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ABSTRACT

Recent deep learning text-to-speech (TTS) systems synthesize natural speech. Applying

speaker adaptation can make a TTS system speak like the adapting speaker, but the speak-

ing style of the synthesized utterance still follows closely to the speaker’s of the training

utterances. In some applications, it is desirable to synthesize speech in a speaking man-

ner depending on the scenario. A straightforward solution is to record speech data from

a speaker under different role-playing scenarios. However, excluding professional voice

talents, most people are not experienced in speaking in different expressive styles. Like-

wise, without being exposed to a multilingual environment from an early age, most peo-

ple cannot speak a second language with its native accent. In this thesis, we propose

a novel data augmentation method to create a stylish TTS model for a speaker. Specif-

ically, augmented data are created by ‘forcing’ a speaker to imitate stylish speeches of

other speakers. Our proposed method consists of two steps. Firstly, all the data are used

to train a basic multi-style multi-speaker TTS model. Secondly, augmented utterances

are created on-the-fly from the latest TTS model during its training and are used to fur-
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ther train the TTS model. We select two applications to demonstrate the effectiveness of

our proposed method: (1) synthesizing speech in three scenarios — newscasting, public

speaking, and storytelling — for a speaker who provides only neutral speech data; (2)

synthesizing “beautified” speech of a language spoken by a non-native speaker by reduc-

ing his/her accent in the aspects of better pronunciation and more native prosody. Our

experiment shows that for scenario-based TTS, the scenario speeches synthesized by our

proposed method are overwhelmingly preferred over those from a speaker-adapted TTS

model. For accent-beautified TTS, our model reduces the foreign accent of the non-native

speeches while retaining a higher voice similarity than a state-of-the-art accent conversion

model.
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CHAPTER 1

INTRODUCTION

Text-to-speech (TTS) system has a long research history. To understand what a TTS system

does, we may refer to a well-known example. Stephen Hawking [54] was a renowned

theoretical physicist from England. He suffered from the motor neuron disease known

as amyotrophic lateral sclerosis (ALS). He lost his speaking ability because of a medical

condition in 1985. Since then, he relied on a TTS voice assistive machine to speak for him.

The machine consisted of a computer and a voice synthesizer. The computer provided a

running list of words. Hawking twitched his cheek muscle to control a cursor to select a

word or phrase from the list. Then he repeated the process to pick the next word or phrase

until he created a sentence. Finally, the voice synthesizer read the sentence aloud for

him. This voice spoke in a robotic tone under any scenario, but for a human’s utterance,

the speaking style of a speech is scenario-dependent. Moreover, contradicting his British

identity, the voice used in his synthesizer had an American accent.

1.1 Targeted Speech Synthesis Applications

Speech is a form of verbal communication, which allows us to communicate efficiently.

Inevitably, the nonverbal channel of communication, like the tone and intensity of voice,

plays a key role in an individual’s perception regarding a speech, such as politeness [23].

In public speaking, one particular technique for the speaker to keep the audience engaged

is to bring the pitch up a notch when talking about an interesting part of the speech [39].

People could acquire better speaking skills via a "practice makes perfect" approach.

Everyone knows speech imitation. An infant starts his/her speech development by

matching the caretaker’s speech in their interaction [32]. A professional voice actor could

even imitate the voice identity of another speaker. In this research work, we would like to

create a customized TTS voice with a speaking style different from the original speaker’s
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utterances without altering the speaker’s voice identity. We list out two applications be-

low.

1.1.1 Scenario-based Speech Synthesis for a Neutral Speaker

With the rapid advancement of artificial intelligence, TTS technology provides a very nat-

ural artificial voice nowadays. Consequently, its application has gained popularity in our

daily lives. For instance, Apple’s iPhone has a voice assistant named Siri while Amazon’s

smart home speaker has Alexa. Both use a TTS system to communicate with humans.

It recognizes your questions in speech. It searches the information online and reads the

answer aloud. Their voice shall be in a conversational style rather than talking constantly.

One user made an interesting attempt. He asked the voice assistants to tell a joke. They

told a good one in a flat tone [44]. The publication business industry also showed interest

in this technology. They used a TTS system to read the book content of a newly published

book. Then they organized the generated utterances into an audiobook [15]. The complete

audio track for a typical book is usually a few hours long. Hence the artificial voice for this

application shall be expressive enough to keep the reader engaged. Some start-ups [4, 31]

further extended this idea. They provide easy integration of TTS to read articles written

by a content provider. By converting a web article into a speech or even a podcast, this

increases the reachability and accessibility of the content. In the future, we foresee that the

author could use his/her voice in reading his/her articles or even books aloud. However,

most common people are neutral speakers who speak with a neutral tone. On the other

hand, the content of an article or book can be very dynamic, the synthesized speech has

to be scenario-dependent even if the author is not a voice-over professional.

1.1.2 Accent-beautified Speech Synthesis for a Non-native Speaker

TTS may be applied to reduce the communication gap between people speaking in differ-

ent mother tongues. The world is more connected than ever before with travelers visiting

different countries and businesspersons having online meetings with colleagues or clients

from different countries. In the communication between a native speaker of a language

and a non-native speaker speaking the same language, the intelligibility and fluency of
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the foreign speech are the key factors [17] for understanding. There are a few solutions

to facilitate this type of communication. Accent conversion (AC) converts a non-native

accented utterance from a second-language (L2) speaker to one with a more native accent

without changing the speaker’s voice. This technology can be used in language learning

so that an L2 learner may listen to the difference between his/her imitated speech and the

native speech to improve his/her L2 speaking skills [49]. Another technology is called si-

multaneous interpretation (SI). Some online meeting applications, e.g., Skype [41], notice

that a foreign language and/or the accent of a speaker may affect the reception of his/her

presentation from the audience, so it provides this SI feature. The feature allows the au-

dience to listen in their first language (L1). It involves three steps: an L2 speech-to-text

engine, a machine translation between L2 and L1, and an L1 text-to-speech. However, the

voice identity of the synthesized speech is not the original speaker. Likewise, if a content

provider writes his/her blog in a foreign language, it is desirable for the synthesized for-

eign speech based on his/her voice to sound like the speech from a native speaker of the

language.

1.2 The Challenge

In many cases, people are looking for an artificial voice that is not only natural but also

a customized and expressive voice. A customized voice sounds as similar as possible to

the user’s own voice. An expressive voice uses the right prosody to read a sentence for a

wanted scenario.

To have synthesized speech sounds similar to the source speaker, recently advanced

text-to-speech (TTS) technologies allow voice cloning through speaker adaptation. But

it would carry the monotonous and non-native accent of the speaker. To create a multi-

scenario synthetic voice, it is plausible to record high-quality audio training data by a

voice talent who can manage to speak with different styles or languages natively. How-

ever, this only works for voice talents; most ordinary people are not able to utter in all

wanted scenarios or accents. Similarly, linguists also point out that, unless exposed to a

multilingual environment from an early age, most people could only speak a limited set

of languages with a native accent.
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1.3 Proposed Method

We propose a novel data augmentation framework to train a multi-style TTS model for a

common person. Firstly, we collect some amount of his/her speech spoken in a neutral

voice. Then we generate augmented data from the person speaking in wanted styles on-

the-fly. Our idea is simple: a person learns to speak by imitating other people’s speech.

We integrate such behaviour in the TTS model training. In Tacotron2 [40], the attention

alignment encapsulates the prosody of the generated utterance. The augmented data from

the neutral speaker should follow the same prosody that a speaker speaks in the target

style. With the additional use of scenario embedding computed from trained global style

tokens [2, 52], our proposed TTS model could generate speeches that match the speaking

prosody of the target scenarios. This proposed method is exemplified by two TTS models.

One is for scenario-based speech synthesis for a neutral speaker. Another one is for accent-

beautified speech synthesis for a non-native speaker.

Our main contributions are as follows.

• We propose a methodology for on-the-fly data augmentation in TTS training. The

augmented data are constructed with the desired properties and are used as addi-

tional training samples.

• The stylish augmented training data can be generated from a neutral speaker by

imitating the attention matrix of the stylish speech from another speaker on-the-fly.

• We successfully demonstrated the effectiveness of our proposed method on two ap-

plications. (1) We synthesize scenario-specific utterances with a neutral voice; (2) We

synthesize accent-beautified utterances of L2 speeches for a non-native speaker.

The remaining parts of the thesis are organized as follows.

Chapter 2 provides some background on the TTS system. We review the classic speech

synthesis pipeline, then the recent neural TTS model and its derivations for scenario-based

TTS and accent conversion applications. We also review the TTS works that utilized data

augmentation. Chapter 3 presents our proposed framework. It leads to the design of two
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TTS models: a scenario-based TTS model and an accent-beautified TTS model. In Chap-

ter 4, we report our experimental setup and evaluate the synthesized speech produced by

our proposed models using both objective and subjective metrics. Finally, we conclude

the thesis in Chapter 5.
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CHAPTER 2

PRELIMINARIES AND RELATED WORK

In this chapter, we introduce the classical text-to-speech synthesis pipeline. Then we

present the transition towards the neural speech synthesis model and the variants for

stylish speech synthesis. Finally, we review data augmentation methods applied in TTS.

2.1 Basics of a Text-to-Speech (TTS) System

The classical way to implement a TTS system is to divide the system into a frontend and

a backend module.

Figure 2.1. TTS components illustrated from [62].

2.1.1 Frontend

The frontend converts the input text into a linguistic representation. The input text is usu-

ally a sentence. The frontend consists of text analysis components, including text normal-

ization and phonetization. It was usually implemented by a rule-based approach [63, 33],

and more recently by a neural model [58, 59].

Text normalization expands the input tokens into words in the spoken language. Thereby

numerical symbols and abbreviations are converted into their normal orthographic form.
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Phonetization converts the orthographic form into phonemes, which are the smallest units

of sound. Some illustrative examples are: "56 in. long" is read as "fifty-six inches long";

"7-11 convenience store" is read as "Seven-Eleven convenience store"; The "lives" in "it

lives" and "nine lives" are read differently. Based on the sentence context, the pronuncia-

tion ambiguity of a word is resolved. Then a pronunciation dictionary is used to convert

each word into phonemes. The CMU dictionary [46] consists of the pronunciations of

over 134,000 English words. Its phoneme set is based on the ARPAbet symbols, which are

shown in Table 2.1. It is suitable for phonetization. For example, the phonetic sequence

of "it lives" is "IH1 T L IH1 V Z". Finally, the frontend returns a phonetic sequence as the

linguistic representation of the input text.

ARPAbet phoneme set

AA D IH OW UH AE DH IY OY UW

AH EH JH P V AO ER K R W

AW EY L S Y AY F M SH Z

B G N T ZH CH HH NG TH

Table 2.1. ARPAbet phoneme set.

2.1.2 Backend

The backend converts the linguistic representation into speech. The speech uttered by a

human is a continuous waveform in the time domain. In the digital world, the waveform

is sampled and encoded as a numerical sequence. For example, a CD soundtrack contains

44,100 samples per second.

A straightforward solution is to combine the audio clips of individual phonemes one

by one to create a speech waveform. This idea leads to the development of concatenative

speech synthesis. In this approach, a large database of speech segments is prepared. It

consists of a single speaker reading a large amount of scripts. The scripts are designed

such that they consist of popular words and phrases. During the synthesis of an unseen

sentence, speech fragments are selected from the speech database according to its con-

tents. The fragments are then concatenated to form a waveform of the speech of the target
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sentence. Depending on the available database entries, there can be several possible se-

quence combinations. Various models [13, 3] have been designed to select the best one that

minimizes the acoustic artifacts in the concatenated waveform. Inevitably, the naturalness

of the synthesized speech depends heavily on the database coverage.

More often than not, the direct conversion from the relatively short phonetic sequence

to the long digital audio is challenging. An intermediate representation is commonly

engineered to break up the problem into multiple sub-problems. For instance, the time

signal is transformed to frequency-domain. Then the original problem becomes two sub-

problems and is to be solved by two models. Firstly, an acoustic model is designed to infer

the characteristics of the frequency-domain signal from the phonetic sequence. Secondly,

a vocoder model is trained to generate the time-domain waveform from the frequency-

domain parameters.

2.2 Toward a Naturally Neural TTS

Naturalness refers to how natural a speech sounds. It was one of the key research objec-

tives in the development of a TTS system for a long time [29, 40]. Statistical Parametric

Speech Synthesis (SPSS) was once the state-of-the-art TTS methodology. After the break-

through of deep learning [11], the research paradigm shifted from the SPSS approach to

the neural speech synthesis approach [1, 40].

2.2.1 Statistical Parametric Speech Synthesis

Statistical Parametric Speech Synthesis (SPSS) comprises some models to predict the hand-

crafted acoustic features of the speech signal from the linguistic representation. Based on

those acoustic features, we could reconstruct the speech signal via a vocoder model. We

elaborate the concept by the classical hidden Markov model (HMM) based TTS [57] and

STRAIGHT vocoder [19].
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Classical Vocoder

Humans produce sound when air passes through the vocal cords. If the vocal cords vi-

brate, it is a voiced sound. Otherwise, it is an unvoiced sound. The complex process is

modeled as a source-filter model shown in Fig. 2.2. The STRAIGHT vocoder receives a

pulse train signal. It modifies the pulse according to the acoustic features extracted from

the speech. For example, the fundamental frequency F0 is the frequency at which vocal

cords vibrate in voiced sounds [25]. Hence it is an input parameter to a periodic pulse

generator.

Figure 2.2. Source-filter model. The figure is extracted from [7].

Classical Acoustic Model

HMM is used to generate acoustic features from a phonetic sequence. Firstly, the acoustic

features are extracted from the training audios. The feature at each timestamp is aligned

to each phoneme in the phonetic sequence. Consequently, there are multiple instances of

observed acoustic features for each phoneme. Then HMM is used to model the context-

dependent distribution of the acoustic features of individual phonemes. Each HMM is

further associated with a state duration density. During speech synthesis of a sentence,

HMMs of phonemes in the phonetic sequence of the sentence are concatenated. The out-

put acoustic features sequence from the resulting sentence-level context-dependent HMM
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is then passed to the vocoder for waveform generation. The detailed process could be re-

ferred to Fig. 2.3.

Figure 2.3. A typical HMM-based TTS. The figure is extracted from [57].

Shortcoming

SPSS could not synthesize speech as natural as human speech [10]. SPSS requires hand-

crafted acoustic feature selection. The domain-specific expertise has to design and tune

the system. Still, those features are a lossy representation of the audio signal. Further-

more, the HMMs’s accuracy depends on the precise alignment between phonemes and

their corresponding waveforms and the available amount of training data. HMMs also

tend to over-smooth the detail of the original features. Therefore, the reconstruction of

speech by SPSS contains artifacts and is not natural enough.
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2.2.2 Neural Speech Synthesis

Tacotron2 [40] is a text-to-spectrogram prediction model. WaveNet [48] is a vocoder that

converts a spectrogram into a waveform. Both of them are deep learning-based models.

By utilizing the two models together [40], the synthesized speech reaches a similar natu-

ralness to professionally recorded speech.

Figure 2.4. An example of a time-domain waveform and its corresponding frequency-do-
main spectrogram.
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Mel-spectrogram

The intermediate representation is mel-spectrogram. It is a compact representation of an

audio signal. Tacotron2 is a model that predicts a sequence of mel-spectrum from an

input text sequence. WaveNet generates time-domain waveform samples conditioned on

the predicted mel-spectrogram.

A spectrogram shows the frequency spectra of a signal over time. To obtain one spec-

trum, the signal is windowed. The short-time Fourier transform (STFT) is applied to this

windowed signal segment to decompose it into its frequency components. By sliding

the analysis window over the whole signal with a fixed step size, the spectrogram of the

whole signal is constructed by juxtaposing the frequency spectra thus obtained in time.

The resulting three-dimensional data could be plotted in a 2D graph. An example of com-

puted mel-spectrogram on one utterance: "Printing, in the only sense with which we are

at present concerned, differs from most if not from all the arts and crafts represented in the

Exhibition." is shown in Fig. 2.4. The x-axis is time. The y-axis represents the frequency

range. The intensity of each point represents the amplitude of the frequency component

in the decibel scale. As humans perceive sound frequencies in a non-linear manner, the

mel-scale [43] was invented. The scale is designed such that the pitch is perceived linearly

increasing along the mel-scale.

Tacotron2

Tacotron2 is an attention-based sequence-to-sequence model. The model architecture is

shown in Fig. 2.5. It consists of an encoder, a decoder, and a location-sensitive attention

module.

The encoder converts the input text to an internal representation. The input text is a

sequence of tokens. The tokens can be the characters, phonemes and punctuation symbols

in the support language. A lookup table contains a weight vector for each possible token.

The input tokens are transformed to the embedding representation by reading the lookup

table. A multi-layer convolution operation is then applied on the embedding representa-

tion to capture the localized features among the adjacent tokens. For instance, with the

filter length of 5, the convolution layer takes into account the two previous and two next

12



Figure 2.5. Tacotron2 architecture.

tokens in its feature extraction. Each convolution layer is followed by batch normalization

and ReLU activation. Finally, a sequence processing unit, bi-directional LSTM, scans the

extracted features in both forward and backward directions. The outputs from the two

passes are concatenated and become the internal representation.

The decoder converts the internal representation into a mel-spectrogram. Tacotron2

uses the attention mechanism. At each decoding step, a context vector is computed for the

decoder. The context vector is a weighted sum of the encoder outputs. The context vector

is recalculated for each decoding step, allowing the decoder to focus on the right portion

of the encoder outputs during the mel-spectrum generation. Therefore, learning attention

is a crucial step for the model. In addition, Tacotron2 is an auto-regressive network. It

uses the output of the last decoding step to predict the mel-spectrum in the current step.
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The attention mechanism is explained step-by-step here. Assume it is at the time step i.

The Pre-Net module projects the low dimension mel-spectrum yi−1 to a higher dimension

vector pi−1. The Pre-Net output pi−1, and the last context vector ci−1 are passed to an

Attention LSTM. The Attention LSTM contains a hidden state vector of last time step si−1.

It generates the current state vector si. The current state vector si, encoder output matrix

H, last attention weight vector ai−1 are used to calculate a new attention weight vector

ai according to equations (2.1) and (2.2). Multiplying the attention weight vector ai with

encoder output matrix H gives the current context vector ci. The current context vector ci
and current state vector si are passed to a Decoder LSTM. The Decoder LSTM contains a

hidden state vector of the last time step di−1. The output of Decoder LSTM di is passed

to a linear projection layer to create the mel-spectrum yi at the current time step. di is

also passed to another linear projection layer to predict the “stop token”, which signals

the end of decoding. The initial hidden states of Attention LSTM and Decoder LSTM are

set to zeros.

ei,j = vTtanh(Wsi + Vhj + Uai−1 + b) (2.1)

ai = Softmax(ei) =
exp(ei)∑
j exp(ej)

(2.2)

where i is the decoder time step, j is the jth position of the input text token, and hj is the

corresponding vector in the encoder output H. v, W , V , U are the trainable parameters.

The equation in (2.1) makes use of the last attention weight vector ai−1 in its calcu-

lation of the current attention weight vector ai; hence, the attention mechanism is called

"location-sensitive" attention. An alignment matrix of a speech is created by joining the

attention weight at each time step. An example is plotted in Fig. 2.6. The x-axis is the

decoder timestep. The y-axis is the position index of the input text tokens. At each de-

coder timestep, only a few of the input tokens receive a high attention score, implying the

decoder places its focus only on those tokens.

The Post-Net is a module for improving the spectrogram quality. It is a stack of convo-

lutional layers and batch normalization layers. It computes a residue from the generated

mel-spectra. The final mel-spectra is the summation of generated mel-spectra and residue.
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Figure 2.6. An example of visualizing the alignment matrix.

WaveNet

WaveNet is a neural vocoder. In contrast to the classical vocoders, it does not make use

of the source-filter model. It is simply a data-driven auto-regressive model. It factorizes a

waveform as a product of conditional probability as follows:

p(x) =

T∏
t=1

p(xt|x1, ..., xt−i) (2.3)

where xt is the audio sample at time step t.

The model uses the dilated convolutional layers to increase the receptive field of the

convolutions. As shown in Fig. 2.7, the receptive field increases exponentially with the

number of hidden layers: The hidden layer directly on top of the input has a dilation fac-

tor of one, its output depends on only two neighbouring inputs values. The next hidden

layer has a dilation factor of two, hence its output is actually dependent on four neigh-

bouring input values, and so on. Therefore, a few layers of stacked convolution gives a

very large receptive field to the model. The careful design of the WaveNet architecture

enables it to generate high-quality speech matching human’s naturalness.
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Figure 2.7. Visualization of a stack of dilated causal convolutional layers. The figure is
extracted from [48].

The network does not have a recurrent neural module, so the model training is fast.

However, during inference, the auto-regression nature implies a sequential audio sample

generation. It results in a slow generation speed and is an obstacle for WaveNet’s produc-

tion use. Eventually, some flow-based vocoder models [34, 37] are proposed for real-time

speech production without degrading the generated speech naturalness.

2.3 Expressive TTS

The Tacotron2 model is very extensible. To make its output more expressive, it is extended

by conditioning on the output of a global style token (GST) layer, which extracts the style

information from a reference audio, so that it could generate speech with a similar global

style as the reference audio [52].

The GST extractor module contains a reference encoder, and it uses the input audio

to predict the style embedding as a weighted combination of the style tokens. The GST

module is depicted in Fig. 2.8. The mel-spectra is computed from the input audio. The

reference encoder converts the mel-spectra into a style vector. It consists of multiple con-

volution layers for feature extraction, and a unidirectional GRU to summarize the features

over time. The resulting style vector is used as the query vector for multi-head attention.

By comparing this style vector over individual style tokens, a weight for each style token

is found. The style embedding is the weighted sum of the style tokens.
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Wang et al. trained a GST-TTS model with a single storytelling speaker dataset in [52].

According to their analysis, varying the weights of the style tokens could alter the speed

and “animated” level of the synthesized speech. The global style tokens learned from just

a single speaker is adequate to model the speech prosody in Tacotron2.

Figure 2.8. The global style token (GST) extractor module.

The style embedding is then concatenated with the output of Tacotron2’s encoder. The

decoder uses this concatenated result to generate the mel-spectrogram with the same pro-

cedure described in Section 2.2.2. The GST Tacotron2 model is depicted in Fig. 2.9.

Figure 2.9. GST Tacotron2 architecture.

Stanton et al. [42] demonstrated that the style embedding could be predicted from
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texts using a text-predicted GST network. However, they only conducted experiments on

storytelling speech data.

2.3.1 Scenario-based TTS

Prateek et al. [36] collected 20 hours of neutral speaking utterances and 4 hours of news-

casting utterances from one speaker to train a bi-style text-to-speech model. It used one-

hot style embedding and word contextual embedding as additional inputs for its decoder

to generate scenario-specific utterance. Hu et al. [12] recorded three speaking styles (neu-

tral, whispered, Lombard) for a speaker on the same texts to create a multi-style text-

to-speech model of the speaker. It used a well pre-trained speaker verification model to

extract acoustic features from utterances and observed that utterances of the same style

clustered together well. The TTS model then based on the mean vector of each style cluster

to generate stylish utterances of the speaker.

2.3.2 Emotional TTS

Lee et al. [24] collected 21 speech hours of six different emotions from one female Ko-

rean actor. A trainable emotion embedding was added as one more conditional input to

Tacotron [51]. Noé et al. [45] investigated the fine-tuning of a pre-trained neutral TTS

model with around 20 minutes of emotional speech. This resulted in one model per emo-

tional category. Whitehill et al. [53] proposed an adversarial cycle consistency training

method for multi-reference style transfer using partially disjoint datasets. Speaker em-

beddings and style embeddings were separately trained using the scheme with paired

and all possible combinations of unpaired triplets. A triplet consists of synthesizing text,

and two reference audios with matched or unmatched styles. The paper shows good per-

formance for an internal dataset consisting of only two speakers, one speaking in neutral

style whereas another speaker speaking with neutral style and 3 other emotions.
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2.4 Accent Conversion

Deep learning has been applied successfully for accent conversion (AC) in recent years.

For example, Liu et al. [28] firstly pre-trained a speaker encoder from multiple corpora

(LibriSpeech, VoxCeleb1, and VoxCeleb2) consisting of around 8.4k mixed-accent speak-

ers. The encoder was used to extract speaker embedding from an utterance. A TTS model

with this pre-trained speaker encoder was trained with multi-speaker native speeches.

Consequently, the TTS model could synthesize speech with only a native accent reason-

ably well for a new speaker. To obtain the linguistic representation from speech, the

model had an automatic speech recognition (ASR) model that was pre-trained with na-

tive speeches. The ASR model was then adapted to a non-native speaker with a known

accent label. The training objective of the ASR model was to take in an L2 speech and

produce a linguistic representation that is expected from a native speaker speaking the

same utterance. To achieve it, their model was trained with the VCTK corpus [55], which

contains 110 speakers of various accents uttering the same set of sentences.

Li et al. [26] proposed another accent conversion approach. Their model converted the

speech of a native speaker to a non-native speaker’s voice. The model is shown in Fig.

2.10. It had a reference encoder to extract prosodic information from the native speech.

Like [28], it had an ASR model, trained on 10,000 hours of mixed accent data, to extract

the linguistic representation from the speech. The AC model was based on Tacotron2 [40],

and the synthesizer was trained with utterances from the L2 speaker. During model infer-

ence, the synthesizer utilized speaker-independent linguistic representation and prosodic

information extracted from the native utterance to generate a speech with the L2 speaker’s

voice in a native style. However, as the synthesizer was trained with only L2 utterances,

it may generate speech with some incorrect pronunciations and phonemes. We compared

their audio samples against ours in the experimental section. The authors of [28, 26] also

reported the loss of voice similarity in their synthesized speech.

Although an ASR model could extract linguistic representation from speeches, if an

L2 speech is wrongly recognized, the synthesized accent-reduced speech would become

less intelligible due to pronunciation errors. Recent state-of-the-art general-purpose ASR

engines developed by the big research arms from Microsoft, Google, Amazon and the
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Figure 2.10. Accent conversion model proposed in [26].

like, and ASR models designed for accented speech [20] can obtain a highly accurate tran-

scription of non-native utterances. Hence, our current work focuses on text-to-speech for

an L2 speaker with text inputs, rather than voice conversion. The goal is to produce L2

synthesized speech with the voice of the non-native speaker in a more native accent and

prosody.

2.5 Data Augmentation in TTS

Data augmentation is very common in deep learning. In image classification, AlexNet

[11] applied on-the-fly data augmentation by translating and flipping training image data.
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Zhu et al. [65] generated some virtual training samples for improving the performance of

a speaker verification model.

Few works used data augmentation in text-to-speech model training. Lee et al. [27]

first pre-trained a TTS model and an ASR model, and then applied the ASR model to im-

prove the clarity of augmented speeches generated from unpaired combinations of GSTs

and text contents. Dipjyoti et al. [35] applied a classic signal processing technique, Spectral

Shaping and Dynamic Range Compression (SSDRC), to convert 2 hours of normal speech

of a speaker to Lombard-style speech. Then they fine-tuned a Tacotron model, which

was pre-trained with a single speaker’s speech corpus, LJSpeech [16], with 0.5 hours of

real Lombard speech uttered by the speaker with the additional two hours of converted

speech. Huybrechts et al. [14] proposed a 3-steps approach on leveraging some aug-

mented data. They trained a voice conversion (VC) model, CopyCat [18], to convert avail-

able stylish speech to the target speaker’s voice. Then they trained their text-to-speech

model with these additional augmented data. Because of the quality issue of some con-

verted audios, they had to finetune their model with a real stylish speech from the target

speaker to obtain synthesized stylish speech with better quality. Zhao et al. [60] extended

previous accent conversion works by training a pronunciation correction model to per-

form accent reduction in an utterance using training pairs of foreign-accented speech and

synthesized accent-reduced speech, both uttered by the same speaker. The pronunciation

correction model is a voice conversion model.
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CHAPTER 3

PROPOSED METHOD

In this chapter, we first introduce our TTS model for speech imitation. Then we will

present our proposed data augmentation method, and put forward two TTS model de-

signs for the target applications.

3.1 TTS Model for Speech Imitation

Our model is based on Tacotron2 [40]. Details of which are given in section 2.2.2. It also

consists of the GST module described in section 2.3.

3.1.1 Speaker Embedding and Speaking Style Embedding

Since our dataset contains multiple speakers, we use speaking embeddings to model the

speakers. Each speaker is represented by a speaker embedding vector of 128 dimen-

sions. The speaker embedding vector is randomly initialized and then jointly trained

with Tacotron2.

We use the same GST module design as in [52] to compute the speaking style em-

bedding Sgst. The ground-truth GST extracted from a reference audio during training is

denoted as Sgt:

Sgt = GST(audio) . (3.1)

The speaker embedding and speaking style embedding are channel-wise concatenated

with Tacotron2’s encoder outputs. The ground-truth mel-spectrogram of an input audio

is denoted as MEL and Tacotron2 model is denoted as Taco.

MEL = Taco(text, speaker,Sgt) , (3.2)
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where Taco consists of an encoder Tacoenc and a decoder Tacodec. The loss function of

Tacotron2 model is defined as:

Losstaco = |MEL− ˆMEL|2 +BCE(Stop, ˆStop) , (3.3)

where ˆMEL is the model’s predicted mel-spectrogram; Stop is the binary “stop token”

which signals the end of decoding and ˆStop is its predicted value. Based on the length

of the target audio, each output frame is assigned 0 or 1 to represent whether it is the

stopping frame. A binary classifier uses the output of the decoder to predict the class label

of the stopping frame. The loss function for training this classifier is binary cross-entropy

BCE.

Our Tacotron2 learns to perform speech synthesis conditioning on speaker embedding

and speaking style embedding. The process is illustrated in Fig. 3.1.

Figure 3.1. Speech synthesis using Tacotron2 by conditioning on speaker embedding and
speaking style embedding.

3.1.2 Text-predicted Scenario-based Global Style Tokens

As there will be no ground-truth reference audio during inference, we follow the same

idea of [42] and add a text-predicted global style token network (TP-GST) to get the pre-

dicted speaking style embedding Stp. We modify its input by concatenating a one-hot

style label with the text embedding to compute Stp:
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Stp = TPGST(text, style label) . (3.4)

The modified TP-GST is shown in Fig. 3.2. During model training, we require the

text-predicted GST as close to the ground-truth GST extracted from the corresponding

reference audio as possible.

Losstpgst = |Sgt − Stp| . (3.5)

Figure 3.2. The module that computes the text-predicted scenario-based GST.

3.1.3 On-the-fly Data Augmentation for Style Transfer

In the original Tacotron2 training process, an attention mechanism learns an alignment

matrix for the alignment relationship between the text input and the generated audio

frames. We use htext to represent the hidden state sequence of an input text, hp to rep-

resent the trainable embedding of a speaker p, Sp to represent the style embedding of

a speech from speaker p, Ap to represent the corresponding alignment matrix produced

by Tacotron2. During Tacotron2 encoding step, its encoder generates the hidden state se-

quence, the style embedding as well as the speaker embedding for the given inputs as

follows:

htext, Sp, hp = Tacoenc(speaker,audio, text) . (3.6)

During Tacotron2 decoding step, its decoder takes the outputs from its encoder, and pre-

dicts the output mel-spectrograms using autoregression with the attention mechanism:

MELp, Ap = Tacodec(htext, Sp, hp) . (3.7)
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A by-product of decoding is the attention alignment matrix, which is usually dis-

carded afterwards in standard Tacotron2 training. We argue that the alignment matrix

actually encapsulates useful rhythmic information of the input text/audio. Observing

that speeches under different scenarios show different rhythm characteristics, we design

our model to strengthen the influence of the speaking style embedding on the alignment

matrix. To achieve this goal, we generate augmented data for any speaker q by having

him/her imitate the alignment matrix Ap of another speaker p given the text and audio

from the latter speaking in style Sp which speaker q does not speak with. That is, if we

denote the mel-spectrogram of the augmented data from speaker q as MELq, and the

corresponding alignment matrix as Aq, we will have

MELq, Aq = Tacodec(htext, Sp, hq) , (3.8)

where q is not equal to p.

As the augmented data may not be perfect, we focus only on its style property captured

by the alignment matrices, and incorporate the alignment loss only during the training of

augmented data (for any unpaired speaker and style combinations), which is defined as

the Frobenius norm of the difference between the two alignment matrices as follows:

Lossalign = |Ap − Aq|2 . (3.9)

Note that the alignment loss is not applied in the training of the real paired data, it only

applies to the augmented unpaired data to sharpen the desired rhythm characteristics.

A similar alignment loss was also utilized by [64] in their guided attention method

with pre-aligned phoneme sequences to speed up and stabilize their Tacotron2 training.

Note that this data augmentation is performed for any two different speakers speaking

in different styles on all training utterances from all speakers from disjoint datasets in this

thesis. This data augmentation scheme is further illustrated in Fig. 3.3. In this figure,

the real paired data contain the speaker embedding of speaker p, together with text and

GST extracted from his/her training utterance. The augmented unpaired data is derived

from the same text and GST but using another speaker embedding from, say, speaker q.

Consequently, in a mini-batch update, the model will be trained with the real sample pairs

and augmented sample pairs.
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Figure 3.3. Proposed on-the-fly data augmentation scheme.

There are two choices for the data augmentation scheme: (1) many-to-one data augmen-

tation only for the neutral speaker: generate stylish augmented data only from originally

non-neutral stylish speeches with speaker q being the neutral speaker; (2) many-to-many

data augmentation for all speakers: generate an augmented sample for any original speech

spoken by speaker p for each speaker q 6= p, resulting in multiple additional augmented

samples for each original audio.

Finally, the overall loss function for training our proposed model is the sum of the

three losses in predicting the output mel-spectrograms, GSTs and alignments:

Loss = Losstaco + Losstpgst + Lossalign . (3.10)

3.2 Scenario-based TTS model

The global speaking styles of speech spoken in different scenarios have perceptible differ-

ences in acoustic expressiveness, such as speech tempo and pitch variation. The proposed
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scenario-based TTS model is designed to transfer the global speaking style from stylish

speakers to one neutral-tone speaker.

Figure 3.4. Proposed scenario-based Tacotron2 model under training mode.
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Figure 3.5. Proposed scenario-based Tacotron2 model under inference mode.

The model under the training mode and inference mode are illustrated in Fig. 3.4 and

Fig. 3.5 respectively. The standard Tacotron2 consists of the components connected with

red arrows. The components connected with blue arrows are the proposed extended mod-

ules. During training, the speaker encoder provides the speaker embedding. The speak-

ing style encoder is an implementation of the GST module. Under this context, its input is

the different scenario speeches. Hence, the extracted speaking style embedding is referred
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to as scenario embedding. The TP-GST module is trained to use the text embedding and

scenario ID to predict the scenario embedding extracted from the input audio. During

inference, there will be no input audio, and the speaking style encoder is not usable. TP-

GST supersedes the speaking style encoder to provide a predicted scenario embedding

for speech synthesis of Tacotron2.

3.3 Accent-beautified TTS model

The common perceptible differences of non-native speech from native speech are the

wrong prosody (e.g., rhythm, pause occurrence, word duration, and intonation pattern)

and word mispronunciation. These two factors contribute to foreign accentedness. The

proposed accent-beautified TTS model is designed to reduce the foreign accentedness of

a non-native speaker.

The model under the training mode and inference mode are illustrated in Fig. 3.6 and

Fig. 3.7 respectively. The standard Tacotron2 consists of the components connected with

red arrows. The components connected with blue arrows are the proposed extended mod-

ules. During training, the speaker encoder provides the speaker embedding. The speak-

ing style encoder is an implementation of the GST module. Under this context, its input

is either native or non-native speech. Hence, the extracted speaking style embedding is

referred to as accent embedding. The TP-GST module is trained to use the text embedding

and native or non-native label to predict the accent embedding extracted from the input

audio. During inference, there will be no input audio, and the speaking style encoder

is not usable. TP-GST supersedes the speaking style encoder to provide a predicted ac-

cent embedding for speech synthesis of Tacotron2. The global speaking style from native

accent weighted GSTs reduces the wrong prosody of non-native speech.

In addition, we propose to include a phoneme recognition module during training to

"force" the TTS model to generate more "correct" mel-spectrograms from the ASR perspec-

tive. The phoneme recognition module is pre-trained with a native speaker’s speech, and

it is applied on the mel-spectrogram generated by Tacotron2’s decoder. During inference,

this phoneme recognition module is not used. This additional module during model train-

ing reduces the pronunciation errors of the synthesized speech from a non-native speaker.
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Figure 3.6. Proposed accent-beautified Tacotron2 model under training mode.
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Figure 3.7. Proposed accent-beautified Tacotron2 model under inference mode.

3.3.1 Phoneme Recognition Module

A combination of a TTS model with an ASR module was proposed in [27] to enhance

the clarity of the synthesized speech with a pre-trained Listen, Attend and Spell (LAS)

model [5]; we use a simplified version of the Deep Speech model [9] instead with mel-

spectrogram as input. The module is illustrated in Fig. 3.8. It consists of layers of linear
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projections and a Bi-RNN layer, and a softmax classifier is used to predict the phoneme

sequence of the input. Thus, we have

ˆXseq = ASR(MEL) , (3.11)

where MEL is the mel-spectrogram and ˆXseq is the predicted phoneme sequence. Con-

nectionist temporal classification (CTC) [8] is used to quantify the mismatch between the

target sequence and the predicted sequence. No language model is used to rectify the

predicted sequence. We define the ASR loss as follows:

Lossasr = CTC( ˆXseq,Xseq) , (3.12)

where Xseq is the target phoneme sequence.

Figure 3.8. The phoneme recognition module.

Finally, the overall loss function for training our proposed model is the sum of losses

in predicting the target mel-spectrograms, GSTs, and alignments together with the addi-

tional ASR loss:

Loss = Losstaco + Losstpgst + Lossalign + Lossasr . (3.13)

We define the first two terms as TTS loss, the third term as DA loss, and the last term as

ASR loss. In the proposed model design, the ASR loss is used in the accent-beautified TTS

model because the training data contains non-native accent speeches. Our experimental
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result shows that including such term could further improve the clarity of the non-native

speech. In the scenario-based TTS, as all speakers speak in their native language, ASR loss

is not needed.

Last but not least, our proposed method has a key advantage in comparison to the

aforementioned related works. It does not require any speaker to record utterances in a

speaking style of more than one scenario, nor does it require the speakers to utter the same

set of sentences.
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CHAPTER 4

EXPERIMENTAL EVALUATION

In this chapter, we present the data collection and pre-processing pipeline. Then we de-

scribe our experiments and provide the result analysis.

4.1 Dataset Collection and Pre-processing

We used both academic research data and data collected from the web. Generally, utter-

ances in academic research datasets are recorded in a controlled environment, typically

in a silent room. Hence, they are of higher audio quality. Unfortunately, we did not find

suitable training data for some target scenarios. Furthermore, we are interested to know

whether the scenario-specific audio data readily found from the internet can be used for

multi-style text-to-speech model training. So we mined data from the internet.

We explored different audio sources from the web, including audiobooks from Google

Play Store, news reporting websites, public speaking videos on YouTube. Firstly, we

downloaded the data and converted them to the same audio format of 16 kHz sampling

rate. As we needed high-quality audio for text-to-speech model training, we reviewed

the audios to exclude the segments that were not good, for instance, audio segments with

background music. Then we applied an online speech-to-text engine, Microsoft Azure1,

to obtain the orthographic transcriptions of the collected audios. The next step was to seg-

ment the audio data into suitable lengths for model training. The Montreal Forced Aligner

[30] was further used to obtain the word alignment between each audio and its transcript.

An example is illustrated in Fig. 4.1. The top panel shows the audio waveform. The sec-

ond panel shows the aligned transcription. The third one shows the phonetic alignment.

The alignment information was then used to segment the audio into short clips of 2 to 10

seconds, which is the usual length of a spoken sentence.

1https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
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Figure 4.1. An example of audio-to-text alignment by Montreal Forced Aligner.

4.2 Experimental Setup in Common

We modified the codebase2 of Mellotron [47] to implement our proposed method. The

mel-spectra were computed with a hop length of 12.5ms and a window size of 50ms. We

used a min-batch size of 64 and the Adam optimizer [21] with a learning rate of 5× 10−4

during training.

Rather than using WaveNet, we used WaveGlow [37] vocoder. WaveGlow is a flow-

based generative network that converts a mel-spectrogram into a waveform. Its design

was inspired by Glow [22] and WaveNet [48]. It could generate high-fidelity speech in

real-time. We used the version3 released by Nvidia. Their subjective assessment regarding

audio quality showed it reached a similar pleasantness score as WaveNet.

We used Amazon Mechanical Turk (MTurk)4 to recruit listeners for the subjective test.

MTurk is a crowdsourcing platform and is commonly used in similar TTS research works.

2https://github.com/NVIDIA/mellotron
3https://github.com/NVIDIA/waveglow
4https://www.mturk.com/
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4.3 Evaluation Metrics

Mean Opinion Score

A Mean Opinion Score (MOS) is a numerical measure of the overall quality of an event or

experience by a human. As it is hard to define an objective quality score in line with the

perceptive goodness of various aspects of a synthesized utterance such as naturalness,

intelligibility, etc, MOS has become a popular approach as a subjective evaluation in a

speech quality test. In an MOS evaluation, each participant gives a rate against a sample.

The absolute category ranking scale is commonly adopted. The range is shown in Table

4.1. Then the average score rated by all participants is reported.

MOS 1 2 3 4 5

Quality Bad Poor Fair Good Excellent

Table 4.1. Five-grade Mean Opinion Score (MOS) scale.

Word Error Rate

The Word Error Rate (WER) is a measure to evaluate the performance of an automatic

speech recognition system. Given the original reference text and the transcribed text, the

Levenshtein distance is applied to find the distance between the two texts. The distance

depends on three types of errors: (a) a substitution error refers to a wrong replacement of

a word. For instance, "happy" is transcribed to "floppy"; (b) an insertion error refers to an

extra word in the transcribed text; (c) a deletion error refers to a missing word from the

reference text.

The format definition of WER is:

WER =
S+D+ I

N
× 100% (4.1)

where S is the number of substitutions, D is the number of deletions, I is the number of

insertions, and N is the number of words in the reference text.
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4.4 Scenario-based TTS

4.4.1 Dataset

We did not find a voice talent to record speech data of various expressive scenarios. In-

stead, we collected existing audio data from audiobooks or from the Web which were

spoken under four realistic scenarios: neutral speaking, newscasting, public speaking and

storytelling. Specifically, to get a large number of neutral speaking audios, we purchased

an audiobook from Google Play read by Michelle Obama. Her speaking style was con-

sidered neutral in reading the audiobook. We then collected some newscasting audios of

a news anchorwoman from the Voice of America (VOA) website. Some Hillary Clinton’s

public speeches and presidential debate videos on YouTube were collected for the public

speaking style. Finally, the children’s audiobooks from the Blizzard Challenge5 2017 were

used for the storytelling style.

The final amounts of collected data of the four wanted styles are summarized in Table

4.2. We held out 20 utterances from each speaker to form the development set. For testing,

we held out 50 utterances from Michelle Obama’s data, and 30 utterances from each of the

other three stylish speakers’ data.

Speaker Scenario Audio data (hr)

Michelle Obama Neutral 11.7

VOA Newscasting 2.1

Hillary Clinton Public speaking 2.5

Blizzard 2017 Storytelling 3.5

Table 4.2. Summary of collected audios in four speaking scenarios.

4.4.2 Experimental Setup

We started with a pre-trained model checkpoint based on a subset of the LibriTTS dataset

[56]. The subset of the LibriTTS dataset contained 123 speakers. Each speaker contributed

5A competition organized by the Language Technologies Institute of Carnegie Mellon University on build-
ing speech synthesizers on the same set of data.
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around 20 minutes of speech data. All of the utterances were less than 10 seconds. We

trained our proposed model with the prepared training data in Table 4.2. Since each stylish

speaker had less audio data than the neutral speaker’s, the audio data of each stylish

speaker were repeated in each epoch to around the same amount (around 12 hours) as the

neutral speaker’s to tackle the data imbalance issue. We trained the model for 80 epochs.

Afterward, we continued the model training with the original training data together with

on-the-fly augmented data for another 120 epochs. Some synthesized utterance samples

could be found on this webpage6.

4.4.3 Baseline Model

For evaluation, we compared the synthesized utterances from our proposed model with

those from a baseline model which was trained with utterances only from the neutral

speaker, Michelle Obama. The baseline model is equivalent to a single-speaker text-

predicted GST Tacotron2.

4.4.4 Objective Evaluation

The perception of a speech to humans is greatly influenced by two factors: the pitch chang-

ing profile and rhythm of speech. One may manipulate these two factors in a TTS system

to generate speech of different styles. For instance, we notice the following in our targeted

scenarios: In the newscasting scenario, utterances are usually spoken a little faster than

neutral speech [36]; in the public speaking scenario, keywords may be stressed, empha-

sized or lengthened; in the storytelling scenario, speeches are more rhythmic. Therefore,

we evaluated the effectiveness of the proposed on-the-fly data augmentation on its effects

on the rhythm and pitch profile of the generated stylish utterances. Here, data augmenta-

tion was performed on all speakers (2nd choice in Section 3.1.3).

Effect on the Rhythm of Style Transfer to Newscasting Style

We roughly measured the rhythm of a speech by the speaking rate which is defined as the

number of phonemes spoken per second. Utterances on the held-out unseen news texts
6https://raymond00000.github.io/ttsdemo.html
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were synthesized for each speaker, other than the VOA anchorwoman. The newscasting-

style utterances synthesized by the TTS model trained with the proposed data augmen-

tation method, were compared with the speakers’ speaking rate in their original-style

utterances. The results are shown in Table 4.3. Firstly, we notice that the speaking rate

of the newscaster is faster than all the other speakers. Secondly, our model successfully

synthesizes newscasting utterances for other speakers with a speaking rate close to the

newscaster’s which is greater than the original speaking rate of the individual speakers.

We only performed the evaluation with newscasting as the target scenario style because,

from Table 4.3, we notice that the speaking rate of the newscasting style is significantly

greater than that of all the other styles, whereas the speaking rates of the other styles are

similar to each other.

Speaking Rate

Speaker Original Newscasting

Michelle Obama 13.7 15.8

VOA 16.3

Hillary Clinton 14.3 16.3

Blizzard 2017 15.0 15.7

Table 4.3. Speaking rate of the speakers in their original stylish utterances and synthetic

newscasting utterances (of unseen news texts).

Effect on the Pitch

Fundamental frequencies (F0) contour shows how the pitch varies through a speech. An

example F0 contour extracted by the Yin algorithm [6] is illustrated in Fig.4.2. The mean

F0 is related to the speaking style. For instance, neutral speech is usually spoken with

a flat pitch. Robinson et al. [38] modified the fundamental frequency of an utterance to

convert it from a neutral speech to an emotional speech.

Synthetic utterances were generated by our proposed TTS model using Michelle Obama’s

voice from the held-out unseen texts of each style in that style and neutral style. The mean

F0 of each pair of generated utterances were computed and compared in Fig. 4.3 – 4.5, and

their average difference in each stylish test set is summarized in Table 4.4.

39



Figure 4.2. An example of Fundamental frequencies (F0) contour.

Figure 4.3. Mean F0 comparison: newscasting vs. neutral style.
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Figure 4.4. Mean F0 comparison: public speaking vs. neutral style.

Figure 4.5. Mean F0 comparison: storytelling vs. neutral style.
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We observe that the mean F0 is higher in all the other three styles than in neutral speech

even though the utterances were all generated from the same speaker, Michelle Obama.

Among the three non-neutral styles, public speech has the highest mean F0, while story-

telling speech has the lowest mean F0. The same trend is found on the original datasets

of the four styles: public speech > newscasting speech > storytelling speech > neutral

speech although their texts are different. This suggests that the text-predicted scenario-

based GST module could capture the implicit property of the speech spoken in different

scenarios.

Scenario Newscasting Public speaking Storytelling

F0 absolute change +16.3 Hz +22.8 Hz +10.1 Hz

Table 4.4. Average absolute increment of mean F0 when the same text is spoken with a

scenario style vs. spoken with a neutral voice.

4.4.5 Subjective Evaluation

We performed a subjective evaluation on utterances synthesized by the proposed TTS

model and the baseline TTS model. For each scenario, we used the neutral speaker’s

voice to generate utterances of 15 sentences in her neutral and scenario-specific style. For

each sentence, two synthesized utterances from the two TTS models were played, and the

listeners were asked which one they preferred for the desired scenario. The listeners also

rated the naturalness and intelligibility of the synthesized utterances on an MOS scale

from 1 to 5. Fifteen listeners were recruited to evaluate each scenario.

As discussed in Section 3.1.3, there are two options for data augmentation: (1) data

augmentation only for the neutral speaker, Michelle Obama, or (2) data augmentation for

all speakers. The preference results and MOS on naturalness and intelligibility of synthe-

sized speech produced by option (1) are shown in Table 4.5 and Table 4.6, whereas the

results of option (2) are shown in Table 4.7 and Table 4.8.

From Table 4.5 and Table 4.7, we find that generating augmented data with all speakers

in various styles may cause more confusion as there are more counts of “no preference”,

but there are more subjects preferring our proposed model over the baseline model for
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style transfer to newscasting style (by 60%), public speaking style (by 46%), and story-

telling style (by 41%). The effect is particularly strong for the style transfer to newscasting

speech. There can be two reasons for that: (a) data augmentation option 2 generates three

times more augmented data for training our TTS models, resulting in more training sam-

ples for each scenario, and hence a better model; (b) even though our ultimate goal is only

to generate synthesized speech from one neutral speaker, Michelle Obama in our case,

in other three non-neutral styles, data augmentation option 2 renders our model training

method a multi-task learning (MTL) method which tries to learn the conversion between

any two of the four speaking styles. This helps the model to gain a better understanding

of the subtle differences of all speaking styles.

Scenario Proposed Model Baseline Model No Preference

Newscasting 69% 24% 7%

Public speaking 66% 27% 7%

Storytelling 68% 24% 8%

Table 4.5. Preference test results with data augmentation only for the neutral speaker.

Scenario Naturalness Intelligibility

Newscasting 3.79±0.15 3.95 ±0.13

Public speaking 3.56±0.10 3.61±0.09

Storytelling 3.74±0.10 3.71±0.12

Table 4.6. MOS results with data augmentation only for the neutral speaker at 95% confi-

dence level.

Scenario Proposed Model Baseline Model No Preference

Newscasting 74% 14% 12%

Public speaking 67% 21% 12%

Storytelling 69% 28% 3%

Table 4.7. Preference test results with data augmentation for all speakers.

Table 4.6 and Table 4.8 give the MOS results on the naturalness and intelligibility of

the generated stylish utterances; they are all acceptable. We observe public speaking
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Scenario Naturalness Intelligibility

Newscasting 3.79±0.08 3.99 ±0.08

Public speaking 3.33±0.11 3.67±0.08

Storytelling 3.80±0.11 3.92±0.12

Table 4.8. MOS results with data augmentation for all speakers at 95% confidence level.

speeches have a lower naturalness and intelligibility compared to newscasting and sto-

rytelling speeches. A plausible explanation is that the public speech data from Hillary

Clinton were obtained from YouTube which has lower sound quality. Overall speech syn-

thesized by our TTS model has a naturalness that is comparable to the reported audio

signal quality of the voice-cloning-augmentation TTS model in [14].

4.5 Accent-beautified TTS

4.5.1 Dataset

We used the LJS corpus [16], which consists of roughly 21 hours of speech from a native

English female speaker, and the L2-ARCTIC [61], which is a non-native English speech

corpus. We selected the female Arabic speaker ZHAA, the female Chinese speaker LXC

and the male Korean speaker YKWK for the experiments. Each L2 speaker recorded 1132

utterances, which were equivalent to roughly 1 hour of data. We used the first 1032 utter-

ances for model training, the following 50 utterances for model validation, and selected

25 utterances from the remaining data for testing. The split is the same as used by a recent

AC model [26], which gives state-of-the-art AC result on the L2-ARCTIC corpus.

The model optimizes the GSTs to capture the prosody of native and non-native speech

from the training audio. The native speech from a single native speaker is ample for the

GSTs learning purpose. For all intents and purposes, the native speaker provides the

"golden standard" for native speech, while the L2 speaker imitates the golden standard’s

prosody to reduce his/her accent by conditioning on the native accent weighted GSTs.
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4.5.2 Experimental Setup

We trained the ASR model with pairs of LJS’s ground truth mel-spectrogram and phoneme

sequence for 300 epochs. The ASR model was then frozen in subsequent training. We

trained the TTS module with LJS speeches for 150 epochs. The resulting model serves as

the pre-trained model in our system.

Then we experimented with four different speaker adaptation schemes by fine-tuning

the pre-trained model on the speeches of individual L2 speakers. To evaluate the effect of

ASR and DA, we performed an ablation study as follows:

1. Fine-tuning (FT): For 100 epochs with only the TTS loss.

2. FT + ASR: For 100 epochs with only the TTS and ASR losses.

3. FT + DA: For 100 epochs with only the TTS and DA losses. Since each L2 speaker

had fewer speech data than the native speaker’s, the speech data of an L2 speaker

were duplicated in each epoch to around the same amount (around 21 hours) as the

native speaker’s to tackle the data imbalance issue. We trained the model for 40

epochs, and then trained with on-the-fly augmented data for another 60 epochs.

4. FT + ASR + DA: We fine-tuned the model on the speeches of individual L2 speakers

and LJS speaker with the TTS, ASR and DA losses. The training procedure is the

same as that used in FT + DA.

4.5.3 Baseline Model

For evaluation, we compared the synthesized audios against those from a state-of-the-art

AC model [26]. The AC model detail could be referred to Section 2.4.

4.5.4 Objective Evaluation

We evaluated the effectiveness of the proposed accent-beautified TTS method in two as-

pects: (a) pronunciation accuracy in terms of WER by running ASR on the synthesized L2

speeches, and (2) voice similarity decided by speaker verification.
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An ASR model as a proxy of a native listener

We used the Deep speech model v0.9.3 released by Mozilla7 as a proxy of a native English

listener. The model was trained with thousands of hours of speech from multiple corpora.

It achieved a 7.06% WER on the LibriSpeech clean test corpus. The model had a bias

towards US accents.

From Table 4.9, we observe the FT + ASR + DA scheme reduces WER dramatically

compared to the WER on the original L2 utterances and FT scheme. By comparing the

schemes of (i) FT + DA against FT and (ii) FT + ASR + DA against FT + ASR, it shows

that the DA loss term improves the clarity by 3 to 8%. In the following evaluations, we

use the samples generated from the model of FT + ASR +DA.

Speaker

Utterances ZHAA LXC YKWK

Original L2 26.5% 52.2% 46.9%

FT 23.1% 43.4% 38.8%

FT + DA 20.5% 35.4% 36.6%

FT + ASR 16.1% 19.9% 18.4%

FT + ASR + DA 14.4% 15.2% 14.1%

Samples of [26] 18.3% NA NA

Table 4.9. Word error rate (WER) of the original L2 and synthesized utterances.

Voice similarity measure

We applied the Resemblyzer model8 to extract a speaker embedding from an utterance.

Resemblyzer is a speaker verification system that was trained on speech data from 8K

speakers. The model is an implementation of speaker embedding trained under the gen-

eralized end-to-end loss [50]. The Equal error rate (EER) is an indicator regarding the

overall performance of a biometric system. It refers to the condition that the proportion

of false acceptances is equal to the proportion of false rejections. The lower the EER is,

7https://github.com/mozilla/DeepSpeech/releases
8https://github.com/resemble-ai/Resemblyzer
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the higher accuracy of the system has. Resemblyzer achieved around 4% on 9 enrollment

utterances.

We retrieved the speaker embedding for each utterance in the test set. We compared

the synthesized speech to the original L2 speech (of the same text) by computing the cosine

similarity of the two embeddings as the similarity measure. We observe from Table 4.10

that the fine-tuning FT scheme gives a high speaker’s voice similarity. Our FT + ASR

+DA scheme gives a slightly worse speaker’s voice similarity than FT, but it gives a much

higher speaker’s voice similarity than the model in [26].

Model FT FT + DA FT + ASR FT + ASR + DA Samples of [26]

Score 0.861 0.857 0.831 0.819 0.738

Table 4.10. Voice similarity of the synthesized speech of ZHAA.

4.5.5 Subjective Evaluation

We performed a subjective evaluation on the (a) utterances synthesized by our proposed

TTS model for speaker ZHAA. We compared them with the (b) original L2 utterances by

ZHAA, (c) synthesized utterances by the native LJS speaker and (d) speech samples (of

the same text) from [26]. Some audio samples are available on this webpage9. We focused

on naturalness, voice similarity and accentedness. We recruited 15 listeners who declared

themselves as native American English speakers. We summarized the results in Table 4.11

and Table 4.12.

Speaker Proposed Model Samples of [26] No Preference

ZHAA 55% 26% 19%

Table 4.11. Preference test results on voice similarity.

For voice similarity evaluation, the listeners were asked to select the synthesized ut-

terances that sounded most similar to the original samples of ZHAA that spoke the same

content, and they were also given the choice of no preference. The result of the prefer-

9https://raymond00000.github.io/attsdemo.html
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Audio Naturalness Accentedness

Original L2 utterances 3.74±0.08 6.38±0.18

Native TTS 3.56±0.13 4.66±0.18

Proposed TTS 3.37±0.11 5.82±0.23

Samples of [26] 3.42±0.08 5.31±0.18

Table 4.12. MOS results at 95% confidence level on naturalness and accentedness.

ence test confirmed our objective analysis that our model gave a higher speaker’s voice

similarity than [26].

Accentedness refers to the perceived strength of a non-native accent. We followed the

MOS setting of [60] for its evaluation, in which the MOS scaled from 1 to 9, where 1 means

no foreign accent and 9 means a very strong foreign accent. The result showed that our

model could reduce the foreign accent compared to the original samples but not as good

as [26].

Regarding the naturalness of the utterances, we used the MOS scale of 1 to 5. The

original samples give the highest score as expected while our proposed model gives a

comparable performance as [26].
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CHAPTER 5

CONCLUSION AND FUTURE WORK

To the best of our knowledge, our proposed method is the first method that builds a multi-

style text-to-speech model from a set of single-style disjoint datasets, each spoken by a

different speaker. This is made possible by generating augmented speech data for the im-

itating speaker, conditioning on the style embedding extracted from target utterance and

using a loss function over the alignment matrices (from the attention module in the model)

of the imitating speaker and the original speaker. The trained model is a customized and

expressive TTS model.

The backbone of our approach does not depend on any external ASR or VC model; it

is a single model training approach. The data augmentation is done on-the-fly to utilize

the latest model parameters for the data generation. Another benefit is our on-the-fly aug-

mented unpaired data share some embedding variables with the real paired data hence

the GPU RAM could be potentially optimized for a larger mini-batch size during training.

We substantiated the effectiveness of our proposed method in two TTS applications.

For the scenario-based TTS, objective evaluation on the rhythm and pitch profile of the

synthesized stylish speeches shows that our proposed model successfully performs the

style transfer. Subjective evaluation also shows that stylish speech generated by our pro-

posed model is overwhelmingly preferred over the baseline model that was trained to

generate neutral speech.

For the accent-beautified TTS, we extended the proposed model with a phoneme recog-

nition module. We built a TTS model based on a native speaker corpus and a (relatively)

small amount of L2 utterances from a non-native speaker. The native speaker corpus

acts as a guide to reduce the foreign accent of the synthesized L2 speech of the non-

native speaker. Both subjective and objective evaluations show that the model gives a

high speaker similarity because of the joint training of the speaker embedding. The pro-

posed alignment loss for on-the-fly augmented data together with ASR loss also improves
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the clarity of the synthesized speech. In terms of accentedness, subjective MOS shows our

model could reduce the foreign accent of the speech with comparable naturalness of a

state-of-the-art model [26].

Regarding the limitation, our proposed approach focuses on one-to-one speech imi-

tation. For instance, a person tries to imitate Steve Jobs’s presentation speech to improve

his/her public speaking skill. Another situation is the person tries to imitate two speakers,

Barack Obama and George Walker Bush, to improve his/her public speaking speech. In

the latter case, the proposed model would require multiple speakers of the same scenario

spoken in a very similar speaking style.

In the future, we could gather audio data in other scenarios, style transfer across op-

posite gender speakers, or even a multilingual speech dataset to further evaluate the style

transfer capability of the proposed TTS system in challenging circumstances. In addition,

contextual word embedding (CWE) considers the sentence context in word embedding

calculation. In the field of natural language processing, CWE was used to perform the

part-of-speech tagging task. CWE derived from the input sentence was shown to be bene-

ficial to the TTS in speaking style modeling [36]. We could include CWE as well to validate

the benefit. Last but not least, we could investigate replacing the speaker embedding with

a very well-trained speaker encoder in the pursuit of a zero-shot stylish speech synthesis

of a common person.

As a final closing remark: TTS training usually requires a large training corpus. Our

experiment on found data from the web shows it is feasible to mine audio data from

audiobooks and YouTube for stylish TTS training. We also demonstrate the proposed

novel data augmentation method enables a TTS style transfer using disjoint datasets.
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