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MULTI-LINGUAL AND MULTI-SPEAKER
NEURAL TEXT-TO-SPEECH SYSTEM

by

LIU, ZHAOYU

Department of Computer Science and Engineering
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ABSTRACT

Recent studies in multi-lingual multi-speaker text-to-speech (TTS) systems proposed models

that can synthesize high-quality speeches. However, some models are trained with proprietary

corpora consisting of hours of speeches recorded by performing artists and require additional fine-

tuning to enroll new voices. To reduce the cost of training corpora and support online enrollment

of new voices, we investigate a novel multi-lingual multi-speaker neural TTS synthesis approach

for generating high-quality native or accented speech for native/foreign seen/unseen speakers in

English, Mandarin and Cantonese. The unique features of the proposed model make it possi-

ble to synthesize accented/fluent speeches for a speaker in a language that is not his/her mother

tongue. Our proposed model extends the single speaker Tacotron-based TTS model by transfer

learning technique which conditions the model on pretrained speaker embeddings, x-vectors, using

a speaker verification system. We also replace the input character embedding with a concatenation

of phoneme embedding and tone/stress embedding to produce more natural speech. The additional

tone/stress embedding works as an extension of language embedding which provides extra controls
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on accents over the languages. By manipulating the tone/stress input, our model can synthesize

native or accented speech for foreign speakers. The WaveNet vocoder in the TTS model is trained

with Cantonese speech and yet it can synthesize English and Mandarin speech very well. It demon-

strates that conditioning the WaveNet on mel-spectrograms is good enough for it to perform well in

multi-lingual speech synthesis. The mean opinion score (MOS) results show that the synthesized

native speech of both unseen foreign and native speakers are intelligent and natural. The speaker

similarity of such speech is also good. The lower scores of foreign accented speech suggests that it

is distinguishable from native speech. The foreign accents we introduced can confuse the meaning

of the synthesized speech perceived by human raters.
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CHAPTER 1

INTRODUCTION

1.1 Text-to-speech System and Its Applications

The text to speech (TTS) system is a technology converting text to human speech. The conversion

is also known as speech synthesis which is a computer-based process to generate speech. These

systems are primarily designed to assist people with visual impairments to read various materials

such as books, newspaper, magazines, etc. Nowadays TTS systems are widely applied in many

areas not only to aid the disabled to read but also for study or entertainment by transforming read

books to audio ones. TTS systems are embedded in many computer operating systems and online

TTS services are also widely available with different qualities and for different purposes.

TTS systems can be evaluated in various aspects such as synthesis speed, synthesized audio

quality, emotions, number of speaker voices, number of languages, new voice enrollment, costs,

etc. Some TTS systems outperform the others in different aspects and are therefore used in differ-

ent applications. TTS reader is one of the applications of TTS systems to read texts. It requires

the TTS system to synthesize audios at real-time speed, i.e., the same speed at which the audio

is played. It also requires the synthesized audio to be highly intelligible. The high audio natural-

ness is also required but it is less important than the intelligibility. Many TTS readers are built

with traditional TTS systems. The cost could be expensive when using the concatenative-based

TTS systems because it requires a large speech database of speech segments of the same speaker.

However, the audio quality of the concatenative-based TTS systems is usually better than that of

other approaches such as formant-based and parametric-based TTS systems. Emotions, supporting

multiple speaker voices and new voice enrollments are nice additional features. In TTS readers,

supporting multiple languages is usually achieved by building separate systems in every language.

The costs of such TTS readers increase linearly with additional languages. Another application of

TTS systems is the chatbot. A chatbot is a software to conduct conversations with human beings.
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TTS systems can be applied in chatbots to interact with humans over speech instead of texts. The

requirements for TTS systems used in chat bots are similar to those for TTS readers except that

the emotions can become more important in conversational speeches. Moreover, TTS systems can

be also applied in film dubbing. Film dubbing is more critical on synthesized audio quality and

emotions. Real-time synthesis is usually not necessary. Even though it may be less critical on the

costs and the other features such as multiple speaker voices and languages, it is always desired to

reduce the costs by improving TTS systems.

Figure 1.1: A typical traditional TTS system architecture.

A typical traditional TTS system as depicted in Figure 1.1 consists of a front-end text analyzer

and a back-end synthesizer. Text analysis is necessary to prepare phoneme-level linguistic infor-

mation for the synthesizer to synthesize the speech waveform. Text is normalized where numbers

and abbreviations, which are ambiguous in pronunciations, are converted to orthographic forms.

They are further converted to phonemes. Their locations are determined by an extra segmentation

model and their durations are predicted by phoneme duration model. Fundamental frequency (F0)

is also computed with the fundamental frequency estimator. All these features are input to the

back-end to synthesize speech waveform. Sometimes the back-end may be further separated to two

components as shown in Figure 1.2, a synthesizer and a vocoder, where the synthesizer converts
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linguistic features to acoustic features and the vocoder convert acoustic features to speech wave-

form. Normally, acoustic features are intermediate features which can be directly computed from

audio waveform by signal processing techniques to bridge the synthesizer and the vocoder. Some

of the most popular conventional back-end systems includes concatenative unit-selection synthesis,

parametric synthesis and formant synthesis. Despite the fact that traditional methods can be suc-

cessful in producing speeches, recently developed neural synthesis techniques can outperform the

traditional ones in various aspects.

In traditional TTS synthesis methods, system components such as the grapheme-to-phoneme

model, phoneme duration model, segmentation model, fundamental frequency estimation model

and synthesis model are trained separately. They require expert domain knowledge to produce

high-quality synthesized speech. With the advance of deep learning, they are replaced by neural

models. Recent studies [2, 33, 24, 26] propose integrated neural networks that simplify the training

process. [24] also proves the neural synthesis can generate high-quality and natural speeches close

to human’s. Such neural-based TTS systems can greatly reduce the costs. These recent studies

adopt a system architecture consisting of an end-to-end front-end model and a vocoder. This kind

of architecture integrates multiple separate system components of traditional TTS systems. It re-

duces the amount of feature engineering and shortens the time for training new engineers for the

maintenance. The audio quality of synthesized audios is also improved.

Extending TTS systems to support multiple voices can help to make them more adaptive to

various applications. Another motivation of multi-speaker TTS systems is to reduce the amount

of training data required per speaker since recording hours of speech of one speaker has been

a big barrier in training TTS systems. Several recent works proved that a TTS system can be

trained with tens of minutes of speech per speaker from many speakers. Multi-speaker TTS systems

can synthesize audios in multiple speakers’ voices by training a single model. It avoids building

multiple separate single-speaker TTS systems to achieve the same purpose so as to reduce the cost.

The cost of building training corpora can be reduced as well. Some TTS systems support new

speaker enrollments where a new speaker’s voice can be added to the model using a few minutes of

their recordings. The synthesized audio quality of some multi-speaker TTS systems is lower than

single-speaker TTS systems but is still acceptable.
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Multi-lingual TTS systems extends previous TTS systems to support multiple languages. The

fantastic feature of such systems is cross-lingual voice cloning which can synthesize target speak-

ers’ speeches in more than one languages not limited to their native language. New speakers’

voices can be registered and cloned with their speech and the system can synthesize new speeches

from them in all supporting languages. Voice cloning can be a unique feature for film dubbing

to synthesize foreign speeches apart from the native language of the actors. Some multi-lingual

TTS systems can also synthesize foreign speeches with various accents and fluency to distinguish

between foreigners and secondary language learners.

1.2 Proposed Model and Its Contributions

Figure 1.2: Multi-lingual multi-speaker TTS system using speaker embedding, language embed-
ding and tone/stress embedding.

In this thesis, we propose a novel neural based multi-lingual multi-speaker TTS system ar-

chitecture as shown in Figure 1.2. We demonstrate that our proposed system can generate both

foreigner’s native/accented speech and native speech for seen or unseen speakers without parallel

corpuses. The system can synthesize native speeches in target speaker’s voices which sound like

native speakers in their mother language. It can also synthesize foreign native speeches which

sound like foreigners speaking their secondary language fluently. It can also synthesize foreign

accented speech which sounds like foreigners speaking foreign languages with the accent of their

mother language. The proposed system can synthesize those speeches with different inputs. It is

shown from mean opinion score (MOS) results that both the synthesized native and foreign native
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speeches are high intelligible, natural but distinguishable from each other. The synthesized na-

tive speech is more intelligible and natural than synthesized foreign native speech. The proposed

system also alleviates the need of large amount of speech data for new speakers enrollment and

no additional training is necessary. With 2-3 minutes of speech from a new speaker, our model is

able to extract the x-vector and synthesize high-quality speech in the target speaker’s voice. Further

more, the model can be trained with a simple mixture of multiple corpuses from different languages

instead of parallel corpuses which require each utterance in one language having its translations in

another language. The proposed model can synthesize high-quality audios in different voices and

languages with a single model. Comparing with traditional TTS systems, the proposed model re-

duces the cost of building multiple models to support multiple voices and languages. Comparing

with other existing multi-lingual multi-speaker models, the unique feature of the proposed model is

that it can synthesize those high-quality speeches with various accents in a different language from

the new speaker’s native language in which the new data is recorded. One scenario to apply the pro-

posed model is to synthesize fluent/accented foreign speeches of film actors, e.g., fluent/accented

English speeches for Jackie Chan, who enrolls with only Cantonese utterances (and Cantonese is

his mother tongue). Furthermore, the English and Mandarin corpora used to train the proposed

model are open-source and it means the proposed model is reproducible. The corpora used to train

the proposed model contain less than 30 minutes of data per speaker, so it is less costly compared

with corpora with hours of speeches per speaker from performing artists.

The remaining of the thesis are organized as follows. Chapter 2 reviews the literature of the

neural-based TTS systems including single speaker TTS, multi-speaker TTS and multi-lingual

TTS. Chapter 3 introduces the important concepts of the proposed TTS system including the input

linguistic and acoustic features, speaker embeddings and language embedding. It also introduce the

concept of mean opinion score (MOS) as the subjective evaluation method of TTS systems. Chapter

4 describes the system design and the architecture including training corpuses, data preprocessing

and the implementation of the components of the proposed system. Chapter 5 demonstrates some

of the preliminary experiments and the results. Those experiments find the optimal of various sub-

stantial factors that affect the performance of proposed system. Chapter 6 discusses the experiment

results of the baseline and proposed system in three aspects, intelligibility, naturalness and speaker
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similarity. Finally, chapter 7 concludes the thesis.
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CHAPTER 2

LITERATURE REVIEW

2.1 Neural TTS

There are several recent studies on neural TTS system where their results have demonstrated the

huge potential of neural speech synthesis techniques.

Deep Voice [2] presents a neural TTS system which replaces each separate system component

with a neural network-based model. The architecture is shown in Figure 2.1. The system can

synthesize intelligible speech in real time or much faster than real time. However, according to

their study, the faster synthesis speed may be achieved at a cost of speech quality.

Figure 2.1: The TTS system: Deep Voice 1.

In contrast, Char2wav [26] and Tacotron [33] and its improved version Tacotron2 [24] resort

to a totally end-to-end neural model1 that uses an attention mechanism to convert a sequence of

1Actually “end-to-end” here only means that both Char2Wav and Tacotron generate vocoder features, not speech
audios, from some representation of input texts.
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text directly to its corresponding sequence of acoustic features, from which speech audios may

be generated using a vocoder. Char2Wav generates WORLD features [19] and uses SampleRNN

[18] to generate speech, while Tacotron/Tacotron2 generates linear/mel spectrograms and uses the

Griffin-Lim (GL) [11] and WaveNet [30] vocoder, respectively. Tacotron 2 can synthesize natural

speech comparable to genuine human speech. These works prove that the neural network can be

successfully applied to speech synthesis and it greatly simplifies the overall system architecture and

training process.

Figure 2.2: The TTS system: Tacotron 2.
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2.2 Multi-speaker TTS

Single-speaker neural TTS systems can be readily extended to support multiple speakers’ voices.

There are several studies that present novel approaches to English Multi-speaker TTS system. Most

of them introduce extra speaker embeddings to represent the identity of the training speakers. Dif-

ferent works integrate with speaker embedding in different ways. Some of them transfer the knowl-

edge of pretrained speaker embeddings from other independent systems trained with a large number

of speakers. Some other works introduce trainable speaker embedding to the TTS system which

are jointly trained with the system parameters.

As in Figure 2.3, [8] takes the multi-task learning approach and duplicates the output layer for

each of its training speakers so that each speaker is trained with its own speaker-dependent output

layer while sharing other hidden layers in the model. Obviously, the model parameters in its output

layer grow linearly with the number of training speakers and it will encounter problems dealing

with a large number of speakers.

Figure 2.3: The DNN based multi-speaker TTS system.

Multi-speaker Tacotron, as in Figure 2.4 [13] is introduced by conditioning Tacotron 2’s model

on pre-trained d-vectors so that new speakers can be enrolled with a few seconds of speech. It uses
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transfer learning technique to transfer the knowledge of pretrained speaker embeddings extracted

from speaker verification systems to speech synthesis. The results shows the overall system can

synthesize intelligent and natural speech in English. However, the results also shows the large

number of speakers (over 18k speakers) is an important factor to train a successful system.

Figure 2.4: The TTS system: Multi-speaker Tacotron 2.

Similarly, Deep Voice 2 [10] as shown in Figures 2.5, 2.6 and 2.7 and Deep Voice 3 [21] extend

Deep Voice to multi-speaker TTS. Unlike Tacotron 2, Deep Voice 2 and 3 condition each layer of

the model with speaker embeddings which is jointly trained with the rest of the TTS system. For

example, Deep Voice 3 claims to support 2400 voices. However, enrollment of new speakers in

[10] and [21] will require additional training. VoiceLoop [29] uses a fixed-size memory buffer to

accommodate speaker-dependent phonological information and facilitates multi-speaker synthesis

by buffer shifts. New speaker embeddings can be trained by an optimization procedure while

fixing the other model parameters. Neural Voice cloning [1] introduces a similar speaker adaptation

method where both model parameters and speaker embeddings are fine-tuned with data from the

new speaker.

Using trainable speaker embeddings or transfering the knowledge of pretrained speaker em-

beddings have both advantages and disadvantages. Trainable speaker embedding requires further

training to synthesize speech for unseen speakers. However, it is more data efficient without re-

quiring a large number of speakers. On the contrary, transfer learning separates the training of TTS

system and speaker embeddings. New speaker enrollment is much easier with a pretrained speaker

verification system.
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Figure 2.5: Deep Voice 2: Speaker embeddings in the segmentation model.

2.3 Multi-lingual TTS

Multi-lingual TTS further extends multi-speaker TTS to support synthesis in more than one lan-

guage. For example, [6] introduces a cross-lingual TTS system in English and Mandarin trained
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Figure 2.6: Deep Voice 2: Speaker embeddings in the duration model.

with their phoneme inputs in IPA representation without language embedding. It succeeds in syn-

thesizing speech in two languages, however, it can only synthesize native speech but not accented

speech. It uses the Griffin & Lim [11] vocoder (instead of WaveNet or other neural-based high

fidelity vocoders) resulting in synthesized speech of lower quality.

[35] presents a TTS system as shown in Figure 2.8. Even though it shares many ideas in our

system, there are the following notable differences:

• Most importantly, results in this thesis are reproducible as we use publicly available training

corpora: English from LibriSpeech and Mandarin from SurfingTech, Aishell and Cantonese
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Figure 2.7: Deep Voice 2: Speaker embeddings in the fundamental frequency (F0) model.

from CUSENT, while the system in [35] is trained on proprietary data.

• [35] aims at synthesizing speech with a few training speakers’ voices; thus, their training

data consists of few speakers (some are professional voice actors) but each has tens of hours
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Figure 2.8: Multi-lingual Tacotron 2.

of speech. On the contrary, we train our system on hundreds of speakers with less than 25

minutes of speech from each speaker. We believe our system is more generalizable to new

speakers and we report results on unseen speakers while [35] does not.

• Both our system and theirs employ shared phonemes for inputs and speaker embeddings

and stress and tone embeddings. However, we use the state-of-the-art x-vector for speaker

embedding while theirs is d-vector. We expect our synthesized speech will be better in terms

of speaker similarity, especially for unseen test speaker.

• Our model is simpler with no residual encoding nor adversarial training. Instead, we inves-

tigate on the effect of various normalization methods on the speaker embedding vectors for

enhancing the intelligibility, naturalness and speaker similarity of the synthesized speech.

• We also investigate the effect of training the WaveNet vocoder with one language (Cantonese)

only to synthesize speech of the intended languages (Cantonese, English and Mandarin) in

the system.
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CHAPTER 3

TTS BASICS

3.1 Linguistic Features

The TTS system accepts linguistic features as input. In traditional approaches, linguistic features

are at phoneme-level which needs text analysis preprocessing. In some mono-lingual systems, char-

acter embeddings are used instead of phoneme embeddings to simplify the procedure. However, it

is reported by several works that systems [13, 35] working with phoneme embeddings outperform

character embedding significantly.

3.1.1 Phoneme Embedding

Phoneme embedding is an vector representing phonemes in languages. All possible phonemes in

one target language form a phoneme set. Each phoneme is represented by an embedding jointly

trained with the system. For example, a popular English phoneme set is ARPABET. In English

TTS systems, we use the ARPABET phoneme set with 39 phonemes.

3.1.2 Tone/stress Embedding

Tone/stress embedding in this thesis refers to the one-hot embedding representing tones in tonal

languages and stresses in English. There are 5 tones in Mandarin, no tone and tone one, two, three

and four. Similarly, there are six tones in Cantonese. English is a non-tonal language with three

stresses, primary stress, secondary stress and no stress.

There are two methods to input tone and stress information to a TTS system. In mono-lingual

systems, tone/stress and phonemes are not separated. For example, in English TTS systems, there

are ‘AA1’, ‘AA2’ and ‘AA0’ phonemes in the phoneme set for phoneme ‘AA’ with primary,
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secondary and no stress, respectively. However, in multi-lingual systems, we only include one

phoneme ‘AA’ in the phoneme set and the stress information is separately stored in the tone/stress

embedding to reduce the size of the phoneme set.

Index Tone/stress
0 Mandarin: Neutral tone
1 Mandarin: Tone one
2 Mandarin: Tone two
3 Mandarin: Tone three
4 Mandarin: Tone four
5 English: No stress
6 English: Primary stress
7 English: Secondary stress
8 Cantonese: High level (Tone one)
9 Cantonese: Mid rising (Tone two)

10 Cantonese: Mid level (Tone three)
11 Cantonese: Low falling (Tone four)
12 Cantonese: Low rising (Tone five)
13 Cantonese: Low level (Tone six)

Table 3.1: The index of one-hot tone/stress embedding and the tone or stress it represents in Can-
tonese, English and Mandarin.

3.1.3 Accents

We synthesize speeches in five accents in each language. For example, for language A, we syn-

thesize (1) the native speech in language A spoken by its native speakers; (2-3) the foreign native

speech spoken by native speakers of the other languages B and C; (4-5) the foreign accented speech

spoken by native speakers of the other languages B and C. We would like to demonstrate the dif-

ferences between native speeches spoken by speakers in three different languages as well as the

differences between foreign accented and foreign native speeches to imitate the different levels of

fluency (foreign to fluent) they have in a second language. This is achieved by manipulating the

tone/stress inputs among different cases as shown in Figure 3.1, 3.2 and 3.3.

In each language, our proposed system will first convert the native phoneme representation

to ARPABET phonemes without stresses. To synthesize different accents for an utterance, we
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input the same phoneme inputs but different tone/stress inputs. To synthesize speeches with native

accents (1), (2) and (3) in the target language, we input the natural tone/stress in the target language.

We input a constant tone/stress representation from the native language of the target speaker to

synthesize speeches with foreign accented accents. For example, Mandarin speakers utter their

accented Cantonese and English speech with the tone one in Mandarin.

Figure 3.1: Linguistic feature inputs for synthesizing an English utterance in native English, Man-
darin speakers’ native/accented English and Cantonese speakers’ native/accented English.
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Figure 3.2: Linguistic feature inputs for synthesizing a Cantonese utterance in native Cantonese,
English speakers’ native/accented Cantonese and Mandarin speakers’ native/accented Cantonese.
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Figure 3.3: Linguistic feature inputs for synthesizing a Mandarin utterance in native Mandarin,
Cantonese speakers’ native/accented Mandarin and English speakers’ native/accented Mandarin.
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3.2 Acoustic Features

Acoustic features are the acoustic properties of speech signals for speech analysis. Basic acoustic

features are volume, pitch and timber. Commonly used acoustic features in speech synthesis are

the Mel Frequency Cepstral Coefficients (MFCC), Mel-frequency spectra and Linear Predictive

Coefficients (LPC). Acoustic features are often used as the intermediate features bridging the syn-

thesizer and the vocoder in the back-end of a TTS system. The proposed model in this thesis uses

the mel-frequency spectra as acoustic features.

3.3 Speaker Embedding

In the experiments conducted in this thesis, speaker embedding is the conditional input to the

TTS system representing the identity of speakers. As in [13], they are extracted from a pretrained

speaker verification system and their knowledge are then transfered to TTS systems.

3.3.1 Speaker Verification

Figure 3.4: The system flow of the GMM-UBM based conventional speaker verification system.

Speaker verification is a task to verify if the input speech utterance is spoken by the claimed

speaker. Before the advent of deep learning the dominant conventional speaker verification ap-

proach is based on the Gaussian Mixture Model-Universal Background Model (GMM-UBM) which

produced top performances in the annual NIST Speaker Recognition Evaluations (SRE) according

to [23]. In general, given a speech utterance, Y, containing speech from a single speaker and a
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claimed speaker identity, S, a speaker verification system should make a final decision between the

two hypotheses:

H0 : Y is from the claimed speaker S (3.1)

and

H1 : Y is not from the claimed speaker S. (3.2)

The final decision, ‘accept’ or ‘reject’ the hypothesis H0, is made using a likelihood ratio test:

p(Y |H0)

p(Y |H1)

{
≥ θ, accept H0;

< θ, reject H0,
(3.3)

where p(Y |Hi), i ∈ {0, 1} is the likelihood of the hypotheses Hi given Y, and θ is the threshold.

Different speaker verification systems models the likelihoods differently. As shown in Figure

3.4, the GMM-UBM based approach with speaker adaptation [23] uses the GMM-UBM trained

by many background speakers to model the likelihood of H1 and uses the speaker model which

is adapted from the UBM trained by speaker-dependent speech to model the likelihood of H0.

However, speaker representations are introduced in the recent speaker verification systems includ-

ing the d-vector [31], i-vector [15, 4, 9] and x-vector [25] systems with the Probabilistic Linear

Discrimination Analysis (PLDA) back-end.

The i-vector-PLDA system consists of the UBM-based i-vector system and the PLDA scoring

back-end. The i-vector system defines a low-dimensional space named total variability space which

models both speaker and channel variabilities. In the contrary, these variabilities are modeled

separately in another SV approach proposed in [14] before the i-vector. In the i-vector approach,

given a speech utterance, its feature vectors are modeled by a GMM supervector, M , with the

mean supervector m from the trained UBM and the low-rank convariance matrix T . The new total

variability space is defined in Equation 3.4 by factor analysis:

M = m+ Tw, (3.4)
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where w consists of the loading factors. To train the i-vector system, a GMM-UBM is first trained

with many background speakers’ speech. The mean vector of the UBM is denoted as m. The total

variability matrix T can be further trained with the Expectation Maximization (EM) algorithm.

After training the i-vector system, a PLDA back-end is trained with extracted i-vectors for scoring

the likelihoods.

The d-vectors are the speaker representations extracted from a deep neural network (DNN)

trained with frame-level speech features and the softmax cost function. The x-vectors are also

DNN-based speaker representations. However, they are different from the d-vectors by aggregating

the frame-level features to utterance-level features using a statistics pooling layer. PLDA is also

used in [25] as the back-end for better performance. The details of the x-vector system is described

in Section 4.4.

D-vectors proposed in [32] are used for multi-speaker TTS synthesis by transfer learning in

[13]. In our thesis, we test the performance of the state-of-the-art x-vectors in speech synthesis.

3.3.2 Equal Error Rate

To evaluate speaker verification systems, a series of trials are prepared with pairs of utterances and

speaker embeddings. If the utterance is uttered by the claimed speaker identity represented by the

embedding, the trial is labeled as target, otherwise non-target. Equal error rate is the acceptance

and rejection error rates (FAR and FRR), defined in Equations 3.7 and 3.8, when they are equal.

The system is better if the equal error rate is lower.

False Accept (FA): accept when the speaker is an impostor (3.5)

False Reject (FR): reject when the speaker is legitimate. (3.6)

False Acceptance Rate (FAR) =
Number of FA errors

Number of non-target trials
(3.7)

False Rejection Rate (FRR) =
Number of FR errors

Number of target trials
(3.8)
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3.4 Language Embedding

Since it is possible to have the same pattern of phoneme inputs among the utterances in different

languages, language embedding is another conditional input to TTS system which represents the

language identity when the linguistic features alone can’t reveal the ambiguity of the input lan-

guage. However, language embedding is unnecessary in our system where the input tone/stress

embedding is language-dependent.

3.5 Mean Opinion Score

Mean opinion score (MOS) is a popular subjective measure of speech quality. Currently, there are

no good objective measures available, thus MOS is widely adopted in evaluating TTS systems.

MOS is the arithmetic mean of the human raters’ opinions on the synthesized speeches. Absolute

category rating scale is used in MOS tests. For example, a commonly used scale is the Bad-

Excellent scale mapped to rational numbers from 1 to 5. Table 3.2 shows the mapping used in

our MOS tests. We use the Bad-Excellent scale and the Dissimilar-Same Speaker scale which are

mapped to numbers 1-5 with 0.5 increments. The Bad-Excellent scale is used for the measure of

intelligibility and naturalness. The Dissimilar-Same Speaker scale is for the measure of speaker

similarity.

Figure 3.6 and 3.7 show the question page for testing each aspect. We design the MOS tests

such that each rater is required to indicate their fluency in each language in three levels, foreign,

fluent or native. The question page is shown in Figure 3.5. Only the responses from respondents

who indicate at least fluent if not native in all languages are used to compute the MOS.
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Rating Bad-Excellent Dissimilar-Same Speaker
5 Excellent Same speaker

4.5 - -
4 Good Similar

2.5 - -
3 Fair Slightly similar

2.5 - -
2 Poor Slightly dissimilar

1.5 - -
1 Bad Dissimilar

Table 3.2: Absolute category rating scale for MOS test in intelligibility, naturalness and speaker
similarity.

Figure 3.5: Question page for collecting language fluency information.
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Figure 3.6: Question page for testing intelligibility and naturalness.

Figure 3.7: Question page for testing speaker similarity.
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CHAPTER 4

SYSTEM DESIGN

4.1 Overview

Our proposed system consists of a speaker encoder, a mel-spectrogram synthesizer and a vocoder.

All three components are separately trained. The speaker encoder produces x-vector speaker em-

bedding. After it is trained, speaker embedding of new speakers can be extracted by enrolling

their speech. The mel-spectrogram synthesizer is trained with x-vectors, and linguistic features and

acoustic features derived from text-audio pairs. Linguistic features includes phoneme embedding

and tone/stress embedding. Acoustic features are mel scale spectrograms computed from training

audio waveforms. Both the speaker encoder and the mel-spectrogram synthesizer are trained with

multi-lingual data from various corpora. The vocoder, WaveNet, is trained with mel-spectrograms

and audio waveform in CUSENT.

4.2 Speech Corpora

The experiments conducted in this thesis are trained on 4 speech corpora in three languages: (1)

Librispeech [20]; (2) SurfingTech [28]; (3) Aishell [5]; (4) CUSENT [16]. Librispeech is an open-

source English corpus. There are two open-source Mandarin corpora, SurfingTech and Aishell. The

CUSENT corpus is in Cantonese. They are all transcribed multi-speaker speech corpora sampled

at 16kHz.

4.2.1 Librispeech

Librispeech is an English speech corpus derived from audio books of LibriVox 1 corpus. It consists

of the 100-hr and 360-hr ‘train-clean’ sets and another 500-hr set named ‘train-other’. The 100-
1https://librivox.org/
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hr and 360-hr ‘train-clean’ sets are selected with speeches of higher quality and accents closer to

American English. On the contrary, the 500-hr set has substantial background noise. The cleaner

sets are used as the English training data for all of the experiments. The selected subsets have 564

female speakers and 608 male speakers with around 25 minutes of speech per speaker. Librispeech

has a test set which contains 40 speakers with the same amount of data per speaker. Linguistic

models, lexicon and orthographic transcriptions are provided by the corpus.

4.2.2 SurfingTech

SurfingTech is a Mandarin corpus consists of 855 speakers, 102600 utterances in total. Each

speaker has approximately 10 minutes of data. We further split the corpus to a training and test-

ing set by randomly selecting 800 speakers for training and 55 speakers for testing. Orthographic

transcriptions are provided.

4.2.3 Aishell

Aishell is another Mandarin corpus consisting of 400 speakers with around 26 minutes of speech

per speaker. The training, development and test sets contain 340, 40 and 20 speakers, respectively.

In all of the experiments, only the training and test sets are used.

4.2.4 CUSENT

CUSENT is a Cantonese corpus consist of 68 training speakers and 12 testing speakers with ap-

proximately 17 minutes of speech per speaker. CUSENT provides both orthographic and phonetic

transcriptions in Jyupting.

4.3 Linguistic and Acoustic Features

Instead of character representation in [26, 33, 24], the input text in any of the three languages are

represented by its phoneme sequence which has been proved in [13, 35] to generate more natural
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speech. The training set of Librispeech, SurfingTech and CUSENT are used to train the multi-

lingual synthesizer that will generate spectrogram of speech in Cantonese, Mandarin or English.

They are preprocessed differently to prepare linguistic features.

4.3.1 Denoising

Even though the ‘train-clean’ training sets in Librispeech have relatively smaller background noise

compared to the 500-hr ‘train-other’ training set, the background noise can still affect the quality of

synthesized speech according to [13] and some of our preliminary experiments. Audio denoising

with block thresholding technique [34] is applied to English training data. No denoising is required

for the SurfingTech and CUSENT corpus, since they contain no apparent background noise.

4.3.2 Forced Alignment

Figure 4.1: An example of forced alignment between the audio waveform and word/phoneme-level
transcriptions.

Forced alignment, as shown in Figure 4.1, is a technique to align the orthographic or pho-

netic transcription with audio waveform along the time axis. As a result, precise time locations of

boundaries of both words and phonemes are computed and noted for an audio waveform.

Librispeech and SurfingTech contain significant short pauses in the middle of their utterances.

Forced alignment helps to label the silence region in the middle of the utterances where the short
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pauses occurs. It helps the synthesizer to capture the boundaries of regular phonemes more pre-

cisely to obtain more natural prosody in the synthesized speech.

The Montreal Forced Alignment toolkit [17] is an open-source tool for forced alignment. It

provides pretrained acoustic models and grapheme-to-phoneme models for both English and Man-

darin. The forced alignment for Librispeech is straightforward since the pretrained models are

originally trained on Librispeech where phonemes are represented in ARPABET phoneme set. On

the contrary, preprocessing is required for forced aligning SurfingTech utterances since they pro-

vide only orthographic transcriptions and the grapheme-to-phoneme model is trained with pinyin.

Google translate is applied for the conversion from the Chinese orthographic transcriptions to their

pinyin.

4.3.3 Input Representation

To synthesize speeches in multiple languages, a shared phoneme set is created by mapping all

pinyin phonemes in Mandarin and Jyupting phonemes in Cantonese to ARPABET phonemes.

Three exceptions of pinyin phonemes ‘j’, ‘q’ and ‘x’ are treated as distinct phonemes as no good

ARPABET mappings are found. The mapping table is attached in the appendix. The phonemes in

the phoneme set are represented by 512-D vectors learned from one-hot vectors which are referred

as phoneme embeddings.

To improve the naturalness of the synthesized speech, tone/stress embedding are input ad-

ditional to phoneme input. They are represented as 14-D one-hot embeddings concatenated to

phoneme embedding.

4.3.4 Acoustic Features

In this thesis, we use mel-frequency spectra as the acoustic features. To be specific, the output of

the synthesizer and the conditional input of the WaveNet are sequences of mel-frequency spectra

named mel-spectrogram. A linear spectrogram is a sequence of spectra which is a spectral vector

in frequency-domain derived by applying short-time Fourier transform (STFT) to speech signal

in time-domain. Mel-spectrograms are spectrograms in mel scale, which is introduced based on
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Layer Layer context Tot. context In x out
Frame 1 [t-2, t, t+2] 5 5F x 512
Frame 2 {t-2, t, t+2} 9 1536 x 512
Frame 3 {t-3, t, t+3} 15 1536 x 512
Frame 4 {t} 15 512 x 512
Frame 5 {t} 15 512 x 1500

Stats pooling [0, T) T 1500T x 3000
Segment 6 {0} T 3000 x n-D
Segment 7 {0} T n-D x 512
Softmax {0} T 512 x N

Table 4.1: The detailed configurations of the x-vector network where the x-vector dimension is
denoted as n-D, F denotes the dimension of filterbanks features of one frame, T denotes the total
number of frames of the input utterance, and N denotes the number of training speakers.

human perception of speech pitches, instead of in Hertz scale. In the thesis, the STFT uses 50 ms

frame length, 12.5 ms hop size and the Hanning window. The spectral energies are computed over

an 80 channel mel filterbanks spanning from 125 Hz to 7600 Hz.

4.4 Speaker Embeddings - x-vectors

X-vector is known as the state-of-the-art method in speaker verification tasks. As depicted in 4.2,

the x-vector system we use is a TDNN consisting of 7 hidden layers, a statistics pooling layer and

a softmax layer. The first five hidden layers operates on frame level temporal contexts. Assuming

that there are T frames input, the first hidden layer captures a context over 5 frames centered at the

current frame at time t. The second and third layer each captures 3 previous layer outputs centered

at current output with strides of 2 and 3 frames, respectively. The fourth and fifth layers only

capture current output. Building up temporal contexts over the first three hidden layers expands the

DNN’s frame-level receptive field up to 15 frames before statistics pooling. Statistics pooling layer

aggregates outputs from the fifth layer throughout all frames input from time 0 to time T. Their

mean and variance are computed as segment-level features capturing information over T frames

and are forwarded to the last two hidden layers. All nonlinearities are rectified linear units (ReLU).

The entire network is trained to classify the training speakers in the training data. After training,

x-vectors are extracted from the sixth hidden layer output before ReLU. In this thesis, 64-D, 128-D
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Figure 4.2: The deep neural network architecture of the x-vector system.

and 512-D (n-D) x-vectors are tried.

A Probabilistic Linear Discriminant Analysis (PLDA) backend [12] is used in x-vectors for

scoring paired speaker embeddings. First, LDA is applied to reduce speaker embedding dimen-
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sions. LDA outputs are length-normalized before PLDA is applied. Finally, PLDA scores are

normalized with adaptive s-norm [27].

In the experiments, x-vector system is built with standard parameters mentioned in [25] and the

provided recipe in Kaldi toolkit [22]. Speaker embedding dimension might be changed in different

experiments by changing the output dimension of the sixth hidden layer.

4.5 Neural Mel-spectrogram Synthesizer

Figure 4.3: The architecture of Tacotron 2 including the encoder and decoder of the synthesizer
and the WaveNet.
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The mel-spectrogram synthesizer is a modified version of the synthesizer in Tacotron 2 [24].

In [24], it is an attention-based encoder-decoder neural network which is trained with character

embeddings and mel-spectrograms. Figure 4.3 describes the entire architecture of Tacotron 2 in-

cluding the synthesizer and the WaveNet. The encoder of the synthesizer computes a sequence

of hidden representation from input character embeddings and inputs them to the attention mech-

anism. A context vector is summarized by the attention network which is given to the decoder

to predict the mel-spectrogram frame by frame. The synthesizer in the proposed system is im-

plemented similarly to that in Tacotron 2 except a few differences: (1) phoneme embedding and

tone/stress embedding are used instead of character embedding. The tone/stress embedding is con-

catenated to the phoneme embedding to produce a 526-D embedding before they are input to the

encoder. (2) The speaker embedding is concatenated to the encoder’s output hidden representations

same as in [13].

In detail, Tacotron 2 adopts a sequence-to-sequence architecture converting character embed-

ding to mel-spectrograms which can be further input to a vocoder, such as WaveNet, for waveform

generation. According to [24], the MOS results show that the synthesized speech is very close to

human’s genuine speeches. Instead of using many separate acoustic features, Tacotron 2 uses a

lower level acoustic feature, the mel-spectrogram, to bridge the synthesizer and vocoder. The mel-

spectrograms can be computed efficiently from audio signals. Using it also enables the separate

training of the synthesizer and the vocoder such that it can cooperate with the WaveNet.

4.5.1 The Encoder

The encoder comprises a stack of 3 convolutional layers and one bi-directional LSTM layer. Each

of the convolutional layers consists of 512 kernels of shape 5×1 followed by a batch normalization

and Relu activations. Each kernel spans 5 characters and the stack of the these convolution layers

increases the receptive field to model a longer context. These CNNs computes local deep features

from the input embeddings while capturing long-term dependencies. The bi-directional LSTM

layer consists of 256 units in each direction. It receives the output from the convolutional layers

and predicts a sequence of hidden representations ht(h1, h2, ...hL) over the L-length input utterance

as the encoded features.
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4.5.2 Attention Mechanism

Figure 4.4: A general frame work of attention mechanism.

The attention mechanism used in Tacotron 2 is a location sensitive attention network proposed

in [7] for speech recognition. Different from the original attention mechanism proposed in [3],

the location sensitive attention is shown to be more adaptive for longer testing inputs than training

utterances in speech recognition. The same situation also happens in speech synthesis. Shorter

training utterances increases the batch size to stabilize the training process. But it is quite often to

synthesize longer utterances in testing. In our experiments, the longest training utterances are 10

seconds. In real life applications, the system is often used to generate longer speech.

hi = Encoder(xi, hi−1) (4.1)

Figure 4.4 shows the architecture of a generic attention mechanism. The attention mechanism

is first introduced to an RNN-based Encoder-Decoder neural network which generates an output

sequence y, (y1, ...yt) from the input x(x1, x2, ...xL). In this network, the input x is first processed
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by a recurrent neural network encoder which outputs a sequence of hidden representation sequence

ht(h1, h2, ...hL) which is at the same length L of the input x. The process is described in Equation

4.1. The decoder predicts the output y step by step at each output time step. At the i-th step, the

decoder generates yi as follows:

αi = Attend(si−1, h) (4.2)

ci =
L∑

j=1

αi,j, hj (4.3)

yi = Generate(si−1, ci) (4.4)

si = Decoder(si−1, ci, yi) (4.5)

where si−1 is the (i − 1)-th hidden state of the decoder recurrent neural network and αi is the

attention weights, also known as the alignment, used for the decoder to focus differently on the

hidden representations h to predict the output yi at the i-th step. The attention weights are updated

at each time step according to Equation 4.2. The context vector ci at the i-th step is computed by

Equation 4.3. Based on the context vector and previous decoder hidden state, the decoder predicts

the output yi described in Equation 4.4. Finally, the decoder updates its hidden state si by Equation

4.5.

ei,j = Score1(si−1, h) (4.6)

ei,j = Score2(αi−1, h) (4.7)

ei,j = Score3(si−1, αi−1, h) (4.8)

αi,j =
exp (ei,j)∑L
j=1 exp (ei,j)

(4.9)

The Attend function is implemented by a score function. The attention weight αi,j on en-

coder output hj at the i-th step is computed by a softmax function over the scores ei,j computed by

the Score function. Different attention mechanisms are distinguished as content-based attention,

location-based attention and hybrid attention based on different Score functions. The attention
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mechanism which uses the Score function in Equation 4.6 which only focuses on the decoder

hidden state is called the content-based attention. Equation 4.7 that focuses on the previous atten-

tion weights is location-based. The attention mechanism which uses Equation 4.8 is called hybrid

attention.

The location sensitive attention in the synthesizer implements a hybrid attention by adding

previous alignment in its Score function by convolving a matrix F with αi−1. The implementation

of the Score function is described by Equation 4.11.

fi = F ∗ αi−1 (4.10)

ei,j = wT tanh(Wsi−1 + V hj + Ufi,j + b) (4.11)

The attention summarizes the encoded hidden representations into a fixed-length context vector.

Attention weights are computed after projecting inputs and location features to 128-dimensional

hidden representations. Location features are computed using 32 1-D convolution filters of length

31.

4.5.3 The Decoder

The decoder autoregressively predicts a mel spectrogram from the attended context vector one

frame at a time. The prediction from the previous time step is passed through a pre-net containing

2 fully connected layers of 256 hidden ReLU units. In [24], the pre-net was found essential for

learning attention. The pre-net output and attention context vector are concatenated and passed

through a stack of 2 uni-directional LSTM layers with 1024 units. The attention context vector is

concatenated with the output of the LSTM layers and the concatenation is projected to the target

spectrum and a scalar stop token through two independent linear transformations. Finally, the

predicted mel-spectrum is passed through a 5-layer convolutional post-net which predicts a residual

to add to the prediction to improve the overall reconstruction. Each post-net layer consists of 512

filters with shape 5×1 with batch normalization, followed by tanh activations on all except the final

layer. The summed mean squared errors (MSE) from before and after the post-net are minimized

in training to aid convergence. In parallel to spectrum prediction, the stop token is passed through
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a sigmoid activation to predict the probability that the generation has completed. The stop token is

used to dynamically terminate the generation at a threshold of 0.5.

The convolutional layers in the network are regularized using dropout with probability 0.5,

and LSTM layers are regularized using zoneout with probability 0.1. In order to introduce output

variation at inference time, dropout with probability 0.5 is applied only to layers in the pre-net of

the autoregressive decoder.

4.6 WaveNet Vocoder

Figure 4.5: The dilated causal convolutions layers in WaveNet.

WaveNet [30] is a raw audio generation model, inspired by the PixelRNN and PixelCNN mod-

els, which can predict audio waveform sample by sample autoregresively. It is built with stacks

of dilated causal convolutional layers as described in Figure 4.5. Causal convolutional networks

predict the next sample at time t + 1 only depending on the past samples at time from 1 to t. The

convolutional networks use dilations, which skips over some input values, to improve the compu-

tation efficiency and reduce the number of layers required for the same size of receptive field. At

each step, a new sample is predicted and fed back as the input for the next prediction. Instead of

Relu activations, WaveNet uses gated activation units:

z = tanh(Wf,k ∗ x+ V T
f,k ∗ h)� σ(Wg,k ∗ x+ V T

g,k ∗ h) (4.12)
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where ∗ denotes convolution,� denotes element-wise multiplication, σ() denotes sigmoid function,

k denotes the layer index, f and g denotes the filter and gate, the Wf,k, Vf,k, Wg,k and Vg,k are

trainable variables, and h is the conditional input if any. Residual and skip-connections are also

used for faster convergence as shown in Figure 4.6.

Figure 4.6: Residual block with gated activation units in WaveNet.

The conditional probability p(xt|x1, x2, ..., xt−1) over output audio samples is modeled by a

softmax function. To reduce the number of output probabilities in raw audio generation where

there are 65536 possible values for a 16-bit sample, µ-law quantization is applied to quantize the

16-bit sample to 8-bit:

f(xt) = sign(xt)
ln(1 + µ|xt|)
ln(1 + µ)

(4.13)

It has been shown that the WaveNet model can be conditioned on conditional inputs for various

applications. For example, the WaveNet model conditioned on mel-spectrograms [24, 2, 10, 21, 13,

35] can serve as a vocoder. It can also be conditioned on speaker embeddings [30] to synthesize

speech in various voices. According to these past researches, conditioned on mel-spectrograms,
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WaveNet can outperform traditional vocoders such as Griffin & Lim [11] and WORLD [19].

Even though it has been proposed to condition WaveNet on speaker embeddings for synthesiz-

ing speeches in their voices, conditioning WaveNet on the mel-spectrogram also works as shown

in [24]. Since the spectrograms are computed from waveforms, it implies that they contain speaker

information inherently which makes extra speaker embedding conditioning unnecessary.

In the thesis, the WaveNet is trained with training data of the CUSENT corpus. The WaveNet

model is merely conditioned on the mel-spectrogram without any extra embeddings. The imple-

mentation of the WaveNet follows [13]. It is shown from the results that the WaveNet model trained

on data in one language can successfully synthesize high-quality speech in other languages.
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CHAPTER 5

PRELIMINARY EXPERIMENTS AND RESULTS

5.1 Overview

In speech synthesis, there are untrainable variables and uncertain factors that should be optimized

to improve the overall quality of the system such as,

• Input representation: Both character embedding and phoneme embedding were used in

speech synthesis. According to Tacotron 2 [24], using character embedding is successful in

training an English TTS system. Whereas in the multi-speaker Tacotron 2 [13] and multi-

lingual Tacotron 2 [35], it is reported that phoneme embedding has an significant advantage

over character embedding. In multi-lingual TTS systems especially when there are over

thousands of characters in languages such as Mandarin and Cantonese, phoneme input can

reduce domain of the input embedding since there are a large overlap of phonemes between

languages but not characters. In mono-lingual English multi-speaker TTS systems, we con-

duct experiments to verify the performances of phoneme input and character input.

• Phoneme set: In multi-lingual speech synthesis, there are different standard phoneme sets in

each language and there are international phoneme sets such as International Phonetic Alpha-

bet (IPA) and Extended Speech Assessment Methods Phonetic Alphabet (X-SAMPA). In the

thesis, two methods are compared for multi-lingual speech synthesis, using IPA or mapping

pinyin and Jyupting phonemes to the closest ARPABET phonemes. One major difference

is that the mapping method encourages more sharing of phonemes among languages so as

to reduce the number of phonemes in the phoneme set. However, there is hardly a perfect

mapping existed among the phoneme sets of different languages. Thus we keep the unique

phonemes in Cantonese and Mandarin if no similar phonemes are found in English. It is

worth evaluating the performance of this mapping compared to using IPA.
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• Speaker Embedding Dimensions: In [13], different speaker embedding dimensions have

been used when the number of training speakers is increasing. It is to our interest what is the

optimal speaker embedding dimension for our system. In our thesis, we compare x-vectors

in 64, 128 and 512 dimensions.

• Speaker Embedding Normalization: Normalization is a technique used in data prepro-

cessing before they are fed into the system which often improves the system robustness and

training stability. In the thesis, l2-norm normalization and whitening are applied to x-vectors

before the training of the synthesizer. Their performances in speech synthesis are compared

with no normalization.

We conducted several preliminary experiments to optimize aforementioned factors one by one.

Experiments setup and their results are presented in the following subsections. Short conclusions

are made based on the results. To synthesize speech faster, we use Griffin & Lim vocoder in these

experiments.

5.2 Input Representation: Character/Phoneme

The experiment is conducted with a pair of mono-lingual English multi-speaker TTS systems

trained on Librispeech data with character embedding and phoneme embedding respectively. The

speaker encoder is a 128-D x-vector system. The synthesizer is as described in Chapter 3.

The speeches synthesized by the model with phoneme embedding input sounds more natural

than that with character embedding. Sometimes synthesized speeches with character embedding

have pronunciation mistakes. The prosody is also less natural because of the segmentation mistakes.

The synthesized speech with character input have unexpected pauses. In conclusion, phoneme

embedding can perform better than character embedding in mono-lingual English multi-speaker

speech synthesis.
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5.3 X-vector Dimension

In this subsection, we present the speaker verification EER results for x-vectors in 64, 128 and 512

dimensions. Enrollment utterances are 3 minutes long and test utterances vary from 5 seconds to 12

seconds. Table 5.1 shows the speaker verification EER of these x-vectors. Even though the 128-D

x-vector system has the highest EER, we found that the TTS system can synthesize better quality

speeches when trained with 128-D x-vector. In contrast, although 64-D x-vectors give the best SV

EER, they produce audios of poorer quality in our TTS system. We also found the synthesized

speeches using the TTS system with 128-D x-vectors have higher speaker similarity than 64-D

x-vectors. It seems that speaker embeddings that give better SV EER is no guarantee for better

synthesized audios. At the end, we choose the 128-D x-vectors for our speaker embeddings.

We further investigate the x-vector embedding with more training speakers. Table 5.2 shows

speaker verification EER on a separate test set for systems trained with increasing number of speak-

ers from various corpora. Results show that adding more speakers from other datasets does not

further reduce the speaker verification EER. We use the x-vectors trained with the most number of

speakers as our speaker embeddings.

System Dim Train set Speakers SV-EER
x-vector 64 LS 1172 1.00
x-vector 128 LS 1172 1.50
x-vector 512 LS 1172 1.25

Table 5.1: Librispeech SV EER (%) for x-vectors in different dimensions.

Train set Speakers LS CU ST AI
LS, CU 1240 0.75 0 – –

LS, ST, AI 2312 0.75 – 0 0.5
LS, CU, ST, AI 2380 0.75 0 0 0.5

Table 5.2: Effect of increasing number of training speakers on Librispeech SV EER (%) using
128-D x-vector.
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5.4 IPA vs ARPABET

We implement three multi-lingual Cantonese and English TTS systems, one using IPA and language

embedding, one using IPA and no language embedding and one using the ARPABET mapping

with language embedding. The speaker encoder is the 128-D x-vector system trained on data

from all corpora. The synthesizer is trained with English and Cantonese data with no tone/stress

embedding. Speaker embedding and language embedding, if any, are input to the synthesizer

through a concatenation with the encoder’s output.

From the experiment results, although the synthesized Cantonese speech sounds less natural

when there is no tone/stress embedding, it appears that no one model has significant advantages

over the others in the aspect of audio quality of both English and Cantonese speech. It is expected

that the synthesized speeches could be sound subtle accented in the other language when there is no

language embedding. However, it is not obvious in the real synthesized speeches. The ARPABET

mapping and IPA perform equally in both English and Cantonese. It seems the mapping method

does not compromise the audio quality while reducing the input domain. And the results also show

that the mapping method makes the training be more stable when the amount of English speech to

Cantonese speech is very unbalanced with a ratio of 20:1 (400 hours to 20 hours). We found the

system using the mapping method has less difficulty to stop during the inference.

5.5 Speaker Embedding Normalization

Experiments are conducted to compare L2-norm normalization, ZCA-whitening and no normaliza-

tion on speaker embeddings. The speaker encoder is the same as above. Before training the syn-

thesizer, the x-vectors of training speakers are normalized with different normalization techniques.

Different from above experiments, the synthesizer is trained with English and Mandarin corpora

with a 8-D one-hot tone/stress embedding which only represents English stresses and Mandarin

tones.

Figures 5.1, 5.2 and 5.3 show the t-SNE visualization of x-vectors of training speakers and

enrollment speakers after normalization. In these figures, ‘-’ denotes the speaker embeddings of
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female speakers and ’|’ denotes the speaker embeddings of male speakers. The numbers in the

figures are the speaker identities which denote the speaker embeddings of the selected speakers for

synthesizing speeches used in MOS tests. These speaker embeddings are also denoted in the leg-

ends of the figures in format ‘MOS-(Uns/S)eenSpk’. The legends of the figures in formats ‘corpus

name-train’ and ‘corpus name-enroll’ denote the training and enrollment speaker embeddings in

the four corpora. From the results, it is observed that the speaker embeddings form clusters sep-

arable by gender and corpus. We hypothesize that these x-vectors, no matter normalized or not,

contain language information and gender information. The x-vectors after whitening in Figure 5.3

seem to form a big cluster but they still form their clusters separable from each other in Figure 5.1.

Tables 5.4, 5.5 and 5.6 show the MOS results mean and standard deviation of intelligibility,

naturalness and speaker similarity on unseen speakers. We use these notations shown in Table 5.3

for different types of synthesized speech. From the results, both L2-norm and whitening normaliza-

tion improve the intelligibility of native and foreign native speeches. It is observed that whitening

helps generate very natural native English and foreign native Mandarin for Librispeech speakers.

L2-norm helps produce better accented speeches. Whitening helps generate speeches slightly more

similar to target speaker’s voice than L2-norm normalization.

Notation Meaning
EAM Accented English spoken by Mandarin speakers
EAC Accented English spoken by Cantonese speakers
ENM Native English spoken by Mandarin speakers
ENC Native English spoken by Cantonese speakers
EN Native English.

CAE Accented Cantonese spoken by English speakers
CAM Accented Cantonese spoken by Mandarin speakers
CNE Native Cantonese spoken by English speakers
CNM Native Cantonese spoken by Mandarin speakers
CN Native Cantonese.

MAC Accented Mandarin spoken by Cantonese speakers
MAE Accented Mandarin spoken by English speakers
MNC Native Mandarin spoken by Cantonese speakers
MNE Native Mandarin spoken by English speakers
MN Native Mandarin.

Table 5.3: Notations used in MOS results.
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Figure 5.1: t-SNE visualization of x-vectors.
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Figure 5.2: t-SNE visualization of x-vectors after L2-norm normalization.
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Figure 5.3: t-SNE visualization of x-vectors after whitening.
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Model\Cases EAM ENM EN

No-norm 2.08 ± 0.23 3.50 ± 0.52 4.67 ± 0.18

L2-norm 2.29 ± 0.35 4.92 ± 0.10 4.54 ± 0.21

Whitening 1.92 ± 0.27 4.25 ± 0.24 4.92 ± 0.07

Model\Cases MAE MNE MN

No-norm 1.75 ± 0.23 2.83 ± 0.25 4.77 ± 0.14

L2-norm 1.88 ± 0.29 4.46 ± 0.17 4.71 ± 0.15

Whitening 1.42 ± 0.19 4.08 ± 0.44 4.67 ± 0.13

Table 5.4: Intelligibility MOS (mean ± standard deviation) on unseen speakers.

Model\Cases EAM ENM EN

No-norm 1.88 ± 0.22 3.79 ± 0.28 4.33 ± 0.22

L2-norm 1.96 ± 0.09 4.08 ± 0.19 4.08 ± 0.23

Whitening 1.47 ± 0.16 3.46 ± 0.26 4.58 ± 0.19

Model\Cases MAE MNE MN

No-norm 1.88 ± 0.38 1.92 ± 0.26 4.18 ± 0.23

L2-norm 2.25 ± 0.36 3.17 ± 0.48 4.21 ± 0.24

Whitening 1.75 ± 0.28 3.58 ± 0.33 4.33 ± 0.20

Table 5.5: Naturalness MOS (mean ± standard deviation) on unseen speakers.

Model\Cases EAM ENM EN

No-norm 2.69 ± 0.37 2.62 ± 0.32 3.46 ± 0.30

L2-norm 2.46 ± 0.34 2.29 ± 0.22 3.37 ± 0.32

Whitening 2.19 ± 0.34 2.08 ± 0.35 3.50 ± 0.23

Model\Cases MAE MNE MN

No-norm 3.21 ± 0.25 1.25 ± 0.14 3.32 ± 0.41

L2-norm 3.75 ± 0.21 2.08 ± 0.27 3.17 ± 0.29

Whitening 3.75 ± 0.14 1.67 ± 0.15 3.33 ± 0.32

Table 5.6: Speaker similarity MOS (mean ± standard deviation) on unseen speakers.
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CHAPTER 6

EVALUATION & RESULTS

6.1 Baseline

We build a mono-lingual English multi-speaker TTS system as the baseline model. It uses phone-

me input and whitened 128-D LS+CU+ST+AI x-vectors (i.e. the speaker encoder is trained us-

ing LibriSpeech, CUSENT, SurfingTech and Aishell corpora). The synthesizer is trained on Lib-

rispeech. The WaveNet is trained on CUSENT.

6.2 Proposed

The proposed system is built with a synthesizer trained with Cantonese, English and Mandarin

data. Pinyin and Jyupting phonemes of Mandarin and Cantonese training utterances are mapped

to ARPABET. Tone/stress embedding is the 14-D one-hot embedding introduced in Chapter 4.

Speaker embeddings are whitened 128-D LS+CU+ST+AI x-vectors. The synthesizer is trained on

Librispeech, SurfingTech and CUSENT. The WaveNet vocoder is trained on CUSENT.

6.3 Experiments and Results

We conduct MOS tests to test the quality of generated speech in intelligibility, naturalness and

speaker similarity. Ground truth speech from 2 seen and 2 unseen English speakers, 2 unseen Can-

tonese speakers and 2 unseen Mandarin speakers are tested as the reference. Each pair of speakers

contains one male and one female speaker. Using the baseline English TTS system, one English

utterance ‘Through out the centuries people have explained the rainbow in various ways.’ is syn-

thesized for the four English speakers. Using the proposed multi-lingual TTS system, the same

English utterance, one Cantonese utterance in Figure 3.2 and one Mandarin utterance in Figure 3.3
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are synthesized for the 6 unseen speakers in three languages. For each utterance, we synthesize na-

tive speech, foreign native speech and foreign accented speech for corresponding speakers, respec-

tively. We have also synthesized such speeches for seen speakers in all the languages. To reduce

the duration of the MOS tests to an acceptable range, we didn’t test those synthesized speeches for

seen speakers. However, we listened carefully to those speeches and observed that they are slightly

better than synthesized speeches for unseen speakers where similar behaviour can be observed in

the baseline results.

In total, 20 responses are collected from raters from Guangdong province in mainland who are

at least fluent in all the three languages. MOS results are shown in Table 6.1, 6.2 and 6.3.

6.4 Discussions

6.4.1 Intelligibility and Naturalness

Comparing the MOS results between the ground truth English speeches and the synthesized speeches

using the baseline model (case 1 and case 4/5), the synthesized speeches are highly intelligible even

though they are not as good as the ground truth speeches. The ratings of speeches for both seen

and unseen speakers are slightly better than Good but below Excellent. The intelligibility scores are

very close between seen and unseen speakers (case 4 and case 5). It means that our baseline English

model can produce almost equally highly intelligible speeches for seen and unseen speeches.

The synthesized foreign accented speeches (case 6, 7, 11, 12, 16 and 17) are low as expected.

They are mostly rated between Poor and Fair. Only the synthesized accented English speeches

spoken by Cantonese speakers (case 11) are rated slightly better than Fair but still not as good as

native speeches. The synthesized foreign accented speech can easily confuse the meaning of the

synthesized speeches with its accent.

It is observed that the synthesized foreign native speeches (case 8, 9, 13, 14, 18 and 19) are

more intelligible and natural than the corresponding accented speeches spoken by the same speaker.

However, most of them are not as good as the native speeches spoken by native speakers (case 10,

15 and 20) except that the case 18 and case 20 are rated very close to each other but case 20 are
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Case No. Case
Intelligibility Naturalness Speaker Similarity

Mean 95% CI Mean 95% CI Mean 95% CI
1 English 4.34 0.08 4.45 0.07 4.45 0.06
2 Cantonese 4.45 0.08 4.05 0.11 4.55 0.06
3 Mandarin 4.60 0.07 4.03 0.13 4.98 0.01

Table 6.1: The MOS mean and 95% confidence interval using t-distribution for ground truth utter-
ances in three languages.

Case No. Case
Intelligibility Naturalness Speaker Similarity

Mean 95% CI Mean 95% CI Mean 95% CI
4 Seen 4.07 0.23 3.80 0.18 3.78 0.38
5 Unseen 4.03 0.28 3.83 0.26 3.49 0.46

Table 6.2: The MOS mean and 95% confidence interval using t-distribution for English synthesized
utterances for seen/unseen speakers using the mono-lingual baseline English model.

Case No. Case
Intelligibility Naturalness Speaker Similarity

Mean 95% CI Mean 95% CI Mean 95% CI
6 CAE 2.05 0.27 2.13 0.17 3.07 0.39
7 CAM 1.70 0.15 1.54 0.09 2.96 0.69
8 CNE 3.28 0.23 2.92 0.23 2.91 0.38
9 CNM 3.84 0.20 3.51 0.21 3.00 0.51

10 CN 4.50 0.11 4.28 0.18 3.82 0.37
11 EAC 3.09 0.14 2.91 0.20 2.53 0.39
12 EAM 2.14 0.17 2.05 0.17 3.01 0.53
13 ENC 4.07 0.15 3.79 0.20 3.57 0.32
14 ENM 3.78 0.14 3.45 0.20 3.30 0.40
15 EN 4.54 0.07 4.30 0.13 3.84 0.37
16 MAC 2.26 0.21 2.12 0.35 2.45 0.44
17 MAE 2.57 0.20 2.30 0.19 3.39 0.35
18 MNC 4.43 0.09 4.24 0.12 3.28 0.36
19 MNE 4.17 0.15 3.70 0.15 3.20 0.33
20 MN 4.42 0.15 4.32 0.18 4.49 0.18

Table 6.3: MOS mean and 95% confidence interval using t-distribution for synthesized utterances
in 5 accents in three languages using the proposed multi-lingual model for unseen speakers.

more natural than case 18. The reason may be explained in the t-SNE visualization of whitened

x-vectors shown in Figure 5.3. We notice that even though the whitening may help to generate

speeches with better speaker similarity, it doesn’t change the fact that speaker embeddings of the

speakers from different languages are in different clusters. It clearly indicates that the trained x-
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vectors contain some language information which may perform as a certain bias during the training

of the synthesizer. This phenomenon may suggest that the synthesizer is able to distinguish speakers

from different languages.

Comparing the synthesized English speeches for unseen speakers between using the mono-

lingual baseline English model and the proposed multi-lingual model (case 5 and case 15), we

observe the synthesized speeches in case 15 using the proposed model is rated higher than those

synthesized using the mono-lingual baseline English model. It shows that the proposed model

can successfully generate high quality native speeches. The WaveNet paper [30] shows that the

WaveNet trained with multi-speaker corpora can generate more natural speech than the WaveNet

trained with single speaker corpus. We observe similar behaviour of the synthesizer: the proposed

multi-lingual TTS system can outperform the baseline English TTS system when it is trained on

multi-lingual corpora.

It is very interesting to observe that the synthesized native Cantonese speeches spoken by Man-

darin speakers (case 9) are more intelligible and natural than those spoken by English speakers

(case 8). Case 18 is also more intelligible and natural than case 19. The results seem to suggest

that the Mandarin accents and Cantonese accents are closer to each other than they are to English

accents. We hypothesize that both Mandarin and Cantonese are tonal languages, their prosody are

closer than a non-tonal language English. We also observe that the case 6 is more intelligible and

natural than case 7. Comparing the foreign accented and foreign native speeches, case 8 and case

9 are only different in speaker embedding inputs but case 6 and case 7 are also different in the

tone/stress embedding inputs. Assuming English speakers will speak Cantonese or Mandarin as

foreign languages with no stress, we input the tone/stress embedding representing ‘no stress’ in

English when we synthesize speeches in case 6 and case 17. Similarly, we input the tone/stress

embedding representing ‘tone one’ in Mandarin for synthesizing speeches in case 7 and case 12

for Mandarin speakers and the embedding representing ‘tone one’ in Cantonese for synthesizing

speeches in case 11 and case 16 for Cantonese speakers. Since case 6 is better than case 7 in all

measurements, we hypothesize that it is better to synthesize tonal Cantonese speech with no stress

no tone than a wrong tone in Mandarin. We may derive the same hypothesis by comparing the syn-

thesized Mandarin speeches in case 16, 17, 18 and 19. When we further compare the synthesized
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English speech, we found case 13 is better than case 14. We hypothesize that Cantonese accents

can be closer to English accents compared with Mandarin accents. Even though case 11 is better

than case 12, the differences between them are larger than the differences between case 13 and 14.

It might suggest that the Cantonese tone one is more closer to English pronunciations compared

with Mandarin tone one.

It is also observed that some of the synthesized native speech are even rated higher than the

ground truth speech such as case 10 and 15 in the table. One possible reason can be that the raters’

opinion may be affected by the order of the presented samples.

6.4.2 Speaker Similarity

We first evaluate the speaker similarity among the ground truth utterances of the same speaker. The

results show that the speaker similarity of the Mandarin ground truth speeches is much higher than

that of Cantonese and English ground truth speeches. It shows that the speaker identity is more

consistent among utterances of the same speaker in the Surfingtech corpus than the other corpora.

It may explain why the speaker similarity of case 20 is much higher than those of case 10 and 15.

However, this behaviour are not such significant in other synthesized speeches. It seems the cross-

lingual speech synthesis will compromise the speaker identity because the MOS evaluation of the

speaker similarity requires raters to compare two utterances in different languages. To verify this

hypothesis, bi-lingual speech is required where the speaker similarity of speeches of same speaker

in different languages can be evaluated.

Comparing synthesized native speeches (case 10, 15 and 20) and foreign native speeches (case

8, 9, 13, 14, 18 and 19), the speaker similarity of native speeches is much higher. We also observe

similar patterns between the speaker similarity scores and the other two scores. When we compare

two classes of speeches, the more intelligible and natural speeches usually perform better in speaker

similarity. However, the differences between the pair of scores in speaker similarity are much

smaller than intelligibility and naturalness scores. There are also a few exceptions. For example, the

foreign accented speeches (case 6, 7 and 17) have very close or even better speaker similarity than

the foreign native speech (case 8, 9 and 19) where the later should be more intelligible and natural.

Higher intelligibility and naturalness MOSs do not always suggest that the speaker similarity MOS
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is also higher (case 11 and 12).
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CHAPTER 7

CONCLUSIONS

In conclusion, the proposed system can synthesize both intelligible and natural native speeches and

foreign native speeches for unseen speakers in Cantonese, English and Mandarin with MOS results

better than mono-lingual English baseline system. It proves that the transfer learning of x-vectors to

TTS system is successful. It can also synthesize foreign accented speeches with foreign accents by

manipulating the tone/stress embedding inputs. These accented speeches can confuse the meaning

of the input utterance with foreign accents. The MOS results indicate that the speaker identity is

well captured in the synthesized native speech. The slight differences between the foreign native

speech and the native speech in MOS results seem to suggest that the TTS model captures the

language information from speaker embeddings and generates speeches with the speaker’s native

accent. We hypothesize that the pretrained x-vectors on multi-lingual corpora contain language

information. Although it may depend on the application whether language information should be

kept in speaker embeddings, in our thesis, the language information in the speaker embeddings can

differentiate the native speeches from native speakers and foreign speakers.
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APPENDIX A

PHONEME MAPPINGS

A.1 Pinyin to ARPABET

The Table A.1 shows the mappings from pinyin phonemes to ARPABET phonemes we have used

in the thesis. We use the plus sign (+) to denote the delimiter between phonemes in a phoneme

sequence.

Pinyin ARPABET Pinyin ARPABET Pinyin ARPABET Pinyin ARPABET
b B ch CH ou OW iong IY+OW+NG
p P sh SH an AA+N u UW
m M r ZH en EH+N ua UW+AA
f F z Z ang AA+NG uo UW+AO
d D c TH eng EH+NG uai UW+AY
t T s S ong OW+NG uei UW+EY
n N y Y i IY uan UW+AA+N
l L w W ia IY+AA uen UW+EH+N
g G a AA ie IY+EH uang UW+AA+NG
k K o AO iao IY+AW ueng UW+EH+NG
h H e EH iou IY+OW ü Y+UW
j J M er ER ian IY+AA+N üe Y+UW+EH
q Q M ai AY in IY+N üan Y+UW+AA+N
x X M ei EY iang IY+AA+NG ün Y+UW+N
zh JH ao AW ing IY+NG

Table A.1: The mapping table which maps the pinyin phonemes to the ARPABET phonemes where
‘j’, ‘q’ and ‘x’ are mapped to separate phonemes ‘J M’, ‘Q M’ and ‘X M’ which are then concate-
nated to the ARPABET phoneme set.
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A.2 Jyupting to ARPABET

The Table A.2 shows the mappings from Jyupting phonemes to ARPABET phonemes we have used

in the thesis. Phonemes with the following finals: ‘m’, ‘n’, ‘ng’ ‘p’, ‘t’ and ‘k’, are treated as a

sequence of vowels and finals and they are mapped to a sequence of ARPABET phonemes. For

example, ‘aam’, ‘aan’, ‘aang’, ‘aap’, ‘aat’ and ‘aak’ phonemes are mapped to sequences ‘AA+M’,

‘AA+N’, ‘AA+NG’, ‘AA+P’, ‘AA+T’ and ‘AA+K’, respectively.

Jyupting ARPABET Jyupting ARPABET
b B aa AA
p P aai AA+Y
m M aau AA+W
f F ai AH+Y
d D au AH+W
t T e EH
n N ei EH+Y
l L eu EH+W
g G i IY
k K iu IY+UW

ng NG o AO
h HH oi AO+Y

gw G+W ou OW
kw K+W oe ER
w W eoi ER+Y
z JH u UW
c CH ui UW+Y
s S yu Y+UW
j Y

Table A.2: The mapping table which maps the Jyupting phonemes to the ARPABET phonemes.
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A.3 ARPABET Phoneme set

The Table A.3 shows the 39 phonemes in ARPABET used by the CMU pronouncing dictionary 1.

We use the same ARPABET phoneme set in the thesis.

Phoneme Example Translation Phoneme Example Translation
AA odd AA D L lee L IY
AE at AE T M me M IY
AH hut HH AH T N knee N IY
AO ought AO T NG ping P IH NG
AW cow K AW OW oat OW T
AY hide HH AY D OY toy T OY
B be B IY P pee P IY

CH cheese CH IY Z R read R IY D
D dee D IY S sea S IY

DH thee DH IY SH she SH IY
EH Ed EH D T tea T IY
ER hurt HH ER T TH theta TH EY T AH
EY ate EY T UH hood HH UH D
F fee F IY UW two T UW
G green G R IY N V vee V IY

HH he HH IY W we W IY
IH it IH T Y yield Y IY L D
IY eat IY T Z zee Z IY
JH gee JH IY ZH seizure S IY ZH ER
K key K IY

Table A.3: ARPABET phoneme set including 39 phonemes used by the CMU pronouncing dictio-
nary.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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