
NON-PARALLEL MANY-TO-MANY VOICE
CONVERSION BY KNOWLEDGE TRANSFER
FROM A PRE-TRAINED TEXT-TO-SPEECH

MODEL

by

XINYUAN YU

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Master of Philosophy

in Computer Science and Engineering

August 2020, Hong Kong

Copyright c© by Xinyuan YU 2020

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to

other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

XINYUAN YU

27 August 2020

ii

NON-PARALLEL MANY-TO-MANY VOICE
CONVERSION BY KNOWLEDGE TRANSFER
FROM A PRE-TRAINED TEXT-TO-SPEECH

MODEL

by

XINYUAN YU

This is to certify that I have examined the above M.Phil. thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Dr. Brian MAK, Thesis Supervisor

Prof. Dit-Yan YEUNG, Head of Department

Department of Computer Science and Engineering

27 August 2020

iii

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my supervisor, Dr. Brian Mak, for his men-

toring and advice. His invaluable advice and comprehensive knowledge have benefited

me tremendously. I have learned from him how to develop, evaluate, express, and defend

my ideas.

I would like to thank the committee members of my thesis examination, Prof. Fangzhen

Lin and Prof. Nevin Lianwen Zhang, for their insightful comments on this work.

I appreciate all the group members of the speech group to share their valuable insights

on various interesting research topics.

I also appreciate all the participants of the speaker similarity and speech naturalness

tests for their precious time.

Finally, I would like to express my deepest gratitude to my parents and my girlfriend

for their love and support throughout my study.

iv

TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures vii

List of Tables viii

Abstract ix

Chapter 1 Introduction 1

Chapter 2 Background and Related Work 5

2.1 Vocoder 5

2.2 Voice Conversion 6

2.2.1 Parallel VC 7

2.2.2 Non-parallel VC 11

2.3 Text-to-Speech 14

Chapter 3 Proposed Method 16

3.1 Overview 16

3.2 Baseline model 16

3.3 Text-to-Speech Model 18

3.4 Proposed Framework 23

3.5 Neural Vocoder 28

3.6 Conversion 28

v

Chapter 4 Experimental Evaluation 30

4.1 Dataset 30

4.2 Pre-processing 31

4.2.1 Filter Long Audio clips of LibriTTS 31

4.2.2 Unify Audio Sampling Rate 31

4.2.3 Compute Mel-Spectrogram and Extract Fundamental Frequency 32

4.2.4 Use Phoneme Input 32

4.3 Experiments 34

4.4 Evaluation 35

4.4.1 Case Study 36

4.4.2 Subjective Evaluation 37

Chapter 5 Conclusions and Future Work 44

References 45

vi

LIST OF FIGURES

2.1 Dilated convolution layer of WaveNet 6

2.2 Block diagram of generic VC systems 7

2.3 A generic sequence-to-sequence model 10

2.4 A generic auto-encoder model 11

2.5 Statistical text-to-speech system 14

3.1 Each speech segment contains two types of information, speaker informa-
tion (solid) and content information (striped) (a) In training stage, when
the bottleneck dimension is just right, content representations contain no
speaker information. (b) In conversion stage, content representations are
mixed up with target speaker embedding. 17

3.2 The architecture of AUTO-VC. 18

3.3 Tacotron2 model architecture 19

3.4 Block diagram of Mellotron. The main structure is the same as Tacotron2.
Speaker embeddings and GST are concatenated with encoder outputs while
pitch contour is concatenated with Pre-Net output. 21

3.5 The detailed block diagram of the GST block in figure 3.4 22

3.6 A comparison between our proposed framework and the joint training
framework 26

3.7 The block diagram of [27] 27

3.8 The pre-training pipeline of [14] 27

4.1 Example of male-to-male conversion 35

4.2 Example of male-to-female conversion 36

4.3 Example of female-to-male conversion 36

4.4 Example of female-to-female conversion 36

4.5 Similarity test with the source speaker 39

4.6 Similarity test with the target speaker 40

vii

LIST OF TABLES

4.1 Summary of LJSpeech and LibriTTS 30

4.2 The ARPABET phoneme set 33

4.3 Mean Opinion Scores result with 95% confidence intervals computed from
normal distribution 42

viii

NON-PARALLEL MANY-TO-MANY VOICE
CONVERSION BY KNOWLEDGE TRANSFER
FROM A PRE-TRAINED TEXT-TO-SPEECH

MODEL

by

XINYUAN YU

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Voice conversion (VC) is the task of converting a source speaker’s speech such that the

output speech sounds like it is uttered by a different target speaker. Earlier approaches

focus on finding a direct mapping function between a pair of source and target speakers,

which requires pairs of utterances with the same content to be available in the training

set. However, collecting pairs of utterances is often costly and time-consuming. Thus,

training VC models with unconstrained speech data is more desirable; this is sometimes

known as non-parallel VC. Recently, various deep learning methods like autoencoder,

variational autoencoder and generative adversarial network are proposed for non-parallel

VC. However, most of them cannot be easily trained and perform well at the same time.

In this thesis, we present a simple but novel framework to train a non-parallel many-

to-many VC model based on the encoder-decoder framework that can convert (seen or

unseen) speech between any speaker pairs in a non-parallel speech corpus. We propose

to transfer knowledge from the state-of-the-art multi-speaker text-to-speech (TTS) model,

ix

Mellotron, to the VC model by adopting Mellotron’s decoder as the VC decoder. The

model is trained on LibriTTS dataset with simple loss terms. Subjective evaluation shows

that our proposed model is able to generate naturally sounding speech and out-perform

the state-of-the-art non-parallel VC model, AUTO-VC.

x

CHAPTER 1

INTRODUCTION

Speech is the most natural and important way for human communication. Thus, peo-

ple’s passion for speech research has never stopped. Over the past decades, the rapid de-

velopment of machine learning and deep learning techniques has brought revolutionary

advances to speech research field. A speech recognition system can now achieve accu-

racy over 90 percent, while a state-of-the-art text-to-speech system can generate speech

close to human in terms of naturalness. Despite the success, there are still many unsolved

problems in the speech field worth investigating. Voice conversion is one of them.

Voice conversion (VC) is the task of converting a source speaker’s speech such that the

output speech sounds like it is uttered by a different target speaker while all the linguistic

content of the original speech is maintained. Speech inherently carries different aspect

of a speaker’s information like timbre, prosody, or pitch to name a few. Ideally, all these

factors should be converted from source speaker to target speaker.

Achieving voice conversion is not a trivial task as the potential application of voice

conversion lies in a broad set of fields. In movie industry or game industry, voice dub-

bing is a common and important task. However, it is often expensive to get the voice

of a famous actor or actress, and sometimes the actor or actress would need to dub in

a non-native language. With voice conversion technique, one can convert a professional

voice actor’s recording to the voice of the famous actor or actress. In the medical fields,

voice conversion can be used to help speech-impaired people. Speech-impaired people

suffer from problems in their speech production organs, and their voice sound abnormal

to ordinary people. In such cases, a voice conversion system can be used to improve the

intelligibility of their voice by converting their voice back to their original voice or con-

verting their voice to a default voice. In speaker verification or speaker recognition, one

tends to identify a person based on his/her voice characteristic. Voice conversion can be

used for spoofing test to test the reliability of a speaker verification/recognition system.

1

Converting a speech utterance from one speaker to another in all aspects (timbre,

prosody, etc.) is hard to achieve. In this thesis, we focus on converting speaker identity of

speech only as most literature do, and other factors of speech will be left unchanged. For

the remainder of this thesis, voice conversion would mean voice conversion of speaker

identity.

Voice conversion has been extensively studied in the literature. Generally, it can be

categorized by the type of datasets used for building the system, namely parallel voice

conversion and non-parallel voice conversion. Parallel data means that for each utter-

ance spoken by the source speaker in the dataset, there would be another sentence spoken

by the target speaker with the same linguistic content. In other words, a parallel corpus

should consist of pairs of utterances uttered by at least two different speakers with the

same linguistic content. Gaussian Mixture Models (GMMs) are widely adopted for par-

allel voice conversion [38, 18]. Recently, neural network based approaches [8, 9, 31] have

made significant progress. The state-of-the-art parallel voice conversion approaches are

based on sequence-to-sequence model [52, 51, 41].

The main drawback of parallel data setting is that collecting parallel data in practice

is costly and time-consuming. As a result, building a voice conversion system for speak-

ers with a small amount of data or adapting existing systems to new speakers are not

easy tasks. On the other hand, non-parallel voice conversion refers to training a voice

conversion model without any parallel utterance in the dataset. Recently, in light of the

success of deep generative models in image field, auto-encoder based approaches [36, 32],

variational autoencoder based approaches [13, 19, 15] and generative adversarial network

based approaches [20, 22] are proposed for non-parallel voice conversion. The core idea of

these methods is to learn disentangled speaker and content representation from training

data so that the target speaker representation can substitute the source speaker represen-

tation to generate target speech.

Despite the advances brought by deep learning methods, voice conversion systems

still exhibit deficiencies in converting speaker identity from one speaker to another es-

pecially for non-parallel VC. The most challenging question for non-parallel VC is how

to disentangle speaker and content information from speech segments. Our motivation

comes from the success of modern text-to-speech (TTS) models. Modern TTS models can

2

already generate highly natural and intelligible speech of any desired speaker’s voice.

We observe that most recent VC and TTS models adopt similar encoder-decoder struc-

tures. Furthermore, the decoders of both VC and TTS models act as an acoustic model.

Compared to traditional approaches where TTS models focus on transforming linguistic

features to acoustic features and VC models focus on converting acoustic features, we ar-

gue that neural network based VC and TTS models both focus on transforming linguistic

representations to acoustic features. This suggests that there is room for transfer learn-

ing between these two tasks. Recent TTS works have benefited from transfer learning in

speaker adaptation [17, 2], but few works have focused on transferring knowledge from

TTS to VC yet.

Based on the above motivation, we propose a simple but novel framework for training

a non-parallel many-to-many VC model using a multi-speaker text-to-speech corpus. The

proposed VC model consists of a speech encoder and an acoustic decoder. Similar to many

existing non-parallel VC works [36, 6], we seek to train the speech encoder that generates

speaker agnostic content representations. More specifically, we want the speech encoder

to generate representations that are as close to the text encoder output of multi-speaker

TTS models as possible. We believe that the encoder output of multi-speaker TTS models

contains only linguistic information and has little knowledge about the speaker identity.

To achieve this, we propose to transfer knowledge from a pre-trained multi-speaker TTS

model to our VC model by directly adopting the decoder of the TTS model as our VC de-

coder. The speech encoder is therefore forced to learn to generate representations that can

be recognized by the decoder. In addition, most existing VC works only model speaker

identity while other factors of speech (pitch, prosody, emotions, etc.) are solely dataset de-

pendent which result in little controllability of target speech generation. Inspired by the

Mellotron model [43], we condition our proposed VC model on both explicit and learnt

latent variables to better model different attributes of speech. We demonstrate that the

proposed model can be effectively trained with only reconstruction loss.

Our contributions are as follows:

• We propose a training framework for transferring knowledge from TTS to VC model

for non-parallel many-to-many VC.

3

• Our proposed model can convert (seen or unseen) speech between any speaker pairs

in the training set.

• The efficacy of conditioning VC models on pitch input is verified.

Organization: The remainder of the thesis is organized as follows. In Chapter 2, we

give a brief background of VC and review related works from traditional to state-of-the-

art VC. In Chapter 3, we present our proposed method. In Chapter 4, we present our

experimental evaluation and the results. We conclude the thesis in Chapter 5.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we provide a brief background review of voice conversion and text-to-

speech. We also summarize some related works of both tasks from traditional to state-of-

the-art methods. The purpose of this chapter is not to do a thorough literature review of

voice conversion systems, but rather a concise one so that one could have enough back-

ground knowledge to understand the rest of the thesis.

2.1 Vocoder

Before the review, it’s worth mentioning that, in most speech related tasks including voice

conversion and text-to-speech, the systems or models may not directly produce the raw

speech signal as their output. Instead, they work on more compact and informative acous-

tic features extracted from raw speech. The reason is that speech signals are particularly

highly nonlinear and high dimensional (one second of speech audio recorded with a sam-

pling rate of 16kHz would have a dimension of 16000). The resulted acoustic features will

then be used to synthesize the actual speech signal. The model that transforms acoustic

features into speech signal is called a vocoder.

Traditional vocoders include linear prediction coding (LPC) [29], harmonic plus noise

[39], WORLD [30] and so on. In general, traditional vocoders heavily reply on speech

processing techniques. However, typical features used by these vocoders like spectral

features are lossy, and there is no perfect inverse transformation. As a result, the recon-

structed speech usually sound intelligible but unnatural, and contains artifacts.

The state-of-the-art vocoder is WaveNet [44], and WaveNet-based models [35, 45]. In-

stead of applying speech processing techniques, WaveNet [44] views speech synthesis as

a generative problem. The WaveNet model is trained to maximize the likelihood of raw

speech waveform directly. It factorize the joint probability of waveform samples by the

5

product rule as follows:

p(x) =

T∏
t=1

p(xt|x1, ..., xt−1) (2.1)

xt represents the value of waveform sample at time step t. The likelihood 2.1 is modeled

by a deep auto-regressive dilated convolution network, shown in figure 2.1.

Figure 2.1: Dilated convolution layer of WaveNet

Thanks to the powerful model capacity of deep convolution neural network (CNN)

and the availability of hundreds of hours of audio data, WaveNet achieves better speech

quality than its traditional counterpart both in intelligibility and naturalness. In [37], it is

reported that a WaveNet trained by conditioning on mel-spectrogram can produce natural

sounding speech close to human recordings. Although WaveNet achieves the state-of-

the-art sound quality, it fails to synthesize speech at real time. To alleviate this problem,

recent works [35, 45] manage to synthesize high quality speech at real time by adopting

flow-based networks.

2.2 Voice Conversion

As in figure 2.2, a generic voice conversion system consists of two stages, the training

stage and conversion stage. In the training stage, acoustic features of both source and

target speech would first be extracted by speech analysis tools. A mapping function be-

tween source speaker acoustic features and target speaker acoustic features will then be

learnt with the training data. Over the years, it is found that voice conversion can be ef-

fectively performed by using acoustic features like spectral envelopes and fundamental

frequencies. Recently, mel-spectrogram is the most popular acoustic feature. Neverthe-

less, the key purpose of the mapping function is to estimate the target aforementioned

6

(a) Training stage

(b) Conversion stage

feature
extraction

feature
extraction

source
speech

target
speech

frame
alignment

mapping
function

feature
extraction

source
speech

conversion

speech
reconstruction

target
speech

Figure 2.2: Block diagram of generic VC systems

features given source ones. Depending on the nature of the mapping function, the source

and target acoustic features may need to be aligned so that the mapping function can han-

dle different lengths of acoustic features during training. In the conversion stage, only

the source acoustic features would be extracted and the learnt mapping function is used

to estimate the target acoustic features. Once these features are obtained, they would be

consumed by a vocoder to generate the final converted target speech.

2.2.1 Parallel VC

Traditional Voice Conversion

Traditional voice conversion focuses on transforming a source speaker’s voice to a tar-

get speaker’s voice where parallel data are available. The simplest way to build a voice

conversion system with parallel training data is to create a code book. In [1], Abe et al.

propose to apply vector-quantization to create a mapping code book of source and target

speakers. During conversion, each target feature frame is calculated as a weighted sum

of corresponding entries in the code book. Besides this hard clustering approach, a more

common approach is to employ statistical technique to learn a function that maps source

features to target features. Gaussian mixture models (GMMs) are one of the most success-

ful functions in the literature. GMMs model acoustic features as a linear combination of a

7

number of multivariate Gaussian distributions as the following,

p(x) =
M∑
c=1

αcN(x;µc,Σc) (2.2)

where αc is the weight of each Gaussian distribution such that
∑M
c=1 αc = 1, and µc and

Σc are the mean and co-variance of each Gaussian distribution. All the parameters of

GMMs can be learnt by the EM algorithm. Stylianou et al. [38] propose to model the

distribution of source speaker’s acoustic features by a GMM. In order to transform the

acoustic features to that of the target speaker, a transformation function F is proposed as,

F(x) =
M∑
c=1

p(c|x)[vc + ΓcΣ−1
c (x − µc)] (2.3)

where vc and Γc are learnt parameters optimized by least squares optimization (LSO).

After the training stage, the target speaker’s acoustic features are calculated by 2.3.

Another way to apply GMMs is to jointly model the source and target acoustic feature

distributions at the same time. In [18], Kain et al. train a GMM that fits the joint density

of source and target acoustic features, which has the following form,

[
X

Y

]
∼ N

([
µX
µY

]
,
[
ΣXX ΣXY
ΣXY ΣYY

])
(2.4)

X and Y are the source and target acoustic feature variable respectively. During conver-

sion, the target speaker’s acoustic features can be calculated as the conditional expected

value E(Y|x) given the GMM parameters. Compared to [38], this work models the relevant

information of source and target acoustic features and requires no standalone transforma-

tion function.

Although GMM-based approaches make certain progress in voice conversion, the lim-

ited modeling capacity has become the bottleneck for these approaches. Recently, deep

neural networks (DNN) have shown powerful modeling capacity and achieve state-of-

the-art performance in many areas. In [8, 9, 31], DNNs are used to model the statisti-

cal relationship between source and target features, which show better performance than

GMM-based approaches.

8

Sequence-to-sequence Based Voice Conversion

Despite the success of GMM- and DNN-based approaches, they have a common prob-

lem: the learnt mapping function operates on frame level, and considers no temporal

dependencies of acoustic features. Intuitively, the production of speech signal is a highly

dynamic process and performance of voice conversion is limited by a frame-by-frame

mapping function. To alleviate the aforementioned problem, recent works take advan-

tage of sequence-to-sequence (seq2seq) models [3] to directly learn a mapping function

between source and target acoustic feature sequences. Sequence-to-sequence models are

a family of models that are widely used in many fields including neural machine trans-

lation, speech recognition, text-to-speech and so on. Figure 2.3 shows the components of

a generic seq2seq model: The encoder of a seq2seq model would first process the input

sequence and generate a sequence of vector representations. These vectors are sometimes

called hidden representations, and are supposed to capture the inter-dependencies of each

token in the input sequence. After processing the input sequence, the decoder of a seq2seq

model generates the corresponding output sequence one token at a time by "decoding" the

input sequence. To inform the decoder which part of the input sequence contains most

important information, an attention module is used to "summarize" the hidden represen-

tation into one context vector for each decoding time step. It should be noted that the

seq2seq models can handle input and output sequences of different lengths through the

attention module. Compared to traditional approaches, seq2seq models can jointly learn

to align and transform input sequences to output sequences.

In [52], Zhang et al. propose to use a seq2seq based model for voice conversion. In

their work, mel-spectrogram is used as the acoustic features for source and target speech,

and additional bottleneck features from an ASR system are used as input to improve the

pronunciation correctness of the converted speech. Compared to vanilla seq2seq models

[3], a "post-net" is adopted to refine the converted mel-spectrogram. In addition, Zhang

et al. also use WaveNet [44] as the vocoder. In the follow up work of Zhang et al. [51], an

auxiliary classification task is added to the hidden representation of the seq2seq model to

predict the phonemes of an input utterance. The target phoneme sequence is aligned to

the acoustic feature sequence by force-alignment tools during data pre-processing. This

auxiliary classification task is claimed to help the model reduce mispronunciations in the

9

Encoder Decoder

…

…

Attention
Module

…

Figure 2.3: A generic sequence-to-sequence model

converted speech. Tanaka et al. [41] also try to improve the seq2seq model’s alignment

precision. In [41], the authors propose an auxiliary context preservation loss and guided

attention loss to stabilize and accelerate the training of the attention module. The context

preservation loss is the loss to reconstruct the hidden representation of the seq2seq model

back to original feature sequence. Meanwhile, the guided attention loss is a diagonal mask

for the alignment result of the attention module, which is the desired alignment shape for

voice conversion.

Vanilla seq2seq models usually adopt LSTM or GRU as encoder and decoder, since

LSTM and GRU are designed to process sequences and capture temporal relationship

among sequences. However, LSTM and GRU are inherently sequential and are unfriendly

to modern hardware like GPU, which limits the computational performance of the model.

Recently, CNN and self-attention are shown to be effective structures in machine transla-

tion task [10, 46]. Following the trend, Kameoka et al. [21] adopt CNN architecture, and

Huang et al. [14] use the transformer network [46]. Both works achieve better result than

LSTM or GRU based models.

The seq2seq-based voice conversion approaches mentioned above still rely on parallel

training data. However, in reality, parallel data could be hard to obtain. The following

sections will review some of the voice conversion works that require no parallel data.

10

2.2.2 Non-parallel VC

Non-parallel voice conversion is a challenging task, since target acoustic features are no

longer available. In general machine learning settings, this is an unsupervised learning

task.

Auto-encoder Based Voice Conversion

In deep learning field, the most fundamental framework for unsupervised learning is

auto-encoder. In the training stage, the auto-encoder usually has identical input and out-

put. The network architecture is designed to have a bottleneck so that the network is

forced to find correlations among the input and learn meaningful and succinct representa-

tions at the bottleneck layer. In voice conversion, the encoder of auto-encoder is supposed

to capture linguistic information of the input speech utterance while removing speaker

information so that the decoder can combine the linguistic information with any target

speaker to generate the target’s acoustic features. Generally, a speaker’s identity is mod-

eled by a fixed size vector called speaker embedding.

x1

x3

x2

…

x𝑛

𝑦1

𝑦3

𝑦2

…

𝑦𝑛

ℎ1

ℎ2

ℎ𝑚

…

En
co
d
e
r D

e
co
d
e
r

Figure 2.4: A generic auto-encoder model

Ocal et al. [32] propose a multi-path auto-encoder for non-parallel voice conversion.

A universal encoder is used to "encode" source acoustic features into hidden bottleneck

representations which are assumed to be speaker agnostic. Then the bottleneck repre-

sentations are "decoded" by a speaker-dependent decoder to reconstruct the acoustic fea-

tures. To ensure that the encoder output contains as little speaker information as possible,

11

the authors use a classifier that takes as input the bottleneck representations and tries to

classify the speaker identity. The training objective is to minimize the reconstruction error

and maximize the classification error simultaneously. During conversion, the encoder "en-

codes" the source utterance and the specific target speaker’s decoder is used to "decode"

the result.

Recently, Qian et al. [36] show that the dimension of the bottleneck layer of an auto-

encoder plays an important role in voice conversion. The authors manage to prove that,

by carefully adjusting the bottleneck dimension, an auto-encoder can learn to disentangle

linguistic information from speaker information without any auxiliary loss or network.

Besides discovering the importance of finding the right bottleneck dimension, Qian et al.

also introduce a pre-trained speaker encoder for modeling speaker identity and achieve

state-of-the-art zero-shot voice conversion performance.

In [40], Sun et al. use an externally trained speaker-independent automatic speech

recognition (ASR) system to obtain the Phonetic PosteriorGrams (PPGs) of any given

speech utterance frame by frame, which are then fed to an LSTM network to predict the

target speaker’s acoustic features. The PPGs are assumed to be speaker-independent and

contain rich phonetic information of input speech utterances, which are ideal properties

for voice conversion. It should be noted that the model is trained on utterances from

one single speaker. Thus, the model can only convert speech of any speaker to one tar-

get speaker. In [26], Lu et al. further integrate WaveNet [44] into this pipeline by directly

conditioning WaveNet on PPG inputs. From the perspective of an encoder-decoder frame-

work, the external ASR system can be viewed as the encoder and PPGs are the bottleneck

features, while the LSTM network works as the decoder.

VAE Based Voice Conversion

Besides auto-encoder, deep generative models like Variational Auto-Encoders (VAEs) [25]

are also popular choices for unsupervised learning. Unlike auto-encoder, VAEs try to

maximize the log data likelihood (logp(x)) by maximizing the Evidence Lower Bound

(ELBO) which has the following form:

logp(x) > Ez∼Q[logp(x|z)] −D[Q(z|x)||p(z)] (2.5)

12

where D refers to KL-divergence between two distributions; z is a latent variable that is

supposed to capture latent factors within the data samples and p(z) is the prior distri-

bution of z. In general, the posterior distribution Q(z|x) and p(x|z) are modeled by two

neural networks and are often called "encoder" and "decoder" respectively. Although the

mathematical foundation of VAE is very different from auto-encoder, they share certain

spirits in common: VAE-based voice conversion approaches try to find a latent distribu-

tion z that contains little speaker information and keeps as much linguistic information as

possible so that a VAE’s decoder can mix linguistic information with any speaker.

Hsu et al. [13] first adopt VAE framework for converting spectral features of a given

speech utterance. However, VAE itself does not guarantee the disentanglement of speaker

and linguistic information. In [15], Huang et al. propose a cross-domain VAE (CD-VAE)

for voice conversion. The CD-VAE has two pairs of encoder and decoder, and the authors

try to disentangle speaker and linguistic information by regularizing the two encoder out-

put to be as close as possible. Kameoka et al. [19] use an auxiliary classifier similar to [32]

in order to force the network learn speaker agnostic latent code. Recently, instance nor-

malization is proved to be effective in image style transfer [42, 23]. Inspired by [42, 23],

Chou et al. [6] propose to use instance normalization at the last encoder layer to remove

speaker information in input speech utterance.

GAN Based Voice Conversion

Apart from VAE, generative adversarial networks (GANs) [12] are the rising star of deep

generative models in recently years. Instead of maximizing data likelihood, the genera-

tor of GANs learns to directly generate data samples by playing a minimax game with a

discriminator network. In GANs-based methods, Cycle-consistent Adversarial Network

(CycleGAN) [54] is a popular algorithms for image style transfer. Inspired by [54], Kaneko

et al. [22] propose CycleGAN-VC for non-parallel voice conversion and achieve state-of-

the-art GAN-based VC performance. However, CycleGAN can only be applied to two

domains (speakers). StarGAN [5] is proposed for style transfer between multiple do-

mains. Kameoka et al. [20] propose StarGAN-VC that follows the idea of StarGAN [5]

and achieve state-of-the-art performance.

13

2.3 Text-to-Speech

text input
text

analysis
acoustic
model

linguistic
features

vocoder

acoustic
features

speech

Figure 2.5: Statistical text-to-speech system

Traditional statistical text-to-speech (TTS) systems consist of three major components

shown in figure 2.5. The text analysis module is a highly language-dependent module that

normalizes the text and extract linguistic features from input text. The acoustic model typ-

ically is a HMM-based model that converts linguistic features to acoustic features. Finally,

the vocoder synthesize the speech waveform based on the acoustic features. Traditional

statistical TTS systems require a lot of domain knowledge. On the other hand, recent

neural TTS works [47, 37, 34] adopt seq2seq models that directly model the relationship

between text and acoustic features of a voice requiring little domain knowledge. Wang

et al. [47] propose the Tacotron model that first maps English characters directly to linear

spectrum of the target speech. In [37], Shen et al. propose Tacotron2 that further improves

the Tacotron model by using mel-spectrogram as the output acoustic feature and WaveNet

as the vocoder. Tacotron2 achieves state-of-the-art speech synthesis performance both in

intelligibility and naturalness. Recently, Rafael et al. [43] introduce pitch contour as input

to the Tacotron2 model which improves the controllability of the synthesis process.

Although the Tacotron2 [37] model shows promising result in text-to-speech, it can

14

only generate sound of one single person. Arik et al. [11] first propose a multi-speaker TTS

system by introducing trainable speaker embeddings to the network. The characteristic

of each speaker is modeled by a fixed size vector while the major network is shared by all

speakers. In [34], the authors introduce site-specific speaker embeddings and show that

speaker embeddings of dimension 512 can effectively model over 2000 different speakers.

Deng et al. [7] simplify the design choice by concatenating speaker embeddings only

to the encoder output. Trainable speaker embeddings are effective in modeling speaker

identity, however it’s difficult to generalize the model to unseen speakers with trainable

speaker embeddings. A potential solution to this is a speaker encoder that can map any

given speech utterance to a fixed size speaker embedding. Ye et al. [17] propose to use a

pre-trained speaker verification network as speaker encoder and achieve promising result

in zero-shot multi-speaker TTS. In [2], Arik et al. study the problem of voice cloning which

aims at generating an unseen speaker’s voice with just a few speech samples. Arik et al.

propose a speaker adaptation training scheme and a speaker encoder training scheme for

getting a unseen speaker’s vector embedding, both of which show good performance.

The model architecture and the methods of modeling speaker identity for VC and TTS

have a lot in common. Some researchers have tried to train a VC model and TTS model at

the same time. In [53], Zhang et al. introduce two encoders and a dual attention-based de-

coder to jointly learn TTS and VC models together. However, due to the design limitation,

their work can only convert speech to one target speaker’s voice. Luong et al. [28] pro-

pose a unified multi-speaker TTS model that contains a linguistic encoder and an acoustic

encoder. Although this work is not designed for VC in the first place, it’s later shown that

the acoustic encoder can be used for voice conversion task [27]. Recently, Huang et al.

[14] propose to transfer knowledge from a transformerTTS model to a transformer based

voice conversion network. However, their work requires parallel training data.

15

CHAPTER 3

PROPOSED METHOD

3.1 Overview

In this chapter, we present the design choice and implementation details of our proposed

method. Our method consists of three major parts: (1) a TTS model based on Mellotron

[43] which explicitly factorizes speech into text, pitches and global style tokens, (2) a VC

model that transforms the mel-spectrograms from one speaker to another, (3) a Waveglow

vocoder [35] that converts mel-spectrograms into speech audio.

In section 3.2, we first present our baseline model AUTO-VC. In section 3.3, we present

the TTS model, Mellotron. In section 3.4, we present our proposed VC model and how we

transfer knowledge from the TTS model to our VC model. In section 3.5, we present the

Waveglow vocoder. In section 3.6, we describe the procedure of the conversion stage of

the VC model.

3.2 Baseline model

We first describe the baseline model AUTO-VC [36]. In AUTO-VC, a speech segment is

assumed to contain two types of information: speaker information and content informa-

tion. Speaker information is produced by a speaker encoder, which can be pre-trained

for a speaker verification task to verify if any given speech utterance is uttered by a spe-

cific speaker. The speaker embedding produced by the speaker encoder can be assumed

to capture a speech utterance’s speaker identity but contain no linguistic information.

On the other hand, content information is captured by the speech encoder. By carefully

choosing the output dimension of the speech encoder, the encoder would only have the

capacity to encode linguistic content and "remove" speaker information. As for the de-

coder, it will take as input the speaker embedding of the target speaker computed by the

16

𝑋1

Enc

𝐶1

Dec

𝑆1
𝑋1

Enc

𝐶1

Dec

𝑆2
𝑋1 𝑋2

(a) Training stage (b) Conversion stage

Figure 3.1: Each speech segment contains two types of information, speaker informa-
tion (solid) and content information (striped) (a) In training stage, when the bottleneck
dimension is just right, content representations contain no speaker information. (b) In
conversion stage, content representations are mixed up with target speaker embedding.

speaker encoder, and the linguistic content representation computed by the speech en-

coder and reconstruct the corresponding mel-spectrograms. Figure 3.1 shows an intuitive

explanation of the above process.

Figure 3.2 from [36] shows the detailed architecture of AUTO-VC. Figure 3.2 (a) shows

the structure of the speech encoder of AUTO-VC which consists of three "ConvNorm" lay-

ers and 2 layers of bi-directional LSTM. Each "ConvNorm" has one convolution layer fol-

lowed by batch normalization and ReLU activation. The output of encoder is first down-

sampled and then up sampled as shown in figure 3.2 (e) and (f). In figure 3.2 (b), the

speaker encoder of AUTO-VC consists of two LSTM layers followed by a fully connected

layer. Figure 3.2 (c) shows the structure of the decoder of AUTO-VC. The decoder mainly

consists of 3 "ConvNorm" layers and 3 LSTM layers. A convolution layer with filter width

1 is used to bring down the dimension of LSTM outputs and 5 "ConvNorm" layers learns a

residual of the final output. Figure 3.2 (d) indicates the WaveNet vocoder that transforms

output mel-spectrograms to speech audio.

In our implementation, we choose to simplify the model by using trainable speaker

embeddings instead of a speaker encoder. This is referred as AUTO-VC-one-hot in [36]

and has achieved similar performance to AUTO-VC. One may observe that the param-

17

Figure 3.2: The architecture of AUTO-VC.

eters of speaker embeddings are updated only by the loss propagated from one specific

speaker’s utterances while the remaining model parameters are updated by the loss prop-

agated from the whole dataset. Thus, it is safe to believe that trainable speaker embed-

dings can also be assumed to contain speaker information only. We use the same model ar-

chitecture for other parts of the model as [36] and we do not change any hyper-parameters.

The AUTO-VC model looks simple, but the trick is smart: since all the model pa-

rameters are trained and optimized as a whole to minimize the reconstruction error, the

bottleneck layer is forced to keep “the most important” information which is the linguis-

tic content information. Otherwise, the loss term cannot be properly minimized. How-

ever, AUTO-VC has some drawbacks. First, one needs to choose the bottleneck dimen-

sion just right which requires a lot of trial-and-error. This can be bothering when train-

ing AUTO-VC on another dataset. Second, speech inherently contains information like

prosody, pitches besides speaker identity and linguistic content, but AUTO-VC does not

take those factors into considerations.

3.3 Text-to-Speech Model

Before we delve into our proposed method, we present the TTS model, Mellotron [43] that

we adopt. The backbone of Mellotron is the Tacotron2 model [37], a sequence-to-sequence

text-to-speech model.

As shown in figure 3.3, the encoder is a text analysis module which consists of three

18

Figure 3.3: Tacotron2 model architecture

major blocks. In our implementation, the "Character Embedding" block is actually an em-

bedding look up table for both characters and phonemes. The embedding lookup table

projects one-hot vectors to high dimensional dense vector representations. We will dis-

cuss the design choice in chapter 4.2.4. Each layer of the “3 Conv Layers” block consists

of a convolutional network followed by batch normalization and ReLU activation. This

block is in analogy to a pronunciation module since one word usually consists of more

than one phoneme and convolution layers are supposed to capture local relationships be-

tween phonemes representations. The Bidirectional LSTM then encodes the forward and

backward context information of the whole sequence. The final output of the encoder and

the computation procedures are summarized as follows:

{hj}
Tx
j=1 = Enc({xj}

Tx
j=1) (3.1)

where “Enc” represents the three blocks of the encoder, {xj}
Tx
j=1 is the input sequence of

length Tx and {hj}
Tx
j=1 is the final encoder output.

The decoder is an acoustic model which turns linguistic representations into acoustic

features. The “Pre-Net” layer serves the same purpose as the “Character Embedding”

layer: to project one frame of mel-spectrogram to high dimensional vector representation.

The "2 LSTM Layers" is an attention-based auto-regressive network that predicts one mel-

19

spectrogram frame at a time based on the previous network output. The first LSTM layer,

which is sometimes called attention RNN, generates the state si which is used to compute

the attention context vector ci [3] at every time step i. The second LSTM layer, which

is sometimes called decoder RNN, takes as input the context vector ci and generates the

decoder RNN state di. The final decoder output yi is computed by linear projection of the

decoder RNN state. This procedure is summarized as follows:

si = attentionRNN(si−1, ci−1, yi−1) (3.2)

αi = Attention(si, {hj}
Tx
j=1,αi−1) (3.3)

ci =
∑
j

αi,jhj (3.4)

di = decoderRNN(di−1, ci, si) (3.5)

yi = LinearProjection(di) (3.6)

where αi is the attention alignment weight [3] at time step i and the context vector ci is the

weighted sum of encoder outputs. The "Attention" in equation 3.3 refers to the calculation

in the "Location Sensitive Attention" block. It is analogous to a duration model as it aligns

linguistic representations to mel-spectrogram frames. The whole procedures of "Location

Sensitive Attention" is as follows:

ei,j = vTtanh(Wsi + Vhj +Fαi−1 + b) (3.7)

αi = softmax(ei) (3.8)

where F is a convolution filter, W, V and v are weight matrices and b is the bias term, all of

which are learnable parameters. One may notice that the previous alignment result αi−1

is used as features to calculate the attention alignment which gives the attention module

a sense of "location". The initial alignment α0 is set to a zero vector.

To inform an auto-regressive network to stop predicting, one usually adopts a spe-

cial token called "stop token". When the "stop token" is generated, an auto-regressive

network finishes its job. However, there is no proper "stop token" for mel-spectrogram

frames (a frame containing all zeros may be silence of an utterance). Thus, as in figure

3.3, the decoder predicts an additional "stop token" besides predicting mel-spectrogram

frames. Since the auto-regressive decoder can only utilize information of previous time

20

steps, a "Post-Net" is introduced to incorporate past and future information to improve

the precision of the final prediction.

Mellotron [43] further improves the controllability of speech synthesis by conditioning

the network on speaker embeddings, pitch contour and learnt latent variables. Speaker

embeddings are common approaches to model speaker identities as in [36, 34]. Pitch

contour is the time profile of fundamental frequency of speech which mainly accounts

for its expressiveness. Latent variables are widely used in deep learning to unravel the

hidden underlying factors of complex high dimensional data. In Mellotron, the learnt

latent variable is used to capture the general speech characteristics[48] that are hard to

formalize. Figure 3.4 shows a block diagram of Mellotron.

Conv Layers x 3

Bi-LSTM x 2

Encoder

Character
Embedding

Text input

Location
Sensitive
Attention

Pre-Net
Dense Layer x 2

Attention LSTM

Decoder LSTM

Linear Projection

Decoder

Mel-spec.

Post-Net
Conv Layers x 5

Conv Layer x 1

Pitch
contour

Concatenate

Trainable
Speaker

Embedding

Concatenate

Global
Style

Token
Input audio

Figure 3.4: Block diagram of Mellotron. The main structure is the same as Tacotron2.
Speaker embeddings and GST are concatenated with encoder outputs while pitch contour
is concatenated with Pre-Net output.

The "Global Style Token" (GST) block in figure 3.4 consists of a reference encoder and

a style token layer [48]. Figure 3.5 [48] presents the GST block in detail. The reference

encoder is composed of six 2D convolution layers and a unidirectional GRU. It takes as

input the mel-spectrogram of input audio and encodes the audio into one single vector

which is then used as input to the style token layer. The style token layer consists of 10

token embeddings. To compute the final style token output, the vector from reference

21

encoder is used as "query" and multi-head attention [46] is performed over the 10 token

embeddings. The final output is called global style token because it is shown in [48] to cap-

ture general characteristics of speech utterances. As shown in figure 3.4, the global style

token and speaker embeddings are channel-wise concatenated with the encoder output.

The resulting sequence of vectors is fed to the attention module as a whole for later use.

On the other hand, the pitch contour first goes through a convolution layer and is then

channel-wise concatenated with the output of the Pre-Net.

Figure 3.5: The detailed block diagram of the GST block in figure 3.4

By conditioning on these additional inputs, we have a decoder (or an acoustic model)

that explicitly factorizes the generation of mel-spectrograms into linguistic representa-

tions T, speaker identity s, pitch contour P, alignment R and the global style token z. The

conditional likelihood of mel-spectrogram is as follows:

P({yi}
Ty
i=1) = P(yi|y<i, T, s, P, R, z) (3.9)

where speaker identity s is modeled by trainable speaker embeddings, pitch contour P is

extracted from ground truth audio in dataset during training, alignment R is calculated

by the attention module, linguistic representations T is computed as T = Enc({xj}
Tx
j=1)

and the global style token is computed by feeding the ground truth audio to the GST

block. To train the Mellotron model, we minimize the L2 loss between the generated mel-

spectrogram Y = {yi}
Ty
i=1 and the ground truth mel-spectrogramMEL = {meli}

Tmel
i=1 and the

binary cross entropy loss of the "stop token":

J =
1
N

N∑
n=1

(‖Y(n) −MEL(n)‖2 −BCE(x
(n)
stop, y(n)

stop)) (3.10)

BCE(x(n)stop, y(n)
stop) = y(n)

stop · logσ(x
(n)
stop) + (1 − y(n)

stop) · log(1 − σ(x(n)stop)) (3.11)

22

where x(n)stop is the logit output of the "stop token" module in figure 3.3 and y(n)
stop is zero

everywhere except for the last mel-spectrogram frame.

3.4 Proposed Framework

In this section, we present our proposed framework for training the non-parallel many-

to-many VC model. The model consists of a speech encoder and an acoustic decoder.

To demonstrate the effectiveness of the framework, we use the same encoder architec-

ture as the AUTO-VC encoder 3.2, which consists of three "ConvNorm" layers and 2 layers

of bi-directional LSTM. The speech encoder takes as input the mel-spectrogram {xmelj }Txj=1

of speech segments and generates a sequence of hidden representations hVC,

{hVCj }Txj=1 = EncVC({xmelj }Txj=1) (3.12)

The acoustic decoder is identical to the decoder of Mellotron, which takes as input

linguistic representation, speaker identity, pitch contour and GST and generates mel-

spectrogram frame by frame. We factorize the conditional probability of mel-spectrogram

the same way as [43],

P(yi|y<i, HVC, s, P, R, z) (3.13)

where s, z and P are computed the same way as in Mellotron. The linguistic representa-

tion, however, comes from the output of speech encoder, HVC = {hVCj }Txj=1. The last piece

of equation 3.13 is the alignment R. Different from text-to-speech, the input of speech

encoder and output of decoder are both mel-spectrogram, and it is safe to remove the

alignment module which degenerates the model to an auto-encoder. However, keeping

the alignment gives the model more flexibility. For this reason, we use the attention mod-

ule of Mellotron for our VC model.

Same as AUTO-VC [36], the speech encoder is supposed to disentangle linguistic infor-

mation apart from speaker information in the input mel-spectrogram. The hidden repre-

sentations hVC should contain only linguistic information and other information of speech

should be purged by the encoder. Compared to Mellotron, the encoder of Mellotron serves

as text analysis module and takes as input text while the speech encoder takes as input

23

mel-spectrogram. Although the two encoders encode different input information, their

goal are the same. The encoder of Mellotron also aims at capturing pronunciation related

linguistic representations. Thus, we argue that the ideal output of the speech encoder

should lie in the same representation space as the output of Mellotron encoder.

To achieve this, we propose a training framework that transfers knowledge from pre-

trained Mellotron to our VC model. We directly use the parameters of a pre-trained Mel-

lotron decoder for our acoustic decoder and fix the parameters during training. Since the

pre-trained decoder is trained to decode representations from the Mellotron encoder, the

VC model cannot generate target mel-spectrogram unless the speech encoder generates

representations that lie in the same space as the output of Mellotron encoder. Besides,

we adopt the speaker embeddings and global style token block of Mellotron and fix their

parameters during training. In other words, we only update the parameters of speech en-

coder during training. In the training stage, we pass the mel-spectrograms of an arbitrary

speaker and the speaker embedding of that speaker to the model, and the output of the

VC model is supposed to be the reconstruction of the input mel-spectrogram. The train-

ing objective is the L2 loss between the input mel-spectrogram MEL = {meli}
Tmel
i=1 and the

reconstructed mel-spectrogram Y = {yi}
Ty
i=1:

J =
1
N

N∑
n=1

(‖Y(n) −MEL(n)‖2) (3.14)

In our preliminary experiments, we found that regularizing the VC model training by

the L1 loss between the hidden representations of speech encoder and Mellotron encoder

helps stabilize the training process. To calculate this L1 loss, we pass the text transcript

of input mel-spectrogram to the pre-trained Mellotron encoder and get its hidden repre-

sentations. However, text sequence and mel-spectrogram typically have different length

which makes it impractical to directly calculate the L1 loss of the two hidden represen-

tations. To solve this problem, we expand the shape of Mellotron hidden representa-

tions with the alignment calculated by the attention module. Formally, the hidden rep-

resentations of Mellotron encoder H have shape (Ttext,dim) where Ttext is the length of

text sequence and dim is the vector dimension of its hidden representations. Whereas

the shape of the corresponding mel-spectrogram is (Tmel,dim) where Tmel is the length

24

of mel-spectrogram. The attention module of Mellotron aligns the aforementioned two

sequences by calculating the alignment weight α for each mel-spectrogram frame as in

equation 3.3. Hence, α has shape (Tmel, Ttext). To expand the shape of Mellotron hidden

representation, we multiply it by α:

Hexpanded = α ·H (3.15)

To get α, we just pass the text sequence to Mellotron model.

The final training objective thus becomes:

J =
1
N

N∑
n=1

(‖Y(n) −MEL(n)‖2 + λ‖HVC − Hexpanded‖1) (3.16)

where λ is the weight of the regularization term.

Figure 3.6a shows a block diagram of our proposed framework where the blocks with

black border indicate the parameters within those blocks are fixed during training. It

is worth mentioning that, in [53], Zhang et al. propose a joint training framework for

training a VC model and a TTS model simultaneously, which has similar architecture to

our proposed framework. Figure 3.6b shows the general architecture of [53]. The speech

encoder and TTS encoder encode mel-spectrogram and text, respectively. As shown in

figure 3.6b, the dual attention module takes as input the output representation of the two

encoders, and generates the context vectors for the two tasks, respectively. The decoder

can digest either one of the context vectors and synthesizes the target mel-spectrogram.

During training, speech input and text input are randomly selected so that the decoder can

learn to decode the two different representations. At inference time, the model can be used

as either a TTS model or a VC model depending on the input type. Our proposed method

differs from [53]. Firstly, [53] formulates a joint training problem of TTS and VC model

while we focus on transferring knowledge from a TTS model to a VC model. Secondly,

the model of [53] is based on Tacotron [47] which has no pitch contour and global style

token input. Lastly, [53] does not focus on non-parallel VC and can only convert speech

to one target speaker’s voice.

In [27], Luong et al. also propose to train a speech encoder and text encoder simulta-

neously. As shown in figure 3.7 [27], "LEnc" is the text encoder and "AEnc" is the speech

25

TTS
Encoder

Text input

Speech
Encoder

Mel-spectrogram

L1 Loss

Attention
Module

Speaker Embedding
& Global Style Token

Shared
Decoder

Last Mel-spec. frame
& pitch contour

Post-Net

Mel-spectrogram

(a) The block diagram of our proposed
framework

TTS
Encoder

Speech
Encoder

Text inputMel-spectrogram

Dual
Attention
Module

𝐴𝑡𝑡𝑣 𝐴𝑡𝑡𝑡

Shared
Decoder

concat.

Last Mel-spec. frame

Post-Net

Mel-spectrogram

(b) The block diagram of joint training
framework [53]

Figure 3.6: A comparison between our proposed framework and the joint training frame-
work

encoder. The model is also trained on TTS task with VAE loss. Our proposed method dif-

fers from [27] mainly in that: (1) Our proposed model is trained with reconstruction loss

which is much simpler than [27]. (2) Our proposed model takes as input pitch contour

which allows fine-grained control of the conversion stage.

In [14], the authors propose a pre-training framework to transfer knowledge from TTS

to VC model. Their work shares very similar idea to ours. As shown in 3.8 [14], the

authors of [14] first train a standard transformerTTS model on LJSpeech [16] dataset. Sec-

ond, they pre-train the speech encoder on LJSpeech dataset and directly adopt the TTS

decoder. Finally, they fine-tune the speech encoder and the acoustic decoder on a parallel

26

Figure 3.7: The block diagram of [27]

Figure 3.8: The pre-training pipeline of [14]

VC dataset. Our proposed method differs from [14] in that: (1) Our proposed method

focuses on non-parallel many-to-many VC while [14] still relies on parallel VC dataset. (2)

Our proposed model takes as input pitch contour which allows fine-grained control of the

conversion stage.

27

3.5 Neural Vocoder

In this section, we describe our choice of the vocoder. In the literature, the most common

choice for the vocoder is WaveNet [44]. However, due to WaveNet’s auto-regressive na-

ture, WaveNet model suffers from slow inference speed. In this thesis, we use Waveglow

[35] as our neural vocoder, which is able to synthesize high fidelity speech at real time.

Waveglow is a flow-based generative model that transforms standard Gaussian dis-

tribution to target speech distribution through a series of invertible functions. The log-

likelihood can be directly calculated as follows:

logpθ(x) = logpθ(z) +

k∑
i=1

log|det(J(f−1
i (x)))| (3.17)

z = f−1
k ◦ f

−1
k−1 ◦ ...f−1

0 (x) (3.18)

where pθ(z) follows standard Gaussian distribution, det(J(·)) stands for the determinant

of the Jacobian matrix of a function and fi is a invertible function. In [35], fi is an affine

transformation. The multiplicative and additive terms of fi are computed by a WaveNet-

like network that only take as input half channels of the input. This not only guarantees

the invertibility of the model but also allows the model to model complex non-linear re-

lationship between input and output distributions. In addition, since Waveglow has no

auto-regressive operations, the model can fully utilize the parallelism of modern hard-

ware like GPUs which makes it possible to synthesize speech at real time speed. To train

Waveglow, we directly maximize the log data likelihood described in equation 3.17.

3.6 Conversion

After training the VC model, we are able to convert (seen or unseen) speech to any target

speaker in the training dataset. However, the model cannot generalize to unseen target

speakers as we use trainable speaker embeddings to model speaker identities.

To perform conversion, we use the acoustic decoder to predict the mel-spectrogram of

target speaker as in equation 3.13. We pass the mel-spectrogram of source speech to the

speech encoder and GST module to get HVC and z in equation 3.13. To convert speaker

28

identity, we use the target speaker’s speaker embedding. It should be noted that there are

two ways to compute the alignment R in equation 3.13: performing teacher-forcing pass

with the source speech or computing the alignment at inference time. In our preliminary

experiments, we find that obtaining the alignment by teacher-forcing produces better au-

dio quality. As for the pitch contour P, we can extract it from the source speech. However,

in our preliminary experiments, we find that directly using the pitch contour of source

speech may not give good converted result. The reason is that the pitch of source speech

may be out of the vocal range of the target speaker (e.g., cross gender conversion). To

alleviate this, we calculate the mean pitch of both source and target speakers using all the

utterances in the dataset, and we scale the extracted pitch contour by the ratio between

target speaker’s mean pitch and source speaker’s mean pitch.

To transform predicted mel-spectrogram to speech waveform, we pass the predicted

mel-spectrogram to the Waveglow vocoder.

29

CHAPTER 4

EXPERIMENTAL EVALUATION

In this chapter, we present the dataset we use and illustrate the experiments we conduct.

We evaluate the performance of our model by case study and subjective tests.

4.1 Dataset

Two speech corpora are used for training different components in our model. Some of

their basic information is shown in table 4.1.

Table 4.1: Summary of LJSpeech and LibriTTS

Dataset Subset Sampling Rate Total Length (hrs) No. of Speakers

LJSpeech 22,050Hz 24 1

train-clean-100 24,000Hz 53.78 247

LibriTTS train-clean-360 24,000Hz 191.29 904

train-other-500 24,000Hz 310.08 1,160

We train our Waveglow model on LJSpeech dataset [16]. The LJSpeech dataset consists

of 13,100 short audio clips of a single female speaker reading passages from 7 non-fiction

books. The audio clips are recorded by a Macbook-Pro with a sampling rate of 22,050 Hz.

The length of clips varies from 1 second to 10 seconds, and the total length of the dataset

is 24 hours. Each audio clip is segmented based on silence, and the text transcripts are

matched manually. The dataset is split into three sets: 12,500 audio clips for training, 500

audio clips for validation and 100 audio clips for testing.

For all other components of our model, we train them on a subset of LibriTTS dataset

[50]. The LibriTTS dataset is designed for training neural text-to-speech models, and it

30

is derived from the materials of the LibriSpeech dataset. The LibriTTS dataset consists

of 585 hours of speech data with a sampling rate of 24kHz from 2,456 speakers and the

corresponding text transcripts. The main differences between LibriTTS and LibriSpeech

are (1) LibriTTS removes all the audio clips with significant background noise; (2) LibriTTS

re-samples original audio material to 24kHz as original material is recorded at a sampling

rate of 44.1 or 32kHz; (3) the original audio materials are segmented based on sentence

break instead of silence. As shown in table 4.1, the LibriTTS dataset is also split into three

subsets like LibriSpeech, namely train-clean-100, train-clean-360 and train-other-500. To

conduct our experiments, we only use the train-clean-100 subset of LibriTTS. The train-

clean-100 subset is further filtered according to the rules in section 4.2.1.

4.2 Pre-processing

4.2.1 Filter Long Audio clips of LibriTTS

Audio clips in LibriTTS are segmented based on sentence break. This may be useful for

research like emotional TTS when one needs to consider contextual features of speech at

sentence level. However, due to sentence level break, some audio clips may be too long

in length to fit in the GPU memory. As a result, we either use smaller batch size or we

filter out long audio clips. In this thesis, we filter out audio clips longer than 10 seconds

in length to balance the amount of training data and training batch size. The final training

set consists of 19,934 audio clips of 123 speakers. The validation set consists of 180 audio

clips and the test set consists of 500 audio clips.

4.2.2 Unify Audio Sampling Rate

Waveglow [35], Mellotron [43] and our proposed model can only work on audio clips

with consistent sampling rate. This means that the models only function properly when

the audio sampling rate at inference time is the same as the sampling rate at training time.

However, the sampling rate of LibriTTS and LJSpeech are different. To cope with this

issue, we re-sample all LibriTTS audio clips down to 22050Hz.

31

4.2.3 Compute Mel-Spectrogram and Extract Fundamental Frequency

We need to compute the mel-spectrogram of input speech and extract fundamental fre-

quency from it, since our models do not directly take as input the raw speech signals

To compute the mel-spectrogram of audio clips, we first compute the linear magnitude

spectrogram of audio clips through short-time Fourier transform (STFT). The window

length is 1024, the hop length is 256 and the Hanning window function is applied before

STFT. The linear spectrogram is then passed to an 80 channel mel filterbank spanning

0Hz to 8000Hz. The result is a mel-spectrogram. For numerical stability, we apply a

logarithmic function to the mel-spectrogram.

We use the YIN algorithm [4] to extract the fundamental frequency contour of input

audio clips. We use the same window length and hop length as those used in STFT, and set

the minimum and maximum frequency to 80Hz and 880Hz, respectively. The harmonic

threshold for YIN algorithm is set to 0.25.

4.2.4 Use Phoneme Input

Although modern seq2seq text-to-speech models [47, 37, 34, 43] can directly transform

English characters to mel-spectrogram, it is found that using phoneme as input could

improve the performance of TTS model. The model that transforms text into phoneme

sequence is called grapheme to phoneme model (G2P). However, the performance of TTS

model is not the focus of our work, and we do not train a dedicated G2P model. For

this reason, we use both phoneme and character input for Mellotron. We use the CMU

Pronunciation Dictionary (CMUDict) to map English words to their phonemes whenever

the words appear in the dictionary. If a word is polyphonic, we randomly select one of its

pronunciations every time we try to map the word. If a word is not in the dictionary (e.g.

a rare word or an abbreviation), we use character input instead. Mixing characters and

phonemes as input to TTS models is also studied in [34], and is shown to be effective.

We use one of the most popular English phoneme sets, ARPABET, for our models. The

ARPABET phoneme set consists of 39 phonemes as shown in table 4.2. However, in En-

glish, some phonemes have different stress in different words. For example, the phoneme

’AA’ is sometimes written as ’AA1’, ’AA2’ or ’AA0’ that stand for primary, secondary and

32

no stress, respectively. In this thesis, to simplify the model architecture, we use differ-

ent embeddings for different stress of the same phoneme (i.e. we create 3 entries in the

embedding table for ’AA1’, ’AA2’ and ’AA0’).

Table 4.2: The ARPABET phoneme set

Phoneme Example Phoneme Example

AA odd L lee

AE at M me

AH hut N knee

AO ought NG ping

AW cow OW oat

AY hide OY toy

B be P pee

CH cheese R read

D dee S sea

DH thee SH she

EH Ed T tea

ER hurt TH theta

EY ate UH hood

F fee UW two

G green V vee

HH he W we

IH it Y yield

IY eat Z zee

JH gee ZH seizure

K key

33

4.3 Experiments

We implement all our models with the Pytorch framework [33], and train all the models

on a single NVIDIA TITAN RTX GPU. Our proposed framework involves training the

following models.

Mellotron: We train the Mellotron model on the filtered train-clean-100 subset of Lib-

riTTS. We use the ADAM [24] optimizer with β1 = 0.9, β2 = 0.999 and ε = 10−6. The

initial learning rate is set to 1e − 3 and is exponentially decayed to 1e − 5 every 30,000

iterations. The BCE loss term in equation 3.10 has only one positive sample at the end of

each sequence, which may cause problems in learning the stopping criterion. To alleviate

this, we impose a positive weight (6.0) on the positive samples of the BCE loss term. In

addition, we also apply L2 regularization with a weight of 10−6. The Mellotron model is

trained with a batch size of 64 for 300,000 iterations.

VC model: We then train the VC model following the scheme described in chapter 3.4

on the same dataset as Mellotron. All the parameters except for the speech encoder are

fixed during training. The weight λ in equation 3.16 is set to 1. We also use the ADAM

[24] optimizer with the same parameters as Mellotron. The initial learning rate is set to

1e− 3, and we halve the learning rate when the learning rate is larger than 1e− 5 and the

training loss starts to plateau. The VC model is trained with a batch size of 24 for around

50,000 iterations.

Waveglow: Training a Waveglow model from scratch takes an extremely large amount

of time and computing resources. Due to limited available resources, we adopt a pub-

lished model from NVIDIA 1, and fine-tune it on LJSpeech dataset for another 10,000 it-

erations using the default hyper-parameters. Although Waveglow is trained on the voice

of a single female speaker, it is found that Waveglow can transform mel-spectrogram of

unseen speakers, even male speakers, to speech audio. Hence, Waveglow can be regarded

as a universal vocoder.

To measure the performance of our proposed framework, we train the following mod-

els and compare our proposed model with them.

AUTO-VC: AUTO-VC [36] achieves the state-of-the-art performance for non-parallel

1https://github.com/NVIDIA/waveglow

34

voice conversion. Details of the model is described in chapter 3.2. To accommodate the

22050Hz sampling rate of our dataset, we use STFT parameters described in chapter 4.2.3

to compute the mel-spectrogram of speech. Except for the difference of STFT parameters,

we use the same parameters and follow the same training procedures described in [36] to

train AUTO-VC.

PARA: The major disadvantage of parallel VC is the difficulty of obtaining parallel

training data. However, a multi-speaker TTS model like Mellotron can generate speech

utterance of any text content, which means that we could generate synthetic parallel utter-

ances of any speaker. Although this thesis focuses on non-parallel VC and our proposed

framework transfers knowledge from a TTS model to a VC model, a natural question to

ask is: how is the performance of a VC model trained on parallel data generated by a

TTS model compared to our proposed model? To answer this question, we train a naive

seq2seq parallel data VC model on the same dataset as Mellotron which we call PARA.

The PARA model has identical encoder and decoder to our proposed model. The training

details are as follows: (1) We sample a batch of text and mel-spectrogram pairs from the

dataset, and we randomly generate a batch of speaker IDs. (2) We then pass the text and

speaker IDs to the pre-trained Mellotron to synthesize a batch of mel-spectrogram which

is our synthetic parallel data. (3) We finally pass the mel-spectrogram sampled from the

dataset to PARA along with speaker IDs, and calculated the L2 loss between output of

PARA and the synthetic mel-spectrogram. We train PARA with ADAM [24] optimizer

and the learning rate is set to 1e − 3. The model is trained with a batch size of 24 for

around 100,000 iterations.

4.4 Evaluation

(a) source (b) target (c) pitch contour

Figure 4.1: Example of male-to-male conversion

35

(a) source (b) target (c) pitch contour

Figure 4.2: Example of male-to-female conversion

(a) source (b) target (c) pitch contour

Figure 4.3: Example of female-to-male conversion

(a) source (b) target (c) pitch contour

Figure 4.4: Example of female-to-female conversion

4.4.1 Case Study

To investigate the conversion result of our proposed model, we draw several examples of

mel-spectrograms of the converted speech. Figure 4.1 to 4.4 are four conversion results

that cover four conversion scenarios (male-to-male, male-to-female, female-to-male and

female-to-female). Column (a) of the figures are the mel-spectrogram of the source speech

and column (b) of the figures are the converted target mel-spectrograms. Figure 4.1 and

4.2 are the conversion results of a male source speaker speaking "She withdrew entirely now,

all but her hand, and her eyes sought the ground." Figure 4.3 and 4.4 are the conversion results

of a female source speaker speaking "I thought you were when I heard you trying to make the

others wait." It can be seen that the converted mel-spectrograms in column (b) generally

follow the envelope of the source mel-spectrograms in column (a). This suggests that the

36

proposed model can keep the linguistic content of the source speech, but some of the high

frequency bands in figure 4.1 and figure 4.3 are lost or become indistinct.

In chapter 3.6, we have described how we convert the fundamental frequency from

source speaker to target speaker. To show that our proposed model is able to transform

fundamental frequency accordingly, we draw the input pitch contour and pitch contour

extracted from converted speech in column (c) of figure 4.1 to figure 4.4. The blue points

are the conditional input to our proposed model. The red points are pitch contour ex-

tracted from converted mel-spectrograms in column (b). As shown in the figures, blue

points and red points are mostly aligned which means that the converted speech have the

same pitch as the input and our model works as expected. In addition, this result suggests

that we have successfully transferred knowledge from Mellotron to our proposed model.

4.4.2 Subjective Evaluation

Traditionally, people measure the performance of voice conversion systems by the mel-

cepstral distortion between the converted spectrum and the ground truth target spec-

trum. Mel cepstral distortion (MCD) is a measure of how different two sequences of

mel-cepstrum are. MCD is computed as:

MCD[dB] =
10
ln10

√√√√2
N∑
d=1

(cd − c
converted
d)2 (4.1)

where N is the dimension of mel-cepstral features. cd and cconvertedd are the ground truth

target and converted features, respectively. However, listening studies have shown that

good conversion result does not always relate to small MCD value. Hence, a small MCD

is not the necessary condition of a good VC system. Moreover, calculating MCD requires

the ground truth target speech which implies the necessity of parallel utterances in the

dataset. For these reasons, we do not adopt MCD to evaluate the performance of our VC

model. Instead, we follow the common practice [49] to evaluate our models in terms of

speaker similarity and naturalness by conducting subjective listening tests.

37

Speaker Similarity Test

The speaker similarity test aims at answering the question: How similar does the con-

verted speech sound compared to the target speaker and to the source speaker?

To construct the test, we randomly select 4 speakers (2 male and 2 female) as the source

speakers and another 4 speakers (2 male and 2 female) as the target speakers. Each source

speaker is paired with the 4 target speakers, and there are 16 pairs in total. For each

pair, we select 4 utterances of the source speaker from the test subset and convert them to

the target speaker. To control the total length of the listening test, we only select source

utterances with length less than 5 seconds. We do the above operations with the same

16 speaker pairs for AUTO-VC, PARA and our proposed model. This results in 16× 4×

3 = 192 converted utterances. We then pair each converted utterance with a reference

utterance from its source speaker and its target speaker. In total, we have 192× 2 = 384

pairs of utterances, and we call a pair of utterances a test case. We divide test cases into

four sets based on the gender of the source and target speakers: male-to-male(M2M),

male-to-female(M2F), female-to-male(F2M) and female-to-female(F2F). Each set contains

96 test cases.

To conduct the listening test, we recruit 16 listeners (7 male, 9 female). All the listeners

have received higher education and are fluent in speaking English as a second language.

We ask the listeners to listen to the test cases and evaluate the speaker similarity of the

utterances. Specifically, each listener is given the following instructions: "Do you think

these two samples could have been produced by the same speaker? Some of the samples may sound

somewhat degraded/distorted. Please try to listen beyond the distortion and concentrate on identi-

fying the voice. Are the two voices the same or different?" and asked to judge on the test cases

with the following options: "same, absolutely sure", "same, not sure", "different, not sure" and

"different, absolutely sure". In total, each set is listened for six times. In other words, each

test case is evaluated by 6 listeners.

Figure 4.5 presents the similarity test result of the 3 models compared to the source

speakers. Ideally, we want a VC model to cast out the source speaker identity, and the con-

verted speech should sound as different from the source speaker as possible. As shown in

the figure, in M2F conversion, both AUTO-VC and our proposed model achieve around

38

(a) M2M (b) M2F

(c) F2M (d) F2F

Figure 4.5: Similarity test with the source speaker

90% speaker difference rate. In F2M conversion, nearly 70% of listeners rate the con-

verted speech of AUTO-VC with "different, not sure" or "different, absolutely sure" and 85%

of listeners rate the converted speech of our proposed model with "different, not sure" or

"different, absolutely sure". On the other hand, in M2M conversion, only about 60% of

listeners think that the converted speech of AUTO-VC is uttered by a different speaker

from the source speech. Our proposed model out-performs AUTO-VC and achieves 70%

speaker difference rate. In F2F conversion, our proposed model performs slightly better

than AUTO-VC by achieving 67% speaker difference rate.

It can be seen that, when performing cross gender voice conversion, all 3 models per-

39

form well in casting out source speaker identity. However, when it comes to same gender

voice conversion, all 3 models perform worse. PARA even fails to cast out speaker iden-

tity in M2M conversion. Our proposed model out-performs AUTO-VC and PARA in all

conversion scenarios in casting out the source speaker identity. This result meets our ex-

pectation since male and female speakers usually have very different voice characteristics,

and the models only need to do little "work" to make the converted voice sound differ-

ent. Meanwhile speakers with the same gender share a lot of voice characteristics and the

models need to be more capable of capturing the voice detailed differences.

(a) M2M (b) M2F

(c) F2M (d) F2F

Figure 4.6: Similarity test with the target speaker

Figure 4.6 presents the similarity test result of the 3 models compared to the target

40

speakers. Not surprisingly, PARA fails to perform a meaningful conversion in most cases,

which implies that the naive way of training a parallel VC model with synthetic parallel

data does not work.

On the other hand, in M2M conversion, our proposed model gets 60% speaker simi-

larity rate and out-performs AUTO-VC by 10%. In F2F conversion, both AUTO-VC and

our proposed model gets 60% speaker similarity rate. In M2F and F2M cross-gender con-

version, our proposed model achieves 70% and 64% speaker similarity rate, respectively,

which out-performs AUTO-VC by a large margin.

We note that AUTO-VC performs badly in F2M conversion. We suspect that the cause

of this is: AUTO-VC cannot properly convert the pitch from source speaker to target

speaker since AUTO-VC assumes that a speech segment contains only speaker infor-

mation and content information. Thus, the converted speech of AUTO-VC still retains

the pitch of the source speech. In F2M conversion, this means that the converted speech

would have high pitch. Generally, the pitch of female speakers is out of the vocal range of

male speakers. As a result, listeners may get confused and rate bad for AUTO-VC. On the

other hand, the pitch of male speakers is often within the vocal range of female speakers,

which accounts for the better performance of AUTO-VC in M2F conversion.

The above result also suggests that the conversion of fundamental frequency is crucial

to the performance of VC models.

Naturalness Test

The naturalness test aims at answering the question: How natural does the converted

speech sound?

The most common approach of testing speech naturalness is the Mean Opinion Score

(MOS) test. We use the same converted utterances generated in the speaker similarity test

for the MOS test. In addition, we randomly select 32 audio recordings from the dataset to

evaluate the MOS of ground truth audio recordings for comparison purpose. To construct

the MOS test, we make a set of 56 utterances with 16 converted utterances from AUTO-VC,

16 converted utterances from PARA, 16 converted utterances from our proposed model

and 8 audio recordings. We repeat this process without replacement, and make 4 test sets.

41

Similar to the similarity test, we then ask the same 16 listeners to evaluate the natu-

ralness of speech in test sets and rate each utterance on a scale from 1 to 5 with 1 point

increments. Each point indicates the naturalness rating of a given utterance with the fol-

lowing levels: 1-bad, 2-poor, 3-fair, 4-good and 5-excellent. In total, each listener listens to

one set and each set is listened by 4 different listeners.

Table 4.3: Mean Opinion Scores result with 95% confidence intervals computed from nor-

mal distribution

Model MOS

AUTO-VC 3.813 (±0.340)

PARA 3.438 (±0.273)

Proposed Model 3.719 (±0.315)

Ground Truth 4.377 (±0.225)

Table 4.3 shows the MOS result with 95% confidence intervals. We find that PARA has

the lowest score while AUTO-VC achieves the highest score. Nevertheless, statistically,

we are 95% confident to say that our proposed model and AUTO-VC have no significant

difference in their VC performance in terms of speech naturalness. Although it is imprac-

tical to compare the absolute score of MOS results with different experimental settings,

the relative difference between the MOS result of the ground truth audio recordings and

the MOS result of our proposed model is closed to the relative difference of the result in

[35]. This implies that our proposed model can generate naturally sounding speech.

In addition to the test, we also ask listeners for feedback. Comments from listeners

indicate that our proposed model sometimes makes buzz noise in the converted speech

and occasionally makes pronunciation mistakes. For example, our proposed model would

convert the word "wait" to the pronunciation in the middle of "wait" and "wet". Since all 3

models use the same Waveglow vocoder, it is very likely that the artifacts come from the

VC model instead of the Waveglow vocoder. We have hypothesized several reasons for

this. (1) The attention module of the VC model is adopted from Mellotron. However, in

Mellotron, the attention module is used to align text representations and mel-spectrogram

42

frames. Hence, The discrepancies between the Mellotron attention module and the VC

attention module may cause the issues. (2) Since Mellotron is trained with a mixture

of character and phoneme inputs, it may be under-fitting to some pronunciation cases.

When we transfer knowledge from Mellotron’s decoder, the errors get propagated to our

VC model. (3) Despite the success of the proposed framework, L2 loss only might be too

simple for VC task, and we may need additional loss terms (e.g. phoneme classification

of the hidden representations) to get better audio quality.

43

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we attempt to address the question: "how to disentangle speaker and con-

tent information from speech segments for non-parallel many-to-many VC?". The main

contribution of our work is that we propose to train a non-parallel many-to-many VC

model by directly adopting the decoder and speaker embeddings of a TTS model, Mel-

lotron. In addition, to better disentangle content information from other factors, we pro-

pose to condition our proposed model on global style tokens and pitch contour. A simple

fundamental frequency conversion trick is proposed for the conversion stage.

To visualize the conversion results, mel-spectrogram figures are presented. To evalu-

ate the performance of our proposed model, we conduct subjective tests, and the result

of which implies that our proposed model out-performs the baseline model in terms of

speaker similarity. We draw the following conclusions from our experiments. (1) The

acoustic decoder of a TTS model can be transferred to a VC model. A well trained TTS

decoder can help disentangle speaker and content information for the VC model. (2) The

conversion of fundamental frequency is crucial to the performance of VC models. Failure

in the conversion of fundamental frequency may result in poor speaker similarity.

Despite the success of our work. There are some improvements that can be made

in the future. (1) We may integrate a speaker encoder to our proposed framework so

that the model can achieve zero-shot voice conversion. (2) The current trick used for

converting fundamental frequency is naive. We may find a more robust way of converting

fundamental frequency. (3) We can investigate a better attention mechanism or integrate

auxiliary tasks to further improve the audio quality of our proposed model. For example,

we may impose a phoneme classification task on the output of speech encoder (4) The

efficacy of GST module is to be verified. We may also try to model other factors of speech

(prosody, accent, emotion) in a more fine-grained level.

44

REFERENCES

[1] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara. Voice conversion through

vector quantization. In ICASSP-88., International Conference on Acoustics, Speech, and

Signal Processing, pages 655–658 vol.1, 1988.

[2] Sercan Arik, Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou. Neural voice

cloning with a few samples. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing

Systems 31, pages 10019–10029. Curran Associates, Inc., 2018.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-

tion by jointly learning to align and translate. CoRR, abs/1409.0473, 2015.

[4] Alain Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator

for speech and music. The Journal of the Acoustical Society of America, 111:1917–30, 05

2002.

[5] Yunjey Choi, Min-Je Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul

Choo. StarGAN: Unified generative adversarial networks for multi-domain image-

to-image translation. CoRR, abs/1711.09020, 2017.

[6] Ju-Chieh Chou, Cheng-chieh Yeh, and Hung-yi Lee. One-shot voice conversion by

separating speaker and content representations with instance normalization. CoRR,

abs/1904.05742, 2019.

[7] Yan Deng, Lei He, and Frank K. Soong. Modeling multi-speaker latent space to im-

prove neural tts: Quick enrolling new speaker and enhancing premium voice. ArXiv,

abs/1812.05253, 2018.

[8] S. Desai, E. V. Raghavendra, B. Yegnanarayana, A. W. Black, and K. Prahallad. Voice

conversion using artificial neural networks. In 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 3893–3896, 2009.

45

[9] Srinivas Desai, Alan Black, B. Yegnanarayana, and Kishore Prahallad. Spectral map-

ping using artificial neural networks for voice conversion. Audio, Speech, and Lan-

guage Processing, IEEE Transactions on, 18:954 – 964, 08 2010.

[10] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.

Convolutional sequence to sequence learning. In Doina Precup and Yee Whye Teh,

editors, Proceedings of the 34th International Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages 1243–1252, International Conven-

tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[11] Andrew Gibiansky, Sercan Arik, Gregory Diamos, John Miller, Kainan Peng, Wei

Ping, Jonathan Raiman, and Yanqi Zhou. Deep voice 2: Multi-speaker neural text-

to-speech. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems

30, pages 2962–2970. Curran Associates, Inc., 2017.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, ed-

itors, Advances in Neural Information Processing Systems 27, pages 2672–2680. Curran

Associates, Inc., 2014.

[13] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and Hsin-Min Wang. Voice

conversion from non-parallel corpora using variational auto-encoder. 2016 Asia-

Pacific Signal and Information Processing Association Annual Summit and Conference (AP-

SIPA), pages 1–6, 2016.

[14] Wen-Chin Huang, Tomoki Hayashi, Yi-Chiao Wu, Hirokazu Kameoka, and Tomoki

Toda. Voice transformer network: Sequence-to-sequence voice conversion using

transformer with text-to-speech pretraining. ArXiv, abs/1912.06813, 2019.

[15] Wen-Chin Huang, Hsin-Te Hwang, Yu-Huai Peng, Yu Tsao, and Hsin-Min Wang.

Voice conversion based on cross-domain features using variational auto encoders.

2018 11th International Symposium on Chinese Spoken Language Processing (ISCSLP),

pages 51–55, 2018.

46

[16] Keith Ito. The LJSpeech dataset. https://keithito.com/

LJ-Speech-Dataset/, 2017.

[17] Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen,

Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, and Yonghui Wu. Trans-

fer learning from speaker verification to multispeaker text-to-speech synthesis. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems 31, pages 4480–4490. Curran

Associates, Inc., 2018.

[18] A. Kain and M. W. Macon. Spectral voice conversion for text-to-speech synthesis.

In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal

Processing, ICASSP ’98 (Cat. No.98CH36181), volume 1, pages 285–288 vol.1, 1998.

[19] Hirokazu Kameoka, Takuhiro Kaneko, Kou Tanaka, and Nobukatsu Hojo. ACVAE-

VC: Non-parallel many-to-many voice conversion with auxiliary classifier varia-

tional autoencoder. ArXiv, abs/1808.05092, 2018.

[20] Hirokazu Kameoka, Takuhiro Kaneko, Kou Tanaka, and Nobukatsu Hojo. StarGAN-

VC: Non-parallel many-to-many voice conversion with star generative adversarial

networks. CoRR, abs/1806.02169, 2018.

[21] Hirokazu Kameoka, Kou Tanaka, Takuhiro Kaneko, and Nobukatsu Hojo.

ConvS2S-VC: Fully convolutional sequence-to-sequence voice conversion. CoRR,

abs/1811.01609, 2018.

[22] T. Kaneko and H. Kameoka. CycleGAN-VC: Non-parallel voice conversion using

cycle-consistent adversarial networks. In 2018 26th European Signal Processing Confer-

ence (EUSIPCO), pages 2100–2104, 2018.

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. CoRR, abs/1812.04948, 2018.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-

ceedings, 2015.

47

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

[25] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Yoshua

Bengio and Yann LeCun, editors, 2nd International Conference on Learning Represen-

tations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,

2014.

[26] H. Lu, Z. Wu, R. Li, S. Kang, J. Jia, and H. Meng. A compact framework for voice

conversion using WaveNet conditioned on phonetic posteriorgrams. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, pages 6810–6814, 2019.

[27] Hieu-Thi Luong and Junichi Yamagishi. Bootstrapping non-parallel voice conver-

sion from speaker-adaptive text-to-speech. IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), Dec 2019.

[28] Hieu-Thi Luong and Junichi Yamagishi. A unified speaker adaptation method for

speech synthesis using transcribed and untranscribed speech with backpropagation,

2019.

[29] J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4):561–

580, 1975.

[30] Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A vocoder-based

high-quality speech synthesis system for real-time applications. IEICE Transactions

on Information and Systems, E99.D:1877–1884, 07 2016.

[31] Toru Nakashika, R. Takashima, T. Takiguchi, and Yasuo Ariki. Voice conversion in

high-order eigen space using deep belief nets. Proc. Interspeech, pages 369–372, 2013.

[32] O. Ocal, O. H. Elibol, G. Keskin, C. Stephenson, A. Thomas, and K. Ramchandran.

Adversarially trained autoencoders for parallel-data-free voice conversion. In IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 2777–2781,

2019.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-

jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

48

Pytorch: An imperative style, high-performance deep learning library. In H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019.

[34] Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O. Arik, Ajay Kannan, Sharan

Narang, Jonathan Raiman, and John Miller. Deep Voice 3: 2000-speaker neural text-

to-speech. In International Conference on Learning Representations, 2018.

[35] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based genera-

tive network for speech synthesis. IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 3617–3621, 2019.

[36] Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang, and Mark Hasegawa-

Johnson. AutoVC: Zero-shot voice style transfer with only autoencoder loss. In

Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Inter-

national Conference on Machine Learning, volume 97 of Proceedings of Machine Learning

Research, pages 5210–5219, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[37] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly,

Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, R. J. Skerry-Ryan, Rif A.

Saurous, Yannis Agiomyrgiannakis, and Yonghui Wu. Natural TTS synthesis by con-

ditioning WaveNet on mel spectrogram predictions. CoRR, abs/1712.05884, 2017.

[38] Y. Stylianou, O. Cappe, and E. Moulines. Continuous probabilistic transform for

voice conversion. IEEE Transactions on Speech and Audio Processing, 6(2):131–142, 1998.

[39] Yannis Stylianou. Applying the harmonic plus noise model in concatenative speech

synthesis. Speech and Audio Processing, IEEE Transactions on, 9:21 – 29, 02 2001.

[40] L. Sun, K. Li, H. Wang, S. Kang, and H. Meng. Phonetic posteriorgrams for many-

to-one voice conversion without parallel data training. In 2016 IEEE International

Conference on Multimedia and Expo (ICME), pages 1–6, 2016.

[41] K. Tanaka, H. Kameoka, T. Kaneko, and N. Hojo. ATTS2S-VC: Sequence-to-sequence

voice conversion with attention and context preservation mechanisms. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, pages 6805–6809, 2019.

49

[42] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization:

The missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016.

[43] Rafael Valle, Jason Li, Ryan Prenger, and Bryan Catanzaro. Mellotron: Multispeaker

expressive voice synthesis by conditioning on rhythm, pitch and global style tokens.

IEEE International Conference on Acoustics, Speech and Signal Processing, May 2020.

[44] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu.

WaveNet: A generative model for raw audio. CoRR, abs/1609.03499, 2016.

[45] Aäron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals,

Koray Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis Carlos Cobo

Rus, Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury, Sander

Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alexander Graves, Helen King,

Thomas Walters, Dan Belov, and Demis Hassabis. Parallel WaveNet: Fast high-

fidelity speech synthesis. Technical report, Google Deepmind, 2017.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems 30, pages 5998–6008. Curran

Associates, Inc., 2017.

[47] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep

Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc V. Le, Yannis

Agiomyrgiannakis, Rob Clark, and Rif A. Saurous. Tacotron: Towards end-to-end

speech synthesis. In Interspeech, 2017.

[48] Yuxuan Wang, Daisy Stanton, Yu Zhang, R. J. Skerry-Ryan, Eric Battenberg, Joel Shor,

Ying Xiao, Fei Ren, Ye Jia, and Rif A. Saurous. Style tokens: Unsupervised style mod-

eling, control and transfer in end-to-end speech synthesis. ArXiv, abs/1803.09017,

2018.

[49] Mirjam Wester, Zhizheng Wu, and Junichi Yamagishi. Analysis of the voice conver-

sion challenge 2016 evaluation results. In Interspeech 2016, pages 1637–1641, 2016.

50

[50] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and

Yonghui Wu. LibriTTS: A corpus derived from librispeech for text-to-speech. CoRR,

abs/1904.02882, 2019.

[51] Jing-Xuan Zhang, Zhen-Hua Ling, Yuan Jiang, Li-Juan Liu, Chen Liang, and Li-

Rong Dai. Improving sequence-to-sequence acoustic modeling by adding text-

supervision. CoRR, abs/1811.08111, 2018.

[52] Jing-Xuan Zhang, Zhen-Hua Ling, Li-Juan Liu, Yuan Jiang, and Li-Rong

Dai. Sequence-to-sequence acoustic modeling for voice conversion. CoRR,

abs/1810.06865, 2018.

[53] Mingyang Zhang, Xin Wang, Fuming Fang, Haizhou Li, and Junichi Yamagishi.

Joint training framework for text-to-speech and voice conversion using multi-source

Tacotron and WaveNet. Interspeech 2019, Sep 2019.

[54] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired

image-to-image translation using cycle-consistent adversarial networks. CoRR,

abs/1703.10593, 2017.

51

	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	Chapter 2 Background and Related Work
	Vocoder
	Voice Conversion
	Parallel VC
	Non-parallel VC

	Text-to-Speech

	Chapter 3 Proposed Method
	Overview
	Baseline model
	Text-to-Speech Model
	Proposed Framework
	Neural Vocoder
	Conversion

	Chapter 4 Experimental Evaluation
	Dataset
	Pre-processing
	Filter Long Audio clips of LibriTTS
	Unify Audio Sampling Rate
	Compute Mel-Spectrogram and Extract Fundamental Frequency
	Use Phoneme Input

	Experiments
	Evaluation
	Case Study
	Subjective Evaluation

	Chapter 5 Conclusions and Future Work
	References

