‘B.
attn-8’ denotes the Bayesian self-attentive system described in Chapter 5 with 8 heads;
‘attn-1 + CA’ refers to the 1-head self-attentive speaker embedding systems with chan-
nel attention incorporated; ‘+Multi-branch-8’ denotes the system utilizing multi-branch
frequency-domain pooling with 8 branches on top of the system ‘attn-1 + CA’.

The self-attentive speaker embeddings and Bayesian self-attentive speaker embeddings
have greatly improved the baseline system performance by utilizing multiple attention
heads in the pooling stage. The best performance on all the evaluation datasets are
achieved by the Bayesian self-attentive speaker embeddings with 8 attention heads. By
incorporating channel attention, we first improve the self-attention speaker embedding
system with a single attention head, especially on the minDCF. On all the VoxCeleb1
and SITW evaluation datasets, the channel attention has helped improve the minDCF
by over 30%. We further introduce frequency-domain pooling methods inside the channel
attention module, and the best multi-branch system with 8 branches improve the EER
by 26% on VoxCeleb1-O and VoxCeleb1-E, 12% on VoxCeleb1-H and 14% on SITW
compared to the baseline.
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Chapter 7

Summary and Future Work

In this chapter we summarize our work in learning speaker embeddings, and discuss some
future directions for speaker verification.

7.1 Summary

In this thesis, we mainly work on learning better speaker embeddings in text-independent
speaker verification tasks. We focus on two directions to enhance the speaker embedding
learning:

• introducing self-attention mechanism into the pooling stage between frame-level
modeling and utterance-level modeling;

• introducing and enhancing channel attention in the frame-level modeling.

For the first direction, the pooling stage is to aggregate information from a sequence
of frame-level features and produce utterance-level representations. We introduced the
self-attention mechanism into this pooling step, and also investigated the multi-head self-
attention mechanism. The multi-head self-attention mechanism aims to produce more
discriminative and informative speaker representations. One major issue in the multi-
head self-attention mechanism is information redundancy. We investigated two techniques
that can alleviate the problem. The first one is introducing a penalty term that explicitly
encourages the attention heads to learn dissimilar attention weights, and the second one
is to provide each attention head with a different input.

We further generalized the deterministic multi-head self-attention to a Bayesian self-
attention framework, and proposed an algorithm based on Stein variational gradient de-
scent to learn repulsive attention heads under the Bayesian self-attention framework.
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All the multi-head self-attention SV systems were evaluated on VoxCeleb1 and SITW.
Bayesian multi-head self-attention systems obtained significant and consistent improve-
ment over other multi-head self-attention systems on all evaluation datasets.

Besides, we analyzed the diversity of attention weights produced by different multi-
head self-attention mechanisms, and its relation to the system performance. We found
that multi-head systems that produce more diverse attention weights would have better
performance in general. We also tried to analyze the preference of the attention mechanism
in SV systems on the phonemes in the input utterances. We found that the attention
model tends to focus on vowels and semivowels when verifying speakers’ identities.

For the second direction, we incorporated channel attention into the frame-level mod-
eling stage of the network, providing global information and models channel interdepen-
dencies. We analyzed the pooling step in the channel attention modules, and proposed
two frequency-domain pooling methods to further enhance channel attention.

Our contributions include:

• introducing the self-attention mechanism to the final pooling step in speaker em-
bedding learning;

• generalizing the deterministic multi-head attention to a Bayesian attention frame-
work;

• proposing an algorithm to learn repulsive attention based on Stein variational gra-
dient descent in the Bayesian attention framework. The proposed algorithm can be
easily integrated into current optimizers;

• introducing channel attention into the early stage in the speaker embedding learn-
ing framework, and proposed two methods based on frequency-domain pooling to
enhance the channel attention;

• evaluating proposed speaker embeddings in various benchmark corpora. Our pro-
posed speaker embedding learning methods achieve better performance than state-
of-the-art systems.
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7.2 Future work

In this thesis, we have presented a complete speaker embedding learning framework,
and proposed three learning methods. The results on various evaluation datasets are
encouraging. Nonetheless, more work could be done to verify our current findings and
build better systems. The following are some interesting topics we will be pursuing in the
future.

Frequency-domain pooling

We are going to further investigate the frequency-domain pooling methods. In our current
multi-branch frequency-domain pooling methods, we are only able to experiment with a
limited number of branches. We are interested in how the performance changes when
the number of branches increases. Besides, the current multi-branch frequency-domain
pooling methods introduce additional parameters when splitting the inputs into different
branches. We are going to explore the parameter-free ways.

In addition, channel attention and self-attentive pooling work on different parts of the
speaker embedding learning framework. Channel attention and frequency-domain pooling
methods work on the frame-level modeling, while self-attentive pooling is after the frame-
level modeling. Therefore, these embedding learning methods are complementary. We
will combine the proposed methods together to build a better speaker embedding learning
framework.

Self-supervised speaker embedding learning

The mainstream of building speaker verification systems relies on supervised learning ap-
proach, which requires a large amount of labeled data. Although the supervised methods
have achieved state-of-the-art system performance, leveraging the unlabeled speech data
is still an attractive research topic. In many practical scenarios, collecting sufficient anno-
tated training data is a non-trivial task. On the other hand, there are massive speech data
without speaker identity labels, for example, videos in public social media like YouTube,
speech data collected for automatic speech recognition tasks, etc. Self-supervised learning
methods have been investigated for learning speaker representations utilizing unlabeled
data.
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One direction of self-supervised speaker embedding learning is based on the idea of
input reconstruction. The first successful framework is proposed in [83]. It designs an
encoder-decoder structure. The encoder takes a speech segment from a certain speaker as
input, and learns a speaker embedding. The decoder takes the learned speaker embedding,
together with a random input speech segment from the same speaker and its corresponding
phone sequence as input, and learns to reconstruct the input speech segments in the frame
level.

The key idea is to reconstruct the frames of a random speech segment based on its cor-
responding speaker embedding and phonetic sequence. The speaker embedding contains
speaker-related information, and the phonetic sequence can be obtained from a speech
recognition model trained independently. Under this framework, the learned speaker em-
beddings are encouraged to discard the irrelevant phonetic information, and retain only
distinct speaker characteristics.

Figure 7.1: Architecture of self-supervised speaker embedding learning framework.

The overall architecture is illustrated in Figure 7.1, and the green parts are the network
layers that need to be trained. The framework can be trained in a pure self-supervised
way: the speaker labels and the speaker classification part can be removed, and the feature
reconstruction task is trained with the mean-squared error loss. Moreover, it can be easily
combined with supervised training approaches when speaker labels are available. The
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speaker classification task is trained with the cross-entropy loss, and it can be optimized
with the feature reconstruction loss jointly.

The framework does not require any exact speaker labels for speech segments. The
only constraint is that the input speech segment to the encoder and the decoder should
belong to the same speaker, which is easy to satisfy. In practice, we often have a large
amount of speech data, while only a fraction of them are labeled with speaker identity.
The framework can be trained in a semi-supervised manner in this case with limited
speaker labels.

Another direction of self-supervised speaker embedding learning is based on con-
trastive learning methods. The objective of contrastive learning is to minimize the intra-
class variation while maximizing the inter-class differences. A typical contrastive learning
framework consists of three modules: (1) An input construction module that prepares
positive and negative input pairs. Given an input sample, i.e. the anchor, a positive pair
consists of the anchor and another sample from the same speaker, and a negative pair
consists of the anchor and another sample from a different speaker. (2) An encoder that
encodes the input samples and generates compact speaker embeddings. (3) A contrastive
loss module that maximizes the similarity of positive pairs and minimizes the similarity
of negative pairs. One commonly used loss is the InfoNCE loss [84].

The first input construction module plays a crucial role. To make contrastive learning
work, it should generate sufficient correct positive and negative pairs, in the mean time,
it needs to be efficient in terms of time and memory cost. In practice, positive pairs
are usually obtained by data augmentation methods. The augmentation technique can
transfer an input sample into a different view by adding noises, reverberation, speed
perturbation, etc. The augmented sample together with the original anchor sample can
form a positive pair. Negative pairs are usually constructed within a mini-batch, any two
different input samples can be treated as a negative pair.

To learn better embeddings, contrastive learning prefers a large number of negative
pairs. The size of negative pairs constructed in the usual way is limited by the mini-batch
size. An alternative way is to maintain a separate dynamic queue to store a large number
of negative pairs [85]. Another problem of negative pair construction is the class collision
issue. Since we assume that different samples come from different speakers, negative pairs
are randomly sampled. In practice, this assumption may not hold and result in wrong
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pairs. The prototypical memory bank [86] is proposed to alleviate this problem. The key
idea is that in every epoch, we first cluster all the training samples, then negative pairs
are only sampled from different classes.

Recent research on self-supervised learning methods has helped bridge the gap be-
tween fully unsupervised learning and supervised learning. Besides, they can always be
used together with the supervised learning methods when speaker labels are available,
and further improve the system performance. Our proposed speaker embedding learning
methods can be adopted in the encoding modules of self-supervised learning frameworks.
We are interested in investigating the encoding network as well as new architectures for
self-supervised speaker embedding learning.

Spoofing aware speaker verification

“Spoofing” refers to an attack on speaker verification systems with fake biometrics from
a valid person, for example, audio playback, speech obtained by voice conversion, syn-
thesized speech, etc. Anti-spoofing is the task of identifying and rejecting these fake
biometrics. Anti-spoofing is an essential part of speaker verification in practice. Usually,
the anti-spoofing module is placed before the verification system. It identifies whether the
incoming speech is produced by real human beings, and only valid speech will be passed
to the subsequent verification system.

Anti-spoofing systems and speaker verification systems are considered and trained
separately all long. It is reasonable since they are two quite different tasks. Anti-spoofing
is basically a binary classification problem: it only needs the fake/real labels for speech,
and does not require any speaker labels. Therefore, for all state-of-the-art speaker ver-
ification systems, spoofing attacks are not considered in the training stage. When used
in practical application scenarios, the verification system needs to be deployed together
with a separate anti-spoofing system. Otherwise, the accuracy of the verification system
can drop dramatically.

Recently people start to consider jointly training the anti-spoofing system and the
speaker verification system as an integrated system, with the hope that better performance
can be obtained when these two systems are optimized together.

One straightforward way might be the ensemble model. We can make use of a pre-
trained anti-spoofing model and a pre-trained speaker verification model. The ensemble
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model takes the embeddings produced by two pre-trained models as input, and is trained
to identify whether the input belongs to the claimed speaker.

Another solution can be training the system in a multi-task fashion with multiple
output layers. The system is trained to identify fake/real speech and classify speakers at
the same time.

We are interested to investigate how our embedding learning methods perform when
anti-spoofing is considered in the speaker verification tasks. It is meaningful to develop
embedding learning methods for spoofing-aware verification and build robust speaker
verification systems.
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